


Simulation Modeling 
and Analysis

FIFTH EDITION

Averill M. Law
President
Averill M. Law & Associates, Inc.
Tucson, Arizona, USA
www.averill-law.com

Law01323_fm_i-xviii.indd Page i  28/11/13  7:50 PM user-f-w-198 Law01323_fm_i-xviii.indd Page i  28/11/13  7:50 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



SIMULATION MODELING AND ANALYSIS, FIFTH EDITION

Published by McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121. Copyright © 2015 by McGraw-Hill 
Education. All rights reserved. Printed in the United States of America. Previous editions © 2007 and 2000. 
No part of this publication may be reproduced or distributed in any form or by any means, or stored in a 
database or retrieval system, without the prior written consent of McGraw-Hill Education, including, but not 
limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the 
United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 1 0 9 8 7 6 5 4

ISBN  978-0-07-340132-4
MHID 0-07-340132-3

Senior Vice President, Products & Markets: Kurt L. Strand
Vice President, General Manager, Products & Markets: Marty Lange
Vice President, Content Production & Technology Services: Kimberly Meriwether David
Global Publisher: Raghu Srinivasan
Development Editor: Melinda Bilecki
Marketing Manager: Heather Wagner
Director, Content Production: Terri Schiesl
Content Project Manager: Melissa Leick
Buyer: Susan K. Culbertson
Cover Designer: Studio Montage, St. Louis MO
Media Project Manager: Sandy Schnee
Compositor: Aptara®, Inc.
Typeface: 10.5/12 Times
Printer: R. R. Donnelley

All credits appearing on page or at the end of the book are considered to be an extension of the copyright 
page.

Library of Congress Cataloging-in-Publication Data

Law, Averill M.
 Simulation modeling and analysis / Averill M. Law, President Averill M. Law & Associates, Inc.
 Tucson, Arizona, USA, www.averill-law.com. — Fifth edition.
  pages cm. — (McGraw-Hill series in industrial engineering and management science)
 ISBN 978-0-07-340132-4 (alk. paper)
 1. Digital computer simulation. I. Title. 
 QA76.9.C65L38 2013
 003'.3—dc23
 2013040962

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a website 
does not indicate an endorsement by the authors or McGraw-Hill Education, and McGraw-Hill Education 
does not guarantee the accuracy of the information presented at these sites.

www.mhhe.com

Law01323_fm_i-xviii.indd Page ii  28/11/13  8:01 PM user-f-w-198 Law01323_fm_i-xviii.indd Page ii  28/11/13  8:01 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



iii

A B O U T  T H E  A U T H O R

Averill M. Law is President of Averill M. Law & Associates, Inc. (Tucson, Arizona), 
a company specializing in simulation training, consulting, and software. He was 
previously Professor of Decision Sciences at the University of Arizona and Associate 
Professor of Industrial Engineering at the University of Wisconsin–Madison. He has 
a Ph.D. and an M.S. in industrial engineering and operations research from the Univer-
sity of California at Berkeley, an M.A. in mathematics from California State University 
at Long Beach, and a B.S. in mathematics from Pennsylvania State University.

Dr. Law has presented more than 525 simulation and statistics short courses in 
19 countries, including onsite seminars for ALCOA, AT&T, Boeing, Caterpillar, 
Coca-Cola, CSX, Defence Research and Development Canada, GE, GM, IBM, 
Intel, Lockheed Martin, Los Alamos National Lab, Missile Defense Agency, 
 Motorola, NASA, National Security Agency, NATO (Netherlands), Northrop 
Grumman, Norwegian Defence Research Establishment, Sasol Technology (South 
Africa), 3M, Time Warner, UPS, U.S. Air Force, U.S. Army, U.S. Forces Korea, 
U.S. Navy, Verizon, Whirlpool, and Xerox. He has been a simulation consultant to 
organizations such as Accenture, Boeing, Booz Allen & Hamilton, ConocoPhillips, 
Defense Modeling and Simulation Offi ce, Hewlett-Packard, Kaiser Aluminum, 
Kimberly-Clark, M&M/Mars, SAIC, Sandia National Labs, Swedish Defence 
 Materiel Administration, 3M, Tropicana, U.S. Air Force, U.S. Army, U.S. Marine 
Corps, U.S. Navy, Veteran’s Administration, and Xerox.

He is the developer of the ExpertFit distribution-fi tting software, which auto-
mates the selection of simulation input probability distributions. ExpertFit is used by 
more than 2000 organizations worldwide. He also developed the videotapes Simula-
tion of Manufacturing Systems and How to Conduct a Successful Simulation Study.

Dr. Law was awarded the INFORMS Simulation Society Lifetime Professional 
Achievement Award in 2009. He is the author (or coauthor) of three books and 
numerous papers on simulation, operations research, statistics, manufacturing, and 
communications networks. His article “Statistical Analysis of Simulation Output Data” 
was the fi rst invited feature paper on simulation to appear in a major research journal, 
namely, Operations Research. His series of papers on the simulation of manufacturing 
systems won the 1988 Institute of Industrial Engineers’ best publication award. During 
his academic career, the Offi ce of Naval Research supported his simulation research for 
eight consecutive years. He was President of the INFORMS College on Simulation. He 
wrote a regular column on simulation for Industrial Engineering during 1990 and 
1991. He has been the keynote speaker at simulation conferences worldwide.

Law01323_fm_i-xviii.indd Page iii  28/11/13  7:50 PM user-f-w-198 Law01323_fm_i-xviii.indd Page iii  28/11/13  7:50 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



For Steffi , Heather, Adam, and Brian, and in memory of Sallie and David.

Law01323_fm_i-xviii.indd Page iv  28/11/13  7:50 PM user-f-w-198 Law01323_fm_i-xviii.indd Page iv  28/11/13  7:50 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



v

C O N T E N T S

  List of Symbols xiii
  Preface xvi

Chapter   1 Basic Simulation Modeling 1
 1.1 The Nature of Simulation 1
 1.2 Systems, Models, and Simulation 3
 1.3 Discrete-Event Simulation 6

1.3.1 Time-Advance Mechanisms 7
1.3.2  Components and Organization of a Discrete-Event 

Simulation Model 9
 1.4 Simulation of a Single-Server Queueing System 12

1.4.1 Problem Statement 12
1.4.2 Intuitive Explanation 18
1.4.3 Program Organization and Logic 27
1.4.4 C Program 32
1.4.5 Simulation Output and Discussion 39
1.4.6 Alternative Stopping Rules 41
1.4.7 Determining the Events and Variables 45

 1.5 Simulation of an Inventory System 48
1.5.1 Problem Statement 48
1.5.2 Program Organization and Logic 50
1.5.3 C Program 53
1.5.4 Simulation Output and Discussion 60

 1.6 Parallel/Distributed Simulation and the High Level Architecture 61
1.6.1 Parallel Simulation 62
1.6.2 Distributed Simulation and the High Level Architecture 64

 1.7 Steps in a Sound Simulation Study 66
 1.8 Advantages, Disadvantages, and Pitfalls of Simulation 70

  Appendix 1A: Fixed-Increment Time Advance 72
  Appendix 1B: A Primer on Queueing Systems 73

1B.1 Components of a Queueing System 74
1B.2 Notation for Queueing Systems 74
1B.3 Measures of Performance for Queueing Systems 75

  Problems 78

Law01323_fm_i-xviii.indd Page v  29/11/13  4:31 PM user-f-w-198 Law01323_fm_i-xviii.indd Page v  29/11/13  4:31 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



vi contents

Chapter  2 Modeling Complex Systems 85
 2.1 Introduction 85
 2.2 List Processing in Simulation 86

2.2.1  Approaches to Storing Lists in 
a Computer 86

2.2.2 Linked Storage Allocation 87
 2.3 A Simple Simulation Language: simlib 93
 2.4 Single-Server Queueing Simulation with simlib 102

2.4.1 Problem Statement 102
2.4.2 simlib Program 102
2.4.3 Simulation Output and Discussion 107

 2.5 Time-Shared Computer Model 108
2.5.1 Problem Statement 108
2.5.2 simlib Program 109
2.5.3 Simulation Output and Discussion 117

 2.6 Multiteller Bank with Jockeying 120
2.6.1 Problem Statement 120
2.6.2 simlib Program 121
2.6.3 Simulation Output and Discussion 131

 2.7 Job-Shop Model 134
2.7.1 Problem Statement 134
2.7.2 simlib Program 136
2.7.3 Simulation Output and Discussion 147

 2.8 Effi cient Event-List Management 149

  Appendix 2A: C Code for simlib 150

  Problems 163

Chapter  3 Simulation Software 181
 3.1 Introduction 181
 3.2 Comparison of Simulation Packages with 
  Programming Languages 182
 3.3 Classifi cation of Simulation Software 183

3.3.1  General-Purpose vs. Application-Oriented 
Simulation Packages 183

3.3.2 Modeling Approaches 183
3.3.3 Common Modeling Elements 186

 3.4 Desirable Software Features 186
3.4.1 General Capabilities 187
3.4.2 Hardware and Software Requirements 189
3.4.3 Animation and Dynamic Graphics 189
3.4.4 Statistical Capabilities 190
3.4.5 Customer Support and Documentation 192
3.4.6 Output Reports and Graphics 193

Law01323_fm_i-xviii.indd Page vi  28/11/13  7:50 PM user-f-w-198 Law01323_fm_i-xviii.indd Page vi  28/11/13  7:50 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



contents vii

 3.5 General-Purpose Simulation Packages 193
3.5.1 Arena 193
3.5.2 ExtendSim 198
3.5.3 Simio 206
3.5.4 Other General-Purpose Simulation Packages 212

 3.6 Object-Oriented Simulation 212
 3.7 Examples of Application-Oriented Simulation Packages 213

Chapter  4 Review of Basic Probability and Statistics 214
 4.1 Introduction 214
 4.2 Random Variables and Their Properties 214
 4.3 Simulation Output Data and Stochastic Processes 226
 4.4 Estimation of Means, Variances, and Correlations 229
 4.5 Confi dence Intervals and Hypothesis Tests for the Mean 233
 4.6 The Strong Law of Large Numbers 240
 4.7 The Danger of Replacing a Probability Distribution by 
  its Mean 241

  Appendix 4A:  Comments on Covariance-Stationary Processes 241

  Problems 242

Chapter  5  Building Valid, Credible, and Appropriately Detailed 
Simulation Models 246

 5.1 Introduction and Defi nitions 246
 5.2 Guidelines for Determining the Level of Model Detail 249
 5.3 Verifi cation of Simulation Computer Programs 251
 5.4 Techniques for Increasing Model Validity and Credibility 255

5.4.1 Collect High-Quality Information and 
 Data on the System 256
5.4.2 Interact with the Manager on a Regular Basis 257
5.4.3  Maintain a Written Assumptions Document 

and Perform a Structured Walk-Through 258
5.4.4 Validate Components of the Model by 
 Using Quantitative Techniques 260
5.4.5 Validate the Output from the Overall Simulation Model 262
5.4.6 Animation 268

 5.5 Management’s Role in the Simulation Process 269
 5.6 Statistical Procedures for Comparing Real-World 
  Observations and Simulation Output Data 269

5.6.1 Inspection Approach 270
5.6.2 Confi dence-Interval Approach Based on 
 Independent Data 273
5.6.3 Time-Series Approaches 276
5.6.4 Other Approaches 277

  Problems 277

Law01323_fm_i-xviii.indd Page vii  28/11/13  7:50 PM user-f-w-198 Law01323_fm_i-xviii.indd Page vii  28/11/13  7:50 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



viii contents

Chapter  6 Selecting Input Probability Distributions 279
 6.1 Introduction 279
 6.2 Useful Probability Distributions 285

6.2.1 Parameterization of Continuous Distributions 285
6.2.2 Continuous Distributions 286
6.2.3 Discrete Distributions 305
6.2.4 Empirical Distributions 305

 6.3 Techniques for Assessing Sample Independence 316
 6.4 Activity I: Hypothesizing Families of Distributions 319

6.4.1 Summary Statistics 320
6.4.2 Histograms 322
6.4.3 Quantile Summaries and Box Plots 324

 6.5 Activity II: Estimation of Parameters 330
 6.6 Activity III: Determining How Representative 
  the Fitted Distributions Are 334

6.6.1 Heuristic Procedures 335
6.6.2 Goodness-of-Fit Tests 344

 6.7  The ExpertFit Software and an Extended Example 359
 6.8  Shifted and Truncated Distributions 364
 6.9 Bézier Distributions 366
 6.10 Specifying Multivariate Distributions, Correlations, 
  and Stochastic Processes 367

6.10.1 Specifying Multivariate Distributions 368
6.10.2  Specifying Arbitrary Marginal Distributions 

and Correlations 372
6.10.3 Specifying Stochastic Processes 373

 6.11 Selecting a Distribution in the Absence of Data 375
 6.12 Models of Arrival Processes 380

6.12.1 Poisson Processes 380
6.12.2 Nonstationary Poisson Processes 381 
6.12.3 Batch Arrivals 384

 6.13 Assessing the Homogeneity of Different Data Sets 385

  Appendix 6A:  Tables of MLEs for the Gamma and 
Beta Distributions 386

  Problems 389

Chapter  7 Random-Number Generators 393
 7.1 Introduction 393
 7.2 Linear Congruential Generators 397

7.2.1 Mixed Generators 399
7.2.2 Multiplicative Generators 400

 7.3 Other Kinds of Generators 402
7.3.1 More General Congruences 402

Law01323_fm_i-xviii.indd Page viii  28/11/13  7:50 PM user-f-w-198 Law01323_fm_i-xviii.indd Page viii  28/11/13  7:50 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



contents ix

7.3.2 Composite Generators 403
7.3.3 Feedback Shift Register Generators 405

 7.4 Testing Random-Number Generators 409
7.4.1 Empirical Tests 409
7.4.2 Theoretical Tests 414
7.4.3 Some General Observations on Testing 418

  Appendix 7A: Portable C Code for a PMMLCG 419
  Appendix 7B: Portable C Code for a Combined MRG 421

  Problems 423

Chapter  8 Generating Random Variates 426
 8.1 Introduction 426
 8.2 General Approaches to Generating Random Variates 428

8.2.1 Inverse Transform 428
8.2.2 Composition 437
8.2.3 Convolution 440
8.2.4 Acceptance-Rejection 441
8.2.5 Ratio of Uniforms 448
8.2.6 Special Properties 450

 8.3 Generating Continuous Random Variates 451
8.3.1 Uniform 452
8.3.2 Exponential 452
8.3.3 m-Erlang 453
8.3.4 Gamma 453
8.3.5 Weibull 456
8.3.6 Normal 457
8.3.7 Lognormal 458
8.3.8 Beta 458
8.3.9 Pearson Type V 459
8.3.10 Pearson Type VI 460
8.3.11 Log-Logistic 460
8.3.12 Johnson Bounded 460
8.3.13 Johnson Unbounded 461
8.3.14 Bézier 461
8.3.15 Triangular 461
8.3.16 Empirical Distributions 462

 8.4 Generating Discrete Random Variates 463
8.4.1 Bernoulli 464
8.4.2 Discrete Uniform 464
8.4.3 Arbitrary Discrete Distribution 464
8.4.4 Binomial 469
8.4.5 Geometric 469
8.4.6 Negative Binomial 469
8.4.7 Poisson 470

Law01323_fm_i-xviii.indd Page ix  28/11/13  7:50 PM user-f-w-198 Law01323_fm_i-xviii.indd Page ix  28/11/13  7:50 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



x contents

 8.5 Generating Random Vectors, Correlated Random Variates, 
  and Stochastic Processes 470

8.5.1 Using Conditional Distributions 471
8.5.2 Multivariate Normal and Multivariate Lognormal 472
8.5.3 Correlated Gamma Random Variates 473
8.5.4 Generating from Multivariate Families 474
8.5.5 Generating Random Vectors with Arbitrarily 
 Specifi ed Marginal Distributions and Correlations 474
8.5.6 Generating Stochastic Processes 475

 8.6 Generating Arrival Processes 476
8.6.1 Poisson Processes 476
8.6.2 Nonstationary Poisson Processes 477
8.6.3 Batch Arrivals 481

  Appendix 8A:  Validity of the Acceptance-Rejection
Method 481 

  Appendix 8B: Setup for the Alias Method 482

  Problems 483

Chapter  9 Output Data Analysis for a Single System 488
 9.1  Introduction 488
 9.2 Transient and Steady-State Behavior of a Stochastic Process 491
 9.3 Types of Simulations with Regard to Output Analysis 493
 9.4 Statistical Analysis for Terminating Simulations 497

9.4.1 Estimating Means 498
9.4.2 Estimating Other Measures of Performance 507
9.4.3 Choosing Initial Conditions 510

 9.5 Statistical Analysis for Steady-State Parameters 511
9.5.1 The Problem of the Initial Transient 511
9.5.2 Replication/Deletion Approach for Means 523
9.5.3 Other Approaches for Means 526
9.5.4 Estimating Other Measures of Performance 540

 9.6 Statistical Analysis for Steady-State Cycle Parameters 542
 9.7 Multiple Measures of Performance 545
 9.8 Time Plots of Important Variables 548

  Appendix 9A:  Ratios of Expectations and Jackknife
Estimators 550 

  Problems 551

 Chapter 10 Comparing Alternative System Confi gurations 556
 10.1 Introduction 556
 10.2 Confi dence Intervals for the Difference between the 
  Expected Responses of Two Systems 560

10.2.1 A Paired-t Confi dence Interval 560

Law01323_fm_i-xviii.indd Page x  28/11/13  7:50 PM user-f-w-198 Law01323_fm_i-xviii.indd Page x  28/11/13  7:50 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



contents xi

10.2.2 A Modifi ed Two-Sample-t Confi dence Interval 562
10.2.3 Contrasting the Two Methods 563
10.2.4 Comparisons Based on Steady-State Measures 
 of Performance 563

 10.3 Confi dence Intervals for Comparing More than Two Systems 565
10.3.1 Comparisons with a Standard 566
10.3.2 All Pairwise Comparisons 568
10.3.3 Multiple Comparisons with the Best 569

 10.4 Ranking and Selection 569
10.4.1 Selecting the Best of k Systems 570
10.4.2 Selecting a Subset of Size m Containing the 
 Best of k Systems 576
10.4.3 Additional Problems and Methods 577

  Appendix 10A: Validity of the Selection Procedures 582
  Appendix 10B: Constants for the Selection Procedures 583

  Problems 584

 Chapter 11 Variance-Reduction Techniques 587
 11.1 Introduction 587
 11.2 Common Random Numbers 588

11.2.1 Rationale 589
11.2.2 Applicability 590
11.2.3 Synchronization 592
11.2.4 Some Examples 596

 11.3 Antithetic Variates 604
 11.4 Control Variates 610
 11.5 Indirect Estimation 617
 11.6 Conditioning 619

  Problems 623

 Chapter 12 Experimental Design and Optimization 629
 12.1 Introduction 629
 12.2 2k Factorial Designs 632
 12.3 2k2p Fractional Factorial Designs 649
 12.4 Response Surfaces and Metamodels 656

12.4.1 Introduction and Analysis of the Inventory Model 657
12.4.2 Analysis of the Predator-Prey Model 668
12.4.3 Space-Filling Designs and Kriging 671

 12.5 Simulation-Based Optimization 679
12.5.1 Optimum-Seeking Methods 681
12.5.2 Optimum-Seeking Packages Interfaced with 
 Simulation Software 682

  Problems 690

Law01323_fm_i-xviii.indd Page xi  28/11/13  7:50 PM user-f-w-198 Law01323_fm_i-xviii.indd Page xi  28/11/13  7:50 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



xii contents

 Chapter 13 Agent-Based Simulation and System Dynamics 693
 13.1 Introduction 693
 13.2 Agent-Based Simulation 694

13.2.1 Detailed Examples 699
13.2.2 Time-Advance Mechanisms for ABS 704
13.2.3 Summary of ABS 707

 13.3 Continuous Simulation 707
13.3.1 System Dynamics 708

 13.4 Combined Discrete-Continuous Simulation 713
 13.5  Monte Carlo Simulation 714
 13.6 Spreadsheet Simulation 717

  Problems 719

 Chapter 14 Simulation of Manufacturing Systems website chapter

  Appendix 721
  References 725
  Index 759

Law01323_fm_i-xviii.indd Page xii  09/12/13  6:55 PM user-f-w-198 Law01323_fm_i-xviii.indd Page xii  09/12/13  6:55 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



xiii

L I S T  O F  S Y M B O L S

Notation or Page number 
abbreviation  of defi nition

Ai 8
ABS 694
AR, ARMA 373
ARTA 374
ASAP3 538
AV 604
AT  368, 471
Db 322
Bernoulli(p) 306
beta(a1, a2) 295
bin(t, p) 308
B(a1, a2) 295
B(t) 16
Cij 224
Cj 227
CCD 661
CNI 685
Cor 225
Cov 224
CPU 108
CRN 588
cv 320
CV 610
d 76
dd 573
DES 693
d(n) 13
d̂ (n) 13
df 234
Di 8
DU(i, j) 307

Notation or Page number 
abbreviation  of defi nition

E( ) 222
EAR 374
Erlang 290
expo(b) 287
FIFO 13
FITA 693
f (x) 28, 216
F(x) 28
f (x, y) 221
F21 325
gamma(a, b) 288
geom(p) 309
GFSR 407
GI/G/s 75
GPM 676
h(x) 322
H0 238
H1 238
H&W 537
HLA 64
IID 12
JSB(a1, a2, a, b) 301
JSU(a1, a2, g, b) 303
kn 580
kn++ 581
l(u) 331
L 76
L(u) 330
L&C 536
LCG 397
LFC 576

Law01323_fm_i-xviii.indd Page xiii  28/11/13  7:50 PM user-f-w-198 Law01323_fm_i-xviii.indd Page xiii  28/11/13  7:50 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



xiv list of symbols

Notation or Page number 
abbreviation  of defi nition

LFSR 406
LHD 672
LIFO 74
LL(a, b) 299
LN(m, s2) 294
L(t) 75
m 222, 489
MC 685
MCB 569
M/E2/1 75
M/G/1 75
M/M/1 28, 75
M/M/2 75
M/M/s 75
MLE 330
MRG 402
MRG32k3a 404
MSCO 64
MSE 512
MSER 520
MT19937 408
N(m, s2) 292
N(0, 1) 293
Nd(m, S) 370
NC 685
negbin(s, p) 311
NETA 693
nm 573
NORTA 474
nsgs 576
ocba 577
PMMLCG 400
p(x) 215
p(x, y) 220
P( ) 215
Pareto(c, a2) 389
Poisson(l) 312
PT5(a, b) 297
PT6(a1, a2, b)  298
Q 76
q(n) 14
q̂(n)  14
Q(t) 14

Notation or Page number 
abbreviation  of defi nition

r 573
RTI 64
SBatch 538
SFD 671
Skart 539
(s, S) 48
Si 8
S2(n) 229
SME 68
ti 8
tn21,12a/2 235
T(n) 14
TGFSR 408
triang(a, b, m) 304
u(n) 16
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xvi

P R E F A C E

The goal of this fi fth edition of Simulation Modeling and Analysis remains the 
same as that for the fi rst four editions: to give a comprehensive and state-of-the-art 
treatment of all the important aspects of a simulation study, including modeling, 
simulation software, model verifi cation and validation, input modeling, random-
number generators, generating random variates and processes, statistical design and 
analysis of simulation experiments, and to highlight major application areas such as 
manufacturing. The book strives to motivate intuition about simulation and model-
ing, as well as to present them in a technically correct yet clear manner. There are 
many examples and problems throughout, as well as extensive references to the 
simulation and related literature for further study.

The book can serve as the primary text for a variety of courses, for example

• A fi rst course in simulation at the junior, senior, or beginning-graduate-student 
level in engineering, manufacturing, business, or computer science (Chaps. 1 
through 4 and parts of Chaps. 5 through 9 and 13). At the end of such a course, 
the student will be prepared to carry out complete and effective simulation stud-
ies, and to take advanced simulation courses.

• A second course in simulation for graduate students in any of the above disciplines 
(most of Chaps. 5 through 12). After completing this course, the student should be 
familiar with the more advanced methodological issues involved in a simulation 
study, and should be prepared to understand and conduct simulation research.

• An introduction to simulation as part of a general course in operations research or 
management science (parts of Chaps. 1, 3, 5, 6, 9, and 13).

For instructors who have adopted the book for use in a course, I have made 
available for download from the website www.mhhe.com/law a number of teaching 
support materials. These include a comprehensive set of solutions to the Problems 
and all the computer code for the simulation models and random-number generators 
in Chaps. 1, 2, and 7. Adopting instructors should contact their local McGraw-Hill 
representative for login identifi cation and a password to gain access to the material 
on this site; local representatives can be identifi ed by calling 1-800-338-3987 or by 
using the representative locator at www.mhhe.com.

The book can also serve as a defi nitive reference for simulation practitioners 
and researchers. To this end I have included a detailed discussion of many practical 
examples gleaned in part from my own experiences and consulting projects. I have 
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also made major efforts to link subjects to the relevant research literature, both in 
print and on the web, and to keep this material up to date. Prerequisites for under-
standing the book are knowledge of basic calculus-based probability and statistics 
(although I give a review of these topics in Chap. 4) and some experience with 
computing. For Chaps. 1 and 2 the reader should also be familiar with a general-
purpose programming language such as C. Occasionally I will also make use of a 
small amount of linear algebra or matrix theory. More advanced or technically dif-
fi cult material is located in starred sections or in appendixes to chapters. At the 
beginning of each chapter, I suggest sections for a fi rst reading of that chapter.

I have made numerous changes and additions to the fourth edition of the book 
to arrive at this fi fth edition, but the organization has remained mostly the same. 
I have moved the material on other types of simulation from Chap. 1 to a new 
Chap. 13, which is discussed below. Chapter 2 on modeling complex systems has been 
updated to refl ect the latest research on effi cient event-list management. Chapter 3 
has been rewritten and expanded to refl ect the current state of the art in simulation 
software. A common example is now given in three of the leading general-purpose 
simulation packages. The discussion of confi dence intervals and hypothesis tests in 
Chap. 4 has been greatly enhanced, making the chapter a much more self-contained 
treatment of the basic probability and statistics needed for the remainder of the 
book. Chapter 5 makes clearer the distinction between validating and calibrating a 
model, which is often misunderstood. For Chap. 6 on input modeling, the latest 
developments in accounting for input-model uncertainty and in modeling arrival 
processes are discussed. Chapter 7 provides recommendations on the best-available 
random-number generators. Chapter 8 on generating random variates and processes 
has only had minor updates. Many of the statistical design-and-analysis methods of 
Chaps. 9 through 12 have been expanded and updated extensively to refl ect current 
practice and recent research. In particular, Chap. 9 contains a comprehensive dis-
cussion of the latest fi xed-sample-size and sequential methods for estimating the 
steady-state mean of a simulated system. The discussion of ranking-and-selection 
procedures in Chap. 10 has been expanded to include newer and more effi cient 
methods that are not based on the classical indifference-zone approach. Chapter 11 
on variance-reduction techniques has only had minor changes. In Chap. 12, I give a 
much more comprehensive and self-contained discussion of design of experiments 
and metamodeling, with a particular emphasis on what designs and metamodels to 
use specifi cally for simulation modeling. The discussion of simulating manufactur-
ing systems is now in a new Chap. 14, which is available on the book’s website 
www.mhhe.com/law, rather than in the book itself. It has been brought up to date in 
terms of the latest simulation-software packages and uses of simulation for manu-
facturing applications. There is a new Chap. 13 that discusses agent-based simulation 
and system dynamics, as well as other types of simulation that were previously 
discussed in Chap. 1 of the fourth edition. A student version of the ExpertFit 
distribution-fi tting software is now available on the book’s website; it can be used 
to analyze the data sets corresponding to the examples and problems in Chap. 6. The 
references for all the chapters are collected together at the end of the book, to make 
this material more compact and convenient to the reader. A large and thorough sub-
ject index enhances the book’s value as a reference.
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This text is available as an eBook at www.
CourseSmart.com. At CourseSmart you can take 
advantage of signifi cant savings off the cost of a 

print textbook, reduce their impact on the environment, and gain access to powerful 
web tools for learning. CourseSmart eBooks can be viewed online or downloaded 
to a computer. The eBooks allow readers to do full text searches, add highlighting 
and notes, and share notes with others. CourseSmart has the largest selection of 
eBooks available anywhere. Visit www.CourseSmart.com to learn more and to try a 
sample chapter.

I would fi rst like to thank my former coauthor David Kelton for his numerous 
contributions to the fi rst three editions of the book. The formal reviewers for the 
fi fth edition were Christos Alexopoulos (Georgia Institute of Technology), Russell 
Barton (Pennsylvania State University), Chun-Hung Chen (George Mason Univer-
sity), Shane Henderson (Cornell University), Jack Kleijnen (Tilberg University), 
Pierre L’Ecuyer (Université de Montréal), Charles Macal (Argonne National Lab), 
Michael North (Argonne National Lab), and Douglas Samuelson (InfoLogix). They 
each read one new or signifi cantly changed chapter in great detail and made many 
valuable suggestions. Knowing that I will certainly inadvertently commit grievous 
errors of omission, I would nonetheless like to thank the following individuals for 
their help in various ways: Wayne Adams, Mark Anderson, Sigrun Andradóttir, Jay 
April, Robert Axtell, Emmett Beeker, Marco Better, Edmund Bitinas, A. J. Bobo, 
Andrei Borshchev, Nathanael Brown, John Carson, Loren Cobb, Eric Frisco, David 
Galligan, Nigel Gilbert, Fred Glover, David Goldsman, Daniel Green, Charles Harrell, 
Thomas Hayson, James Henriksen, Raymond Hill, Kathryn Hoad, Terril Hurst, 
Andrew Ilachinski, Jeffrey Joines, Harry King, David Krahl, Emily Lada,  Michael 
Lauren, Steffi  Law, Thomas Lucas, Gregory McIntosh, Janet McLeavey, Anup 
Mokashi, Daniel Muller, Rodney Myers, William Nordgren, Ernie Page,  Dennis 
Pegden, David Peterson, Stuart Robinson, Paul Sanchez, Susan Sanchez, Lee 
Schruben, David Siebert, Jeffrey Smith, David Sturrock, Ali Tafazzoli, Andrew Waller, 
Hong Wan, Robert Weber, Preston White, and James Wilson.

Averill M. Law
Tucson, AZ

Law01323_fm_i-xviii.indd Page xviii  28/11/13  7:50 PM user-f-w-198 Law01323_fm_i-xviii.indd Page xviii  28/11/13  7:50 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



1

C H A P T E R  1

Basic Simulation Modeling

Recommended sections for a fi rst reading: 1.1 through 1.4 (except 1.4.7), 1.7, 1.8

1.1
THE NATURE OF SIMULATION

This is a book about techniques for using computers to imitate, or simulate, the 
operations of various kinds of real-world facilities or processes. The facility or pro-
cess of interest is usually called a system, and in order to study it scientifi cally we 
often have to make a set of assumptions about how it works. These assumptions, 
which usually take the form of mathematical or logical relationships, constitute a 
model that is used to try to gain some understanding of how the corresponding 
system behaves.

If the relationships that compose the model are simple enough, it may be pos-
sible to use mathematical methods (such as algebra, calculus, or probability theory) 
to obtain exact information on questions of interest; this is called an analytic solu-
tion. However, most real-world systems are too complex to allow realistic models to 
be evaluated analytically, and these models must be studied by means of simulation. 
In a simulation we use a computer to evaluate a model numerically, and data are 
gathered in order to estimate the desired true characteristics of the model.

As an example of the use of simulation, consider a manufacturing company that 
is contemplating building a large extension on to one of its plants but is not sure if 
the potential gain in productivity would justify the construction cost. It certainly 
would not be cost-effective to build the extension and then remove it later if it does 
not work out. However, a careful simulation study could shed some light on the 
question by simulating the operation of the plant as it currently exists and as it 
would be if the plant were expanded.
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2 basic simulation modeling

Application areas for simulation are numerous and diverse. Below is a list of 
some particular kinds of problems for which simulation has been found to be a use-
ful and powerful tool:

• Designing and analyzing manufacturing systems
• Evaluating military weapons systems or their logistics requirements
• Determining hardware requirements or protocols for communications networks
• Determining hardware and software requirements for a computer system
• Designing and operating transportation systems such as airports, freeways, ports, 

and subways
• Evaluating designs for service organizations such as call centers, fast-food restau-

rants, hospitals, and post offi ces
• Reengineering of business processes
• Analyzing supply chains
• Determining ordering policies for an inventory system
• Analyzing mining operations

Simulation is one of the most widely used operations-research and management-
science techniques, if not the most widely used. One indication of this is the Winter 
Simulation Conference, which attracts 600 to 800 people every year. In addition, 
there are several other simulation conferences that often have more than 100 partici-
pants per year.

There are also several surveys related to the use of operations-research tech-
niques. For example, Lane, Mansour, and Harpell (1993) reported from a longitudi-
nal study, spanning 1973 through 1988, that simulation was consistently ranked as 
one of the three most important “operations-research techniques.” The other two 
were “math programming” (a catch-all term that includes many individual tech-
niques such as linear programming, nonlinear programming, etc.) and “statistics” 
(which is not an operations-research technique per se). Gupta (1997) analyzed 
1294 papers from the journal Interfaces (one of the leading journals dealing with 
applications of operations research) from 1970 through 1992, and found that simu-
lation was second only to “math programming” among 13 techniques considered.

There have been, however, several impediments to even wider acceptance 
and usefulness of simulation. First, models used to study large-scale systems tend 
to be very complex, and writing computer programs to execute them can be an 
arduous task indeed. This task has been made much easier in recent years by the 
development of excellent software products that automatically provide many of 
the features needed to “program” a simulation model. A second problem with 
simulation of complex systems is that a large amount of computer time is some-
times required. However, this diffi culty has become much less severe as com-
puters become faster and cheaper. Finally, there appears to be an unfortunate 
impression that simulation is just an exercise in computer programming, albeit a 
complicated one. Consequently, many simulation “studies” have been composed 
of heuristic model building, programming, and a single run of the program to 
obtain “the answer.” We fear that this attitude, which neglects the important 
issue of how a properly coded model should be used to make inferences about the 
 system of interest, has doubtless led to erroneous conclusions being drawn from 
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chapter one 3

many simulation studies. These questions of simulation methodology, which are 
largely independent of the software and hardware used, form an integral part of 
the latter chapters of this book.

Perspectives on the historical evolution of simulation modeling may be found 
in Nance and Sargent (2002).

In the remainder of this chapter (as well as in Chap. 2) we discuss systems and 
models in considerably greater detail and then show how to write computer pro-
grams in a general-purpose language to simulate systems of varying degrees of 
complexity. All of the computer code shown in this chapter can be downloaded 
from www.mhhe.com/law.

1.2
SYSTEMS, MODELS, AND SIMULATION

A system is defi ned to be a collection of entities, e.g., people or machines, that act 
and interact together toward the accomplishment of some logical end. [This defi ni-
tion was proposed by Schmidt and Taylor (1970).] In practice, what is meant by “the 
system” depends on the objectives of a particular study. The collection of entities 
that comprise a system for one study might be only a subset of the overall system 
for another. For example, if one wants to study a bank to determine the number of 
tellers needed to provide adequate service for customers who want just to cash a 
check or make a savings deposit, the system can be defi ned to be that portion of the 
bank consisting of the tellers and the customers waiting in line or being served. If, 
on the other hand, the loan offi cer and the safe-deposit boxes are to be included, the 
defi nition of the system must be expanded in an obvious way. [See also Fishman 
(1978, p. 3).] We defi ne the state of a system to be that collection of variables neces-
sary to describe a system at a particular time, relative to the objectives of a study. 
In a study of a bank, examples of possible state variables are the number of busy 
tellers, the number of customers in the bank, and the time of arrival of each cus-
tomer in the bank.

We categorize systems to be of two types, discrete and continuous. A discrete 
system is one for which the state variables change instantaneously at separated 
points in time. A bank is an example of a discrete system, since state variables— 
e.g., the number of customers in the bank—change only when a customer arrives or 
when a customer fi nishes being served and departs. A continuous system is one for 
which the state variables change continuously with respect to time. An airplane 
moving through the air is an example of a continuous system, since state variables 
such as position and velocity can change continuously with respect to time. Few 
systems in practice are wholly discrete or wholly continuous; but since one type of 
change predominates for most systems, it will usually be possible to classify a sys-
tem as being either discrete or continuous.

At some point in the lives of most systems, there is a need to study them to try 
to gain some insight into the relationships among various components, or to predict 
performance under some new conditions being considered. Figure 1.1 maps out dif-
ferent ways in which a system might be studied.
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4 basic simulation modeling

• Experiment with the Actual System vs. Experiment with a Model of the System. If 
it is possible (and cost-effective) to alter the system physically and then let it 
 operate under the new conditions, it is probably desirable to do so, for in this case 
there is no question about whether what we study is valid. However, it is rarely 
feasible to do this, because such an experiment would often be too costly or too 
disruptive to the system. For example, a bank may be contemplating reducing the 
number of tellers to decrease costs, but actually trying this could lead to long 
customer delays and alienation. More graphically, the “system” might not even 
exist, but we nevertheless want to study it in its various proposed alternative con-
fi gurations to see how it should be built in the fi rst place; examples of this situation 
might be a proposed communications network, or a strategic nuclear weapons 
system. For these reasons, it is usually necessary to build a model as a representa-
tion of the system and study it as a surrogate for the actual system. When using a 
model, there is always the question of whether it accurately refl ects the system for 
the purposes of the decisions to be made; this question of model validity is taken 
up in detail in Chap. 5.

• Physical Model vs. Mathematical Model. To most people, the word “model” 
evokes images of clay cars in wind tunnels, cockpits disconnected from their 
 airplanes to be used in pilot training, or miniature supertankers scurrying about 
in a swimming pool. These are examples of physical models (also called iconic 
models), and are not typical of the kinds of models that are usually of interest in 
operations research and systems analysis. Occasionally, however, it has been 
found useful to build physical models to study engineering or management 

System

Experiment 
with the

actual system

Experiment 
with a model
of the system

Physical
model

Mathematical
model

Analytical
solution

Simulation

FIGURE 1.1
Ways to study a system.
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chapter one 5

systems; examples include tabletop scale models of material-handling systems, 
and in at least one case a full-scale physical model of a fast-food restaurant 
 inside a warehouse, complete with full-scale, real (and presumably hungry) 
 humans [see Swart and Donno (1981)]. But the vast majority of models built for 
such purposes are mathematical, representing a system in terms of logical and 
quantitative relationships that are then manipulated and changed to see how the 
model reacts, and thus how the system would react—if the mathematical model 
is a valid one. Perhaps the simplest example of a mathematical model is the 
 familiar relation d 5 rt, where r is the rate of travel, t is the time spent traveling, 
and d is the distance traveled. This might provide a valid model in one instance 
(e.g., a space probe to another planet after it has attained its fl ight velocity) but a 
very poor model for other purposes (e.g., rush-hour commuting on congested 
urban freeways).

• Analytical Solution vs. Simulation. Once we have built a mathematical model, it 
must then be examined to see how it can be used to answer the questions of inter-
est about the system it is supposed to represent. If the model is simple enough, 
it may be possible to work with its relationships and quantities to get an exact, 
analytical solution. In the d 5 rt example, if we know the distance to be traveled 
and the velocity, then we can work with the model to get t 5 dyr as the time that 
will be required. This is a very simple, closed-form solution obtainable with just 
paper and pencil, but some analytical solutions can become extraordinarily com-
plex, requiring vast computing resources; inverting a large nonsparse matrix is a 
well-known example of a situation in which there is an analytical formula known 
in principle, but obtaining it numerically in a given instance is far from trivial. If 
an analytical solution to a mathematical model is available and is computationally 
effi cient, it is usually desirable to study the model in this way rather than via a 
simulation. However, many systems are highly complex, so that valid mathe-
matical models of them are themselves complex, precluding any possibility of an 
analytical solution. In this case, the model must be studied by means of simulation, 
i.e., numerically exercising the model for the inputs in question to see how they 
affect the output measures of performance.

While there may be a small element of truth to pejorative old saws such as “method 
of last resort” sometimes used to describe simulation, the fact is that we are very 
quickly led to simulation in most situations, due to the sheer complexity of the sys-
tems of interest and of the models necessary to represent them in a valid way.

Given, then, that we have a mathematical model to be studied by means of 
simulation (henceforth referred to as a simulation model), we must then look for 
particular tools to do this. It is useful for this purpose to classify simulation models 
along three different dimensions:

• Static vs. Dynamic Simulation Models. A static simulation model is a representa-
tion of a system at a particular time, or one that may be used to represent a system 
in which time simply plays no role; examples of static simulations are certain 
Monte Carlo models, discussed in Sec. 13.5. On the other hand, a dynamic simu-
lation model represents a system as it evolves over time, such as a conveyor 
system in a factory.
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6 basic simulation modeling

• Deterministic vs. Stochastic Simulation Models. If a simulation model does not 
contain any probabilistic (i.e., random) components, it is called deterministic; 
a complicated (and analytically intractable) system of differential equations de-
scribing a chemical reaction might be such a model. In deterministic models, the 
output is “determined” once the set of input quantities and relationships in the 
model have been specifi ed, even though it might take a lot of computer time to 
evaluate what it is. Many systems, however, must be modeled as having at least 
some random input components, and these give rise to stochastic simulation mod-
els. (For an example of the danger of ignoring randomness in modeling a system, 
see Sec. 4.7.) Most queueing and inventory systems are modeled stochastically. 
Stochastic simulation models produce output that is itself random, and must 
therefore be treated as only an estimate of the true characteristics of the model; 
this is one of the main disadvantages of simulation (see Sec. 1.8) and is dealt with 
in Chaps. 9 through 12 of this book.

• Continuous vs. Discrete Simulation Models. Loosely speaking, we defi ne discrete 
and continuous simulation models analogously to the way discrete and continu-
ous systems were defi ned above. More precise defi nitions of discrete (event) sim-
ulation and continuous simulation are given in Secs. 1.3 and 13.3, respectively. It 
should be mentioned that a discrete model is not always used to model a discrete 
system, and vice versa. The decision whether to use a discrete or a continuous 
model for a particular system depends on the specifi c objectives of the study. For 
example, a model of traffi c fl ow on a freeway would be discrete if the character-
istics and movement of individual cars are important. Alternatively, if the cars can 
be treated “in the aggregate,” the fl ow of traffi c can be described by differential 
equations in a continuous model. More discussion on this issue can be found in 
Sec. 5.2, and in particular in Example 5.2.

The simulation models we consider in the remainder of this book, except for 
those in Chap. 13, will be discrete, dynamic, and stochastic and will henceforth be 
called discrete-event simulation models. (Since deterministic models are a special 
case of stochastic models, the restriction to stochastic models involves no loss of 
generality.)

1.3
DISCRETE-EVENT SIMULATION

Discrete-event simulation concerns the modeling of a system as it evolves over time 
by a representation in which the state variables change instantaneously at separate 
points in time. (In more mathematical terms, we might say that the system can 
change at only a countable number of points in time.) These points in time are the 
ones at which an event occurs, where an event is defi ned as an instantaneous occur-
rence that may change the state of the system. Although discrete-event simulation 
could conceptually be done by hand calculations, the amount of data that must be 
stored and manipulated for most real-world systems dictates that discrete-event 
simulations be done on a digital computer. (In Sec. 1.4.2 we carry out a small hand 
simulation, merely to illustrate the logic involved.)
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chapter one 7

E X A M P L E  1 . 1 .  Consider a service facility with a single server—e.g., a one-operator 
barbershop or an information desk at an airport—for which we would like to estimate the 
(expected) average delay in queue (line) of arriving customers, where the delay in queue 
of a customer is the length of the time interval from the instant of his arrival at the facility 
to the instant he begins being served. For the objective of estimating the average delay of 
a customer, the state variables for a discrete-event simulation model of the  facility would 
be the status of the server, i.e., either idle or busy, the number of customers waiting in 
queue to be served (if any), and the time of arrival of each person waiting in queue. The 
status of the server is needed to determine, upon a customer’s arrival, whether the cus-
tomer can be served immediately or must join the end of the queue. When the server 
completes serving a customer, the number of customers in the queue is used to determine 
whether the server will become idle or begin serving the fi rst customer in the queue. 
The time of arrival of a customer is needed to compute his delay in queue, which is 
the time he begins being served (which will be known) minus his time of arrival. There 
are two types of events for this system: the arrival of a customer and the completion of 
service for a customer, which results in the customer’s departure. An arrival is an event 
since it causes the (state variable) server status to change from idle to busy or the (state 
variable) number of customers in the queue to increase by 1. Correspondingly, a depar-
ture is an event because it causes the server status to change from busy to idle or the 
number of customers in the queue to decrease by 1. We show in detail how to build a 
discrete-event simulation model of this single-server queueing system in Sec. 1.4.

In the above example both types of events actually changed the state of the 
system, but in some discrete-event simulation models events are used for purposes 
that do not actually effect such a change. For example, an event might be used to 
schedule the end of a simulation run at a particular time (see Sec. 1.4.6) or to 
schedule a decision about a system’s operation at a particular time (see Sec. 1.5) 
and might not actually result in a change in the state of the system. This is why we 
originally said that an event may change the state of a system.

1.3.1 Time-Advance Mechanisms

Because of the dynamic nature of discrete-event simulation models, we must keep 
track of the current value of simulated time as the simulation proceeds, and we also 
need a mechanism to advance simulated time from one value to another. We call the 
variable in a simulation model that gives the current value of simulated time the 
simulation clock. The unit of time for the simulation clock is never stated explicitly 
when a model is written in a general-purpose language such as C, and it is assumed 
to be in the same units as the input parameters. Also, there is generally no relation-
ship between simulated time and the time needed to run a simulation on the 
computer.

Historically, two principal approaches have been suggested for advancing the 
simulation clock: next-event time advance and fi xed-increment time advance. Since 
the fi rst approach is used by all major simulation software and by most people pro-
gramming their model in a general-purpose language, and since the second is a 
special case of the fi rst, we shall use the next-event time-advance approach for all 
discrete-event simulation models discussed in this book. A brief discussion of fi xed-
increment time advance is given in App. 1A (at the end of this chapter).
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8 basic simulation modeling

With the next-event time-advance approach, the simulation clock is initialized 
to zero and the times of occurrence of future events are determined. The simulation 
clock is then advanced to the time of occurrence of the most imminent (fi rst) of these 
future events, at which point the state of the system is updated to account for the fact 
that an event has occurred, and our knowledge of the times of occurrence of future 
events is also updated. Then the simulation clock is advanced to the time of the 
(new) most imminent event, the state of the system is updated, and future event 
times are determined, etc. This process of advancing the simulation clock from one 
event time to another is continued until eventually some prespecifi ed stopping con-
dition is satisfi ed. Since all state changes occur only at event times for a discrete-
event simulation model, periods of inactivity are skipped over by jumping the clock 
from event time to event time. (Fixed-increment time advance does not skip over 
these inactive periods, which can eat up a lot of computer time; see App. 1A.) It 
should be noted that the successive jumps of the simulation clock are generally vari-
able (or unequal) in size.

E X A M P L E  1 . 2 .  We now illustrate in detail the next-event time-advance approach for 
the single-server queueing system of Example 1.1. We need the following notation:

 ti 5 time of arrival of the ith customer (t0 5 0)
 Ai 5 ti 2 ti21 5 interarrival time between (i 2 1)st and ith arrivals of customers
 Si 5  time that server actually spends serving ith customer (exclusive of customer’s

 delay in queue)
 Di 5 delay in queue of ith customer
 ci 5 ti 1 Di 1 Si 5 time that ith customer completes service and departs
 ei 5  time of occurrence of ith event of any type (ith value the simulation clock

 takes on, excluding the value e0 5 0)

Each of these defi ned quantities will generally be a random variable. Assume that the 
probability distributions of the interarrival times A1, A2, . . . and the service times
S1, S2, . . . are known and have cumulative distribution functions (see Sec. 4.2) denoted 
by FA and FS, respectively. (In general, FA and FS would be determined by collecting 
data from the system of interest and then specifying distributions consistent with these 
data using the techniques of Chap. 6.) At time e0 5 0 the status of the server is idle, and 
the time t1 of the fi rst arrival is determined by generating A1 from FA (techniques for 
generating random observations from a specifi ed distribution are discussed in Chap. 8) 
and adding it to 0. The simulation clock is then advanced from e0 to the time of the next 
(fi rst) event, e1 5 t1. (See Fig. 1.2, where the curved arrows represent advancing the 
simulation clock.) Since the customer arriving at time t1 fi nds the server idle, she im-
mediately enters service and has a delay in queue of D1 5 0 and the status of the server 
is changed from idle to busy. The time, c1, when the arriving customer will complete 
service is computed by generating S1 from FS and adding it to t1. Finally, the time of the 
second arrival, t2, is computed as t2 5 t1 1 A2, where A2 is generated from FA. If t2 , c1, 
as depicted in Fig. 1.2, the simulation clock is advanced from e1 to the time of the next 
event, e2 5 t2. (If c1 were less than t2, the clock would be advanced from e1 to c1.) Since 
the customer arriving at time t2 fi nds the server already busy, the number of customers 
in the queue is increased from 0 to 1 and the time of arrival of this customer is recorded; 
however, his service time S2 is not generated at this time. Also, the time of the third 
 arrival, t3, is computed as t3 5 t2 1 A3. If c1 , t3, as depicted in the fi gure, the simulation 
clock is advanced from e2 to the time of the next event, e3 5 c1, where the customer 
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chapter one 9

completing service departs, the customer in the queue (i.e., the one who arrived at time t2) 
begins service and his delay in queue and service-completion time are computed as 
D2 5 c1 2 t2 and c2 5 c1 1 S2 (S2 is now generated from FS), and the number of custom-
ers in the queue is decreased from 1 to 0. If t3 , c2, the simulation clock is advanced 
from e3 to the time of the next event, e4 5 t3, etc. The simulation might eventually be 
terminated when, say, the number of customers whose delays have been observed 
reaches some specifi ed value.

1.3.2 Components and Organization of a Discrete-Event
Simulation Model

Although simulation has been applied to a great diversity of real-world systems, 
discrete-event simulation models all share a number of common components and 
there is a logical organization for these components that promotes the program-
ming, debugging, and future changing of a simulation model’s computer program. 
In particular, the following components will be found in most discrete-event simula-
tion models using the next-event time-advance approach programmed in a general-
purpose language:

System state: The collection of state variables necessary to describe the system 
at a particular time

Simulation clock: A variable giving the current value of simulated time
Event list: A list containing the next time when each type of event will occur
Statistical counters: Variables used for storing statistical information about 

system performance
Initialization routine: A subprogram to initialize the simulation model at time 0
Timing routine: A subprogram that determines the next event from the event 

list and then advances the simulation clock to the time when that event is 
to occur

Event routine: A subprogram that updates the system state when a particular 
type of event occurs (there is one event routine for each event type)

Library routines: A set of subprograms used to generate random observations 
from probability distributions that were determined as part of the simulation 
model

S1

A1

0 t1

e0 e1 e2 e3 e4 e5

t2 c1 c2t3

A2 A3

S2

Time

FIGURE 1.2
The next-event time-advance approach illustrated for the single-server queueing system.
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10 basic simulation modeling

Report generator: A subprogram that computes estimates (from the statistical 
counters) of the desired measures of performance and produces a report 
when the simulation ends

Main program: A subprogram that invokes the timing routine to determine the 
next event and then transfers control to the corresponding event routine to 
update the system state appropriately. The main program may also check for 
termination and invoke the report generator when the simulation is over.

The logical relationships (fl ow of control) among these components are shown in 
Fig. 1.3. The simulation begins at time 0 with the main program invoking the 
initialization routine, where the simulation clock is set to zero, the system state 
and the statistical counters are initialized, and the event list is initialized. After 
control has been returned to the main program, it invokes the timing routine to 
determine which type of event is most imminent. If an event of type i is the next 
to occur, the simulation clock is advanced to the time that event type i will occur 

0. Invoke the initialization routine

1. Invoke the timing routine
2. Invoke event routine i � Repeatedly

1. Update system state
2. Update statistical counters
3. Generate future events and add to
    event list

1. Compute estimates of interest
2. Write report

Is
simulation

over?

1. Set simulation
    clock � 0
2. Initialize system state
    and statistical
    counters
3. Initialize event list

1. Determine the next
    event type, say, i
2. Advance the
   simulation clock

Main programInitialization routine Timing routine

Library routines

Event routine i

Report generator

Generate random
variates

No

Yes

0

2

1

i

Start

Stop

FIGURE 1.3
Flow of control for the next-event time-advance approach.

Law01323_ch01_001-084.indd Page 10  13/08/13  5:39 PM user-f-w-198 Law01323_ch01_001-084.indd Page 10  13/08/13  5:39 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles

masud
Highlight

masud
Highlight



chapter one 11

and control is returned to the main program. Then the main program invokes 
event routine i, where typically three types of activities occur: (1) The system 
state is updated to account for the fact that an event of type i has occurred; 
(2) information about system performance is gathered by updating the statistical 
counters; and (3) the times of occurrence of future events are generated, and this 
information is added to the event list. Often it is necessary to generate random 
observations from probability distributions in order to determine these future 
event times; we will refer to such a generated observation as a random variate. 
After all processing has been completed, either in event routine i or in the main 
program, a check is typically made to determine (relative to some stopping con-
dition) if the simulation should now be terminated. If it is time to terminate the 
simulation, the report generator is invoked from the main program to compute 
estimates (from the statistical counters) of the desired measures of perfor-
mance and to produce a report. If it is not time for termination, control is passed 
back to the main program and the main program–timing routine–main program–
event routine–termination check cycle is repeated until the stopping condition is 
eventually satisfi ed.

Before concluding this section, a few additional words about the system state 
may be in order. As mentioned in Sec. 1.2, a system is a well-defi ned collection of 
entities. Entities are characterized by data values called attributes, and these attri-
butes are part of the system state for a discrete-event simulation model. Further-
more, entities with some common property are often grouped together in lists (or 
fi les or sets). For each entity there is a record in the list consisting of the entity’s 
attributes, and the order in which the records are placed in the list depends on some 
specifi ed rule. (See Chap. 2 for a discussion of effi cient approaches for storing lists 
of records.) For the single-server queueing facility of Examples 1.1 and 1.2, the enti-
ties are the server and the customers in the facility. The server has the attribute 
“server status” (busy or idle), and the customers waiting in queue have the attribute 
“time of arrival.” (The number of customers in the queue might also be considered 
an attribute of the server.) Furthermore, as we shall see in Sec. 1.4, these customers 
in queue will be grouped together in a list.

The organization and action of a discrete-event simulation program using 
the next-event time-advance mechanism as depicted above are fairly typical when 
programming such simulations in a general-purpose programming language 
such as C; it is called the event-scheduling approach to simulation modeling, 
since the times of future events are explicitly coded into the model and are sched-
uled to occur in the simulated future. It should be mentioned here that there is 
an alternative approach to simulation modeling, called the process approach, 
that instead views the simulation in terms of the individual entities involved, 
and the code written describes the “experience” of a “typical” entity as it “fl ows” 
through the system; programming simulations modeled from the process point 
of view usually requires the use of special-purpose simulation software, as dis-
cussed in Chap. 3. Even when taking the process approach, however, the simula-
tion is actually executed behind the scenes in the event-scheduling logic as 
described above.
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12 basic simulation modeling

1.4
SIMULATION OF A SINGLE-SERVER QUEUEING SYSTEM

This section shows in detail how to simulate a single-server queueing system such 
as a one-operator barbershop. Although this system seems very simple compared with 
those usually of real interest, how it is simulated is actually quite representative of 
the operation of simulations of great complexity.

In Sec. 1.4.1 we describe the system of interest and state our objectives more 
precisely. We explain intuitively how to simulate this system in Sec. 1.4.2 by show-
ing a “snapshot” of the simulated system just after each event occurs. Section 1.4.3 
describes the language-independent organization and logic of the C code given in 
Sec. 1.4.4. The simulation’s results are discussed in Sec. 1.4.5, and Sec. 1.4.6 alters 
the stopping rule to another common way to end simulations. Finally, Sec. 1.4.7 
briefl y describes a technique for identifying and simplifying the event and variable 
structure of a simulation.

1.4.1 Problem Statement

Consider a single-server queueing system (see Fig. 1.4) for which the interarrival 
times A1, A2, . . . are independent and identically distributed (IID) random variables.

A departing customer

Server

Customer in service

Customers in queue

An arriving customer

FIGURE 1.4
A single-server queueing system.
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chapter one 13

(“Identically distributed” means that the interarrival times have the same probability 
distribution.) A customer who arrives and fi nds the server idle enters service imme-
diately, and the service times S1, S2, . . . of the successive customers are IID random 
variables that are independent of the interarrival times. A customer who arrives and 
fi nds the server busy joins the end of a single queue. Upon completing service for a 
customer, the server chooses a customer from the queue (if any) in a fi rst-in, fi rst-
out (FIFO) manner. (For a discussion of other queue disciplines and queueing sys-
tems in general, see App. 1B.)

The simulation will begin in the “empty-and-idle” state; i.e., no customers are 
present and the server is idle. At time 0, we will begin waiting for the arrival of the 
fi rst customer, which will occur after the fi rst interarrival time, A1, rather than at 
time 0 (which would be a possibly valid, but different, modeling assumption). We 
wish to simulate this system until a fi xed number (n) of customers have completed 
their delays in queue; i.e., the simulation will stop when the nth customer enters 
service. Note that the time the simulation ends is thus a random variable, depending 
on the observed values for the interarrival and service-time random variables.

To measure the performance of this system, we will look at estimates of three 
quantities. First, we will estimate the expected average delay in queue of the n cus-
tomers completing their delays during the simulation; we denote this quantity by 
d(n). The word “expected” in the defi nition of d(n) means this: On a given run of the 
simulation (or, for that matter, on a given run of the actual system the simulation 
model represents), the actual average delay observed of the n customers depends on 
the interarrival and service-time random variable observations that happen to have 
been obtained. On another run of the simulation (or on a different day for the real 
system) there would probably be arrivals at different times, and the service times 
required would also be different; this would give rise to a different value for the 
average of the n delays. Thus, the average delay on a given run of the simulation is 
properly regarded as a random variable itself. What we want to estimate, d(n), is the 
expected value of this random variable. One interpretation of this is that d(n) is the 
average of a large (actually, infi nite) number of n-customer average delays. From a 
single run of the simulation resulting in customer delays D1, D2, . . . , Dn, an obvious 
estimator of d(n) is

 d̂(n) 5

^
n

i51
 
Di

n

which is just the average of the n Di’s that were observed in the simulation [so that 
d̂(n) could also be denoted by D(n)]. [Throughout this book, a hat (ˆ) above a sym-
bol denotes an estimator.] It is important to note that by “delay” we do not exclude 
the possibility that a customer could have a delay of zero in the case of an arrival 
fi nding the system empty and idle (with this model, we know for sure that D1 5 0); 
delays with a value of 0 are counted in the average, since if many delays were zero this 
would represent a system providing very good service, and our output measure should 
refl ect this. One reason for taking the average of the Di’s, as opposed to just looking 
at them individually, is that they will not have the same distribution (e.g., D1 5 0, 
but D2 could be positive), and the average gives us a single composite measure of all 
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14 basic simulation modeling

the customers’ delays; in this sense, this is not the usual “average” taken in basic 
statistics, as the individual terms are not independent random observations from 
the same distribution. Note also that by itself, d̂(n) is an estimator based on a sample 
of size 1, since we are making only one complete simulation run. From elementary 
statistics, we know that a sample of size 1 is not worth much; we return to this issue 
in Chaps. 9 through 12.

While an estimate of d(n) gives information about system performance from 
the customers’ point of view, the management of such a system may want different 
information; indeed, since most real simulations are quite complex and may be 
time-consuming to run, we usually collect many output measures of performance, 
describing different aspects of system behavior. One such measure for our simple 
model here is the expected average number of customers in the queue (but not being 
served), denoted by q(n), where the n is necessary in the notation to indicate that 
this average is taken over the time period needed to observe the n delays defi ning 
our stopping rule. This is a different kind of “average” than the average delay in 
queue, because it is taken over (continuous) time, rather than over customers (being 
discrete). Thus, we need to defi ne what is meant by this time-average number of 
customers in queue. To do this, let Q(t) denote the number of customers in queue at 
time t, for any real number t $ 0, and let T(n) be the time required to observe our 
n delays in queue. Then for any time t between 0 and T(n), Q(t) is a nonnegative 
integer. Further, if we let pi be the expected proportion (which will be between 0 and 1) 
of the time that Q(t) is equal to i, then a reasonable defi nition of q(n) would be

 q(n) 5 ^
`

i50

ipi

Thus, q(n) is a weighted average of the possible values i for the queue length Q(t), 
with the weights being the expected proportion of time the queue spends at each of 
its possible lengths. To estimate q(n) from a simulation, we simply replace the pi’s 
with estimates of them, and get

 q̂(n) 5 ^
`

i50

ip̂i (1.1)

where p̂i is the observed (rather than expected) proportion of the time during the 
simulation that there were i customers in the queue. Computationally, however, it is 
easier to rewrite q̂(n) using some geometric considerations. If we let Ti be the total 
time during the simulation that the queue is of length i, then T(n) 5 T0 1 T1 1 
T2 1 ∙ ∙ ∙ and p̂i 5 TiyT(n), so that we can rewrite Eq. (1.1) above as

 q̂(n) 5

^
`

i50

iTi

T(n)
 (1.2)

Figure 1.5 illustrates a possible time path, or realization, of Q(t) for this system in 
the case of n 5 6; ignore the shading for now. Arrivals occur at times 0.4, 1.6, 2.1, 
3.8, 4.0, 5.6, 5.8, and 7.2. Departures (service completions) occur at times 2.4, 3.1, 
3.3, 4.9, and 8.6, and the simulation ends at time T(6) 5 8.6. Remember in looking 
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chapter one 15

at Fig. 1.5 that Q(t) does not count the customer in service (if any), so between times 
0.4 and 1.6 there is one customer in the system being served, even though the queue 
is empty [Q(t) 5 0]; the same is true between times 3.1 and 3.3, between times 3.8 
and 4.0, and between times 4.9 and 5.6. Between times 3.3 and 3.8, however, the 
system is empty of customers and the server is idle, as is obviously the case between 
times 0 and 0.4. To compute q̂(n), we must fi rst compute the Ti’s, which can be read 
off Fig. 1.5 as the (sometimes separated) intervals over which Q(t) is equal to 0, 1, 2, 
and so on:

 T0 5 (1.6 2 0.0) 1 (4.0 2 3.1) 1 (5.6 2 4.9) 5 3.2

T1 5 (2.1 2 1.6) 1 (3.1 2 2.4) 1 (4.9 2 4.0) 1 (5.8 2 5.6) 5 2.3

 T2 5 (2.4 2 2.1) 1 (7.2 2 5.8) 5 1.7

 T3 5 (8.6 2 7.2) 5 1.4

(Ti 5 0 for i $ 4, since the queue never grew to those lengths in this realization.) 
The numerator in Eq. (1.2) is thus

 ^
`

i50

iTi 5 (0 3 3.2) 1 (1 3 2.3) 1 (2 3 1.7) 1 (3 3 1.4) 5 9.9 (1.3)

and so our estimate of the time-average number in queue from this particular simu-
lation run is q̂(6) 5 9.9y8.6 5 1.15. Now, note that each of the nonzero terms on 
the right-hand side of Eq. (1.3) corresponds to one of the shaded areas in Fig. 1.5:
1 3 2.3 is the diagonally shaded area (in four pieces), 2 3 1.7 is the cross-hatched 

3

2

1

0 1 2 3 4 5 6 7 8 9

Q(t)

t

e1�0.4 e2�1.6

e3�2.1

e4�2.4 e5�3.1 e9�4.9 e13� 8.6 �T(6)

e6 �3.3

e7�3.8 e10�5.6

e11�5.8

e12�7.2

e8�4.0
Arrivals

Departures

FIGURE 1.5
Q(t), arrival times, and departure times for a realization of a single-server queueing system.
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16 basic simulation modeling

area (in two pieces), and 3 3 1.4 is the screened area (in a single piece). In other 
words, the summation in the numerator of Eq. (1.2) is just the area under the Q(t) 
curve between the beginning and the end of the simulation. Remembering that “area 
under a curve” is an integral, we can thus write

 ^
`

i50

iTi 5 #
T(n)

0
Q(t) dt

and the estimator of q(n) can then be expressed as

 q̂(n) 5
#

T(n)

0
Q(t) dt

T(n)
 (1.4)

While Eqs. (1.4) and (1.2) are equivalent expressions for q̂(n), Eq. (1.4) is pre-
ferable since the integral in this equation can be accumulated as simple areas of 
rectangles as the simulation progresses through time. It is less convenient to carry 
out the computations to get the summation in Eq. (1.2) explicitly. Moreover, the 
 appearance of Eq. (1.4) suggests a continuous average of Q(t), since in a rough 
sense, an integral can be regarded as a continuous summation.

The third and fi nal output measure of performance for this system is a measure 
of how busy the server is. The expected utilization of the server is the expected pro-
portion of time during the simulation [from time 0 to time T(n)] that the server is 
busy (i.e., not idle), and is thus a number between 0 and 1; denote it by u(n). From 
a single simulation, then, our estimate of u(n) is û(n) 5 the observed proportion of 
time during the simulation that the server is busy. Now û(n) could be computed 
directly from the simulation by noting the times at which the server changes status 
(idle to busy or vice versa) and then doing the appropriate subtractions and division. 
However, it is easier to look at this quantity as a continuous-time average, similar to 
the average queue length, by defi ning the “busy function”

B(t) 5 e 1 if the server is busy at time t
0 if the server is idle at time t

and so û(n) could be expressed as the proportion of time that B(t) is equal to 1. 
Figure 1.6 plots B(t) for the same simulation realization as used in Fig. 1.5 for Q(t). 
In this case, we get

 û(n) 5
(3.3 2 0.4) 1 (8.6 2 3.8)

8.6
5

7.7

8.6
5 0.90 (1.5)

indicating that the server was busy about 90 percent of the time during this simula-
tion. Again, however, the numerator in Eq. (1.5) can be viewed as the area under the 
B(t) function over the course of the simulation, since the height of B(t) is always 
either 0 or 1. Thus,

 û(n) 5
#

T(n)

0
B(t) dt

T(n)
 (1.6)
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chapter one 17

and we see again that û(n) is the continuous average of the B(t) function, corre-
sponding to our notion of utilization. As was the case for q̂(n), the reason for writ-
ing û(n) in the integral form of Eq. (1.6) is that computationally, as the simulation 
progresses, the integral of B(t) can easily be accumulated by adding up areas of 
rectangles. For many simulations involving “servers” of some sort, utilization statis-
tics are quite informative in identifying bottlenecks (utilizations near 100 percent, 
coupled with heavy congestion measures for the queue leading in) or excess capac-
ity (low utilizations); this is particularly true if the “servers” are expensive items 
such as robots in a manufacturing system or large mainframe computers in a data-
processing operation.

To recap, the three measures of performance are the average delay in queue 
d̂ (n), the time-average number of customers in queue q̂(n), and the proportion of 
time the server is busy û(n). The average delay in queue is an example of a discrete-
time statistic, since it is defi ned relative to the collection of random variables {Di} that 
have a discrete “time” index, i 5 1, 2, . . . . The time-average number in queue and 
the proportion of time the server is busy are examples of continuous-time statistics, 
since they are defi ned on the collection of random variables {Q(t)} and {B(t)}, re-
spectively, each of which is indexed on the continuous time parameter t [ [0, `). 
(The symbol [ means “contained in.” Thus, in this case, t can be any nonnegative 
real number.) Both discrete-time and continuous-time statistics are common in sim-
ulation, and they furthermore can be other than averages. For example, we might be 
interested in the maximum of all the delays in queue observed (a discrete-time sta-
tistic), or the proportion of time during the simulation that the queue contained at 
least fi ve customers (a continuous-time statistic).

The events for this system are the arrival of a customer and the departure of a 
customer (after a service completion); the state variables necessary to estimate d(n), 
q(n), and u(n) are the status of the server (0 for idle and 1 for busy), the number of 
customers in the queue, the time of arrival of each customer currently in the queue 
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e3�2.1
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FIGURE 1.6
B(t), arrival times, and departure times for a realization of a single-server queueing system 
(same realization as in Fig. 1.5).
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18 basic simulation modeling

(represented as a list), and the time of the last (i.e., most recent) event. The time of 
the last event, defi ned to be ei21 if ei21 # t , ei (where t is the current time in the 
simulation), is needed to compute the width of the rectangles for the area accumula-
tions in the estimates of q(n) and u(n).

1.4.2 Intuitive Explanation

We begin our explanation of how to simulate a single-server queueing system by 
showing how its simulation model would be represented inside the computer at time 
e0 5 0 and the times e1, e2, . . . , e13 at which the 13 successive events occur that are 
needed to observe the desired number, n 5 6, of delays in queue. For expository 
convenience, we assume that the interarrival and service times of customers are

  A1 5 0.4, A2 5 1.2, A3 5 0.5, A4 5 1.7, A5 5 0.2,
  A6 5 1.6, A7 5 0.2, A8 5 1.4, A9 5 1.9, . . .

 S1 5 2.0, S2 5 0.7, S3 5 0.2, S4 5 1.1, S5 5 3.7, S6 5 0.6, . . .

Thus, between time 0 and the time of the fi rst arrival there is 0.4 time unit, between 
the arrivals of the fi rst and second customers there are 1.2 time units, etc., and the 
service time required for the fi rst customer is 2.0 time units, etc. Note that it is not 
necessary to declare what the time units are (minutes, hours, etc.), but only to be 
sure that all time quantities are expressed in the same units. In an actual simulation 
(see Sec. 1.4.4), the Ai’s and the Si’s would be generated from their corresponding 
probability distributions, as needed, during the course of the simulation. The nu-
merical values for the Ai’s and the Si’s given above have been artifi cially chosen so 
as to generate the same simulation realization as depicted in Figs. 1.5 and 1.6 illus-
trating the Q(t) and B(t) processes.

Figure 1.7 gives a snapshot of the system itself and of a computer representa-
tion of the system at each of the times e0 5 0, e1 5 0.4, . . . , e13 5 8.6. In the “sys-
tem” pictures, the square represents the server, and circles represent customers; the 
numbers inside the customer circles are the times of their arrivals. In the “computer 
representation” pictures, the values of the variables shown are after all processing 
has been completed at that event. Our discussion will focus on how the computer 
representation changes at the event times.

 t 5 0: Initialization. The simulation begins with the main program invoking 
the initialization routine. Our modeling assumption was that initially 
the system is empty of customers and the server is idle, as depicted in the 
“system” picture of Fig. 1.7a. The model state variables are initialized 
to represent this: Server status is 0 [we use 0 to represent an idle server 
and 1 to represent a busy server, similar to the defi nition of the B(t) 
function], and the number of customers in the queue is 0. There is a 
one-dimensional array to store the times of arrival of customers 
 currently in the queue; this array is initially empty, and as the simula-
tion progresses, its length will grow and shrink. The time of the last 
(most recent) event is initialized to 0, so that at the time of the fi rst 
event (when it is used), it will have its correct value. The simulation 
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FIGURE 1.7
Snapshots of the system and of its computer representation at time 0 and at each of the 
13 succeeding event times.
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FIGURE 1.7
(continued)
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FIGURE 1.7
(continued)
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FIGURE 1.7
(continued)
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clock is set to 0, and the event list, giving the times of the next occur-
rence of each of the event types, is initialized as follows. The time of the 
fi rst arrival is 0 1 A1 5 0.4, and is denoted by “A” next to the event list. 
Since there is no customer in service, it does not even make sense to 
talk about the time of the next departure (“D” by the event list), and we 
know that the fi rst event will be the initial customer arrival at time 0.4. 
However, the simulation progresses in general by looking at the event 
list and picking the smallest value from it to determine what the next 
event will be, so by scheduling the next departure to occur at time ̀  (or 
a very large number in a computer program), we effectively eliminate 
the departure event from consideration and force the next event to be 
an arrival. Finally, the four statistical counters are initialized to 0. 
When all initialization is done, control is returned to the main pro-
gram, which then calls the timing routine to determine the next event. 
Since 0.4 , `, the next event will be an arrival at time 0.4, and the 
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24 basic simulation modeling

timing routine advances the clock to this time, then passes control 
back to the main program with the information that the next event is to 
be an arrival.

 t 5 0.4: Arrival of customer 1. At time 0.4, the main program passes control to 
the arrival routine to process the arrival of the fi rst customer. Figure 1.7b 
shows the system and its computer representation after all changes 
have been made to process this arrival. Since this customer arrived to 
fi nd the server idle (status equal to 0), he begins service immediately 
and has a delay in queue of D1 5 0 (which does count as a delay). The 
server status is set to 1 to represent that the server is now busy, but 
the queue itself is still empty. The clock has been advanced to the cur-
rent time, 0.4, and the event list is updated to refl ect this customer’s 
arrival: The next arrival will be A2 5 1.2 time units from now, at time 
0.4 1 1.2 5 1.6, and the next departure (the service completion of 
the customer now arriving) will be S1 5 2.0 time units from now, at time 
0.4 1 2.0 5 2.4. The number delayed is incremented to 1 (when this 
reaches n 5 6, the simulation will end), and D1 5 0 is added into the 
total delay (still at zero). The area under Q(t) is updated by adding in 
the product of the previous value (i.e., the level it had between the last 
event and now) of Q(t) (0 in this case) times the width of the interval 
of time from the last event to now, t 2 (time of last event) 5 0.4 2 0 in 
this case. Note that the time of the last event used here is its old value (0), 
before it is updated to its new value (0.4) in this event routine. Similarly, 
the area under B(t) is updated by adding in the product of its previous 
value (0) times the width of the interval of time since the last event. 
[Look back at Figs. 1.5 and 1.6 to trace the accumulation of the areas 
under Q(t) and B(t).] Finally, the time of the last event is brought up to 
the current time, 0.4, and control is passed back to the main program. It 
invokes the timing routine, which scans the event list for the smallest value, 
and determines that the next event will be another arrival at time 1.6; 
it updates the clock to this value and passes control back to the main 
program with the information that the next event is an arrival.

 t 5 1.6: Arrival of customer 2. At this time we again enter the arrival routine, 
and Fig. 1.7c shows the system and its computer representation after all 
changes have been made to process this event. Since this customer 
arrives to fi nd the server busy (status equal to 1 upon her arrival), she 
must queue up in the fi rst location in the queue, her time of arrival is 
stored in the fi rst location in the array, and the number-in-queue vari-
able rises to 1. The time of the next arrival in the event list is updated 
to A3 5 0.5 time unit from now, 1.6 1 0.5 5 2.1; the time of the next 
departure is not changed, since its value of 2.4 is the departure time of 
customer 1, who is still in service at this time. Since we are not ob-
serving the end of anyone’s delay in queue, the number-delayed and 
total-delay variables are unchanged. The area under Q(t) is increased 
by 0 [the previous value of Q(t)] times the time since the last event, 
1.6 2 0.4 5 1.2. The area under B(t) is increased by 1 [the previous 
value of B(t)] times this same interval of time, 1.2. After updating the 
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time of the last event to now, control is passed back to the main pro-
gram and then to the timing routine, which determines that the next 
event will be an arrival at time 2.1.

 t 5 2.1: Arrival of customer 3. Once again the arrival routine is invoked, as 
depicted in Fig. 1.7d. The server stays busy, and the queue grows by 
one customer, whose time of arrival is stored in the queue array’s 
 second location. The next arrival is updated to t 1 A4 5 2.1 1 1.7 5 3.8, 
and the next departure is still the same, as we are still waiting for the 
service completion of customer 1. The delay counters are unchanged, 
since this is not the end of anyone’s delay in queue, and the two area 
accumulators are updated by adding in 1 [the previous values of both 
Q(t) and B(t)] times the time since the last event, 2.1 2 1.6 5 0.5. 
After bringing the time of the last event up to the present, we go back 
to the main program and invoke the timing routine, which looks at the 
event list to determine that the next event will be a departure at time 2.4, 
and updates the clock to that time.

 t 5 2.4: Departure of customer 1. Now the main program invokes the depar-
ture routine, and Fig. 1.7e shows the system and its representation after 
this occurs. The server will maintain its busy status, since customer 2 
moves out of the fi rst place in queue and into service. The queue 
shrinks by 1, and the time-of-arrival array is moved up one place, to 
represent that customer 3 is now fi rst in line. Customer 2, now entering 
service, will require S2 5 0.7 time unit, so the time of the next depar-
ture (that of customer 2) in the event list is updated to S2 time units 
from now, or to time 2.4 1 0.7 5 3.1; the time of the next arrival (that 
of customer 4) is unchanged, since this was scheduled earlier at the 
time of customer 3’s arrival, and we are still waiting at this time for 
customer 4 to arrive. The delay statistics are updated, since at this time 
customer 2 is entering service and is completing her delay in queue. 
Here we make use of the time-of-arrival array, and compute the second 
delay as the current time minus the second customer’s time of arrival, 
or D2 5 2.4 2 1.6 5 0.8. (Note that the value of 1.6 was stored in the 
fi rst location in the time-of-arrival array before it was changed, so 
this delay computation would have to be done before advancing the 
times of arrival in the array.) The area statistics are updated by adding 
in 2 3 (2.4 2 2.1) for Q(t) [note that the previous value of Q(t) was 
used], and 1 3 (2.4 2 2.1) for B(t). The time of the last event is updated, 
we return to the main program, and the timing routine determines that 
the next event is a departure at time 3.1.

 t 5 3.1: Departure of customer 2. The changes at this departure are similar to 
those at the departure of customer 1 at time 2.4 just discussed. Note 
that we observe another delay in queue, and that after this event is 
processed the queue is again empty, but the server is still busy.

 t 5 3.3: Departure of customer 3. Again, the changes are similar to those in 
the above two departure events, with one important exception: Since the 
queue is now empty, the server becomes idle and we must set the next 
departure time in the event list to `, since the system now looks the 
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same as it did at time 0 and we want to force the next event to be the 
arrival of customer 4.

 t 5 3.8: Arrival of customer 4. Since this customer arrives to fi nd the server 
idle, he has a delay of 0 (i.e., D4 5 0) and goes right into service. Thus, 
the changes here are very similar to those at the arrival of the fi rst 
customer at time t 5 0.4.

The remaining six event times are depicted in Fig. 1.7i through 1.7n, and readers 
should work through these to be sure they understand why the variables and ar-
rays are as they appear; it may be helpful to follow along in the plots of Q(t) and 
B(t) in Figs. 1.5 and 1.6. With the departure of customer 5 at time t 5 8.6, cus-
tomer 6 leaves the queue and enters service, at which time the number delayed 
reaches 6 (the specifi ed value of n) and the simulation ends. At this point, the 
main program invokes the report generator to compute the fi nal output measures 
[ d̂ (6) 5 5.7y6 5 0.95, q̂(6) 5 9.9y8.6 5 1.15, and û(6) 5 7.7y8.6 5 0.90] and 
write them out.

A few specifi c comments about the above example illustrating the logic of a 
simulation should be made:

• Perhaps the key element in the dynamics of a simulation is the interaction be-
tween the simulation clock and the event list. The event list is maintained, and the 
clock jumps to the next event, as determined by scanning the event list at the end 
of each event’s processing for the smallest (i.e., next) event time. This is how the 
simulation progresses through time.

• While processing an event, no “simulated” time passes. However, even though 
time is standing still for the model, care must be taken to process updates of the 
state variables and statistical counters in the appropriate order. For example, it would 
be incorrect to update the number in queue before updating the area-under-Q(t) 
counter, since the height of the rectangle to be used is the previous value of Q(t) 
[before the effect of the current event on Q(t) has been implemented]. Similarly, 
it would be incorrect to update the time of the last event before updating the area 
accumulators. Yet another type of error would result if the queue list were changed 
at a departure before the delay of the fi rst customer in queue were computed, 
since his time of arrival to the system would be lost.

• It is sometimes easy to overlook contingencies that seem out of the ordinary but 
that nevertheless must be accommodated. For example, it would be easy to forget 
that a departing customer could leave behind an empty queue, necessitating that the 
server be idled and the departure event again be eliminated from consideration. 
Also, termination conditions are often more involved than they might seem at 
fi rst sight; in the above example, the simulation stopped in what seems to be the 
“usual” way, after a departure of one customer, allowing another to enter service 
and contribute the last delay needed, but the simulation could actually have ended 
instead with an arrival event—how?

• In some simulations it can happen that two (or more) entries in the event list are tied 
for smallest, and a decision rule must be incorporated to break such time ties (this 
happens with the inventory simulation considered later in Sec. 1.5). The  tie-breaking 
rule can affect the results of the simulation, so must be chosen in  accordance with 
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how the system is to be modeled. In many simulations, however, we can ignore the 
possibility of ties, since the use of continuous random variables may make their 
 occurrence an event with probability 0. In the above model, for example, if the 
 interarrival-time or service-time distribution is continuous, then a time tie in the 
event list is a probability-zero event (though it could still happen during the com-
puter simulation due to fi nite accuracy in representation of real numbers).

The above exercise is intended to illustrate the changes and data structures 
 involved in carrying out a discrete-event simulation from the event-scheduling point 
of view, and contains most of the important ideas needed for more complex simula-
tions of this type. The interarrival and service times used could have been drawn 
from a random-number table of some sort, constructed to refl ect the desired proba-
bility distributions; this would result in what might be called a hand simulation, 
which in principle could be carried out to any length. The tedium of doing this 
should now be clear, so we will next turn to the use of computers (which are not 
easily bored) to carry out the arithmetic and bookkeeping involved in longer or more 
complex simulations.

1.4.3 Program Organization and Logic

In this section we set up the necessary ingredients for the C program to simulate the 
single-server queueing system, which is given in Sec. 1.4.4.

There are several reasons for choosing a general-purpose language such as C, 
rather than more powerful high-level simulation software, for introducing computer 
simulation at this point:

• By learning to simulate in a general-purpose language, in which one must pay 
attention to every detail, there will be a greater understanding of how simulations 
actually operate, and thus less chance of conceptual errors if a switch is later 
made to high-level simulation software.

• Despite the fact that there is now very good and powerful simulation software 
available (see Chap. 3), it is sometimes necessary to write at least parts of com-
plex simulations in a general-purpose language if the specifi c, detailed logic of 
complex systems is to be represented faithfully.

• General-purpose languages are widely available, and entire simulations are some-
times still written in this way.

It is not our purpose in this book to teach any particular simulation software in 
detail, although we survey several packages in Chap. 3. With the understanding 
promoted by our more general approach and by going through our simulations 
in  this and the next chapter, the reader should fi nd it easier to learn a specialized 
simulation-software product.

The single-server queueing model that we will simulate in the following section 
differs in two respects from the model used in the previous section:

• The simulation will end when n 5 1000 delays in queue have been completed, 
rather than n 5 6, in order to collect more data (and maybe to impress the reader 
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with the patience of computers, since we have just slugged it out by hand in the 
n 5 6 case in the preceding section). It is important to note that this change in 
the stopping rule changes the model itself, in that the output measures are defi ned 
relative to the stopping rule; hence the presence of the “n” in the notation for the 
quantities d(n), q(n), and u(n) being estimated.

• The interarrival and service times will now be modeled as independent random 
variables from exponential distributions with mean 1 minute for the interarrival 
times and mean 0.5 minute for the service times. The exponential distribution 
with mean b (any positive real number) is continuous, with probability density 
function

 f (x) 5
1

b
 e2xyb  for x $ 0

 (See Chaps. 4 and 6 for more information on density functions in general, and on 
the exponential distribution in particular.) We make this change here since it is 
much more common to generate input quantities (which drive the simulation) 
such as interarrival and service times from specifi ed distributions than to assume 
that they are “known” as we did in the preceding section. The choice of the 
 exponential distribution with the above particular values of b is essentially arbi-
trary, and is made primarily because it is easy to generate exponential random 
variates on a computer. (Actually, the assumption of exponential interarrival 
times is often quite realistic; assuming exponential service times, however, is 
less plausible.) Chapter 6 addresses in detail the important issue of how one 
chooses distribution forms and parameters for modeling simulation input ran-
dom variables.

The single-server queue with exponential interarrival and service times is com-
monly called the M/M/1 queue, as discussed in App. 1B.

To simulate this model, we need a way to generate random variates from an 
exponential distribution. First, a random-number generator (discussed in detail in 
Chap. 7) is invoked to generate a variate U that is distributed (continuously) uni-
formly between 0 and 1; this distribution will henceforth be referred to as U(0, 1) 
and has probability density function

 f (x) 5 e 1 if 0 # x # 1
0 otherwise

It is easy to show that the probability that a U(0, 1) random variable falls in any 
subinterval [x, x 1 Dx] contained in the interval [0, 1] is (uniformly) Dx (see 
Sec. 6.2.2). The U(0, 1) distribution is fundamental to simulation modeling be-
cause, as we shall see in Chap. 8, a random variate from any distribution can be 
generated by fi rst generating one or more U(0, 1) random variates and then perform-
ing some kind of transformation. After obtaining U, we shall take the natural loga-
rithm of it, multiply the result by b, and fi nally change the sign to return what we 
will show to be an exponential random variate with mean b, that is, 2b ln U.

To see why this algorithm works, recall that the (cumulative) distribution 
function of a random variable X is defi ned, for any real x, to be F(x) 5 P(X # x) 
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(Chap. 4 contains a review of basic probability theory). If X is exponential with 
mean b, then

  F(x) 5 #
x

0
 
1

b
 e2tyb dt

  5 1 2 e2xyb

for any real x $ 0, since the probability density function of the exponential distribu-
tion at the argument t $ 0 is (1yb)e2tyb. To show that our method is correct, we can 
try to verify that the value it returns will be less than or equal to x (any nonnegative 
real number), with probability F(x) given above:

  P(2b ln U # x) 5 P aln U $ 2
x

b
b

  5 P(U $ e2xyb)

  5 P(e2xyb # U # 1)

  5 1 2 e2xyb

The fi rst line in the above is obtained by dividing through by 2b (recall that b . 0, 
so 2b , 0 and the inequality reverses), the second line is obtained by exponentiat-
ing both sides (the exponential function is monotone increasing, so the inequality is 
preserved), the third line is just rewriting, together with knowing that U is in [0, 1] 
anyway, and the last line follows since U is U(0, 1), and the interval [e2xyb, 1] is 
contained within the interval [0, 1]. Since the last line is F(x) for the exponential 
distribution, we have verifi ed that our algorithm is correct. Chapter 8 discusses how 
to generate random variates and processes in general.

In our program, we will use a particular method for random-number generation 
to obtain the variate U described above, as expressed in the C code of Figs. 7.5 and 
7.6 in App. 7A of Chap. 7. While most compilers do have some kind of built-in 
random-number generator, many of these are of extremely poor quality and should 
not be used; this issue is discussed fully in Chap. 7.

It is convenient (if not the most computationally effi cient) to modularize the 
programs into several subprograms to clarify the logic and interactions, as discussed 
in general in Sec. 1.3.2. In addition to a main program, the simulation program 
 includes routines for initialization, timing, report generation, and generating expo-
nential random variates, as in Fig. 1.3. It also simplifi es matters if we write a separate 
routine to update the continuous-time statistics, being the accumulated areas under 
the Q(t) and B(t) curves. The most important action, however, takes place in the 
routines for the events, which we number as follows:

Event description Event type

Arrival of a customer to the system 1
Departure of a customer from the system after completing service 2

Figure 1.8 contains a fl owchart for the arrival event. First, the time of the next 
arrival in the future is generated and placed in the event list. Then a check is made 
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30 basic simulation modeling

to determine whether the server is busy. If so, the number of customers in the queue 
is incremented by 1, and we ask whether the storage space allocated to hold the 
queue is already full (see the code in Sec. 1.4.4). If the queue is already full, an error 
message is produced and the simulation is stopped; if there is still room in the 
queue, the arriving customer’s time of arrival is put at the (new) end of the queue.
(This queue-full check could be eliminated if using dynamic storage allocation in a 
programming language that supports this.) On the other hand, if the arriving cus-
tomer fi nds the server idle, then this customer has a delay of 0, which is counted as 
a delay, and the number of customer delays completed is incremented by 1. The 

Arrival
event

Return

Schedule the next
arrival event

Add 1 to the
number in queue

Write error
message and stop

simulation

Set delay = 0
for this customer

and gather statistics

Add 1 to the
number of

customers delayed

Schedule a
departure event for

this customer

Make the
server busy

Store time of
arrival of this

customer

Is
the server

busy?

Is
the queue

full?

Yes

Yes

No

No

FIGURE 1.8
Flowchart for arrival routine, queueing model.
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server must be made busy, and the time of departure from service of the arriving 
customer is scheduled into the event list.

The departure event’s logic is depicted in the fl owchart of Fig. 1.9. Recall that 
this routine is invoked when a service completion (and subsequent departure) occurs. 
If the departing customer leaves no other customers behind in queue, the server is 
idled and the departure event is eliminated from consideration, since the next event 
must be an arrival. On the other hand, if one or more customers are left behind by 
the departing customer, the fi rst customer in queue will leave the queue and enter 
service, so the queue length is reduced by 1, and the delay in queue of this cus-
tomer is computed and registered in the appropriate statistical counter. The number 

Departure
event

Return

Subtract 1 from
the number in

queue

Make the
server idle

Eliminate departure
event from

consideration

Compute delay of
customer entering service

and gather statistics

Schedule a
departure event

for this customer

Move each customer
in queue (if any) up

one place

Add 1 to the
number of customers

delayed

Yes NoIs
the queue
empty?

FIGURE 1.9
Flowchart for departure routine, queueing model.
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32 basic simulation modeling

 delayed is increased by 1, and a departure event for the customer now entering 
service is scheduled. Finally, the rest of the queue (if any) is advanced one place. 
Our implementation of the list for the queue will be very simple in this chapter, and 
is certainly not the most effi cient; Chap. 2 discusses better ways of handling lists to 
model such things as queues.

In the next section we give an example of how the above setup can be used to 
write a program in C. The results are discussed in Sec. 1.4.5. This program is neither 
the simplest nor the most effi cient possible, but was instead designed to illustrate 
how one might organize a program for more complex simulations.

1.4.4 C Program

This section presents a C program for the M/M/1 queue simulation. We use the 
ANSI-standard version of the language, as defi ned by Kernighan and Ritchie (1988), 
and in particular use function prototyping. We have also taken advantage of C’s 
 facility to give variables and functions fairly long names, which thus should be self-
explanatory. (For instance, the current value of simulated time is in a variable called 
sim_time.) We have run our C program on several different computers and compil-
ers. The numerical results differed in some cases due to inaccuracies in fl oating-
point operations. This can matter if, e.g., at some point in the simulation two events 
are scheduled very close together in time, and roundoff error results in a different 
sequencing of the event’s occurrences. The C math library must be linked, which 
might require setting an option depending on the compiler. All code is available at 
www.mhhe.com/law.

The external defi nitions are given in Fig. 1.10. The header fi le lcgrand.h (listed 
in Fig. 7.6) is included to declare the functions for the random-number generator.

/* External definitions for single-server queueing system. */

#include <stdio.h>
#include <math.h>
#include "lcgrand.h"  /* Header file for random-number generator. */

#define Q_LIMIT 100  /* Limit on queue length. */
#define BUSY      1  /* Mnemonics for server's being busy */
#define IDLE      0  /* and idle. */

int   next_event_type, num_custs_delayed, num_delays_required, num_events,
      num_in_q, server_status;
float area_num_in_q, area_server_status, mean_interarrival, mean_service,
      sim_time, time_arrival[Q_LIMIT + 1], time_last_event, time_next_event[3],
      total_of_delays;
FILE  *infile, *outfile;

void  initialize(void);
void  timing(void);
void  arrive(void);
void  depart(void);
void  report(void);
void  update_time_avg_stats(void);
float expon(float mean);

FIGURE 1.10
C code for the external defi nitions, queueing model.
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The symbolic constant Q_LIMIT is set to 100, our guess (which might have to be 
adjusted by trial and error) as to the longest the queue will ever get. (As mentioned 
earlier, this guess could be eliminated if we were using dynamic storage allocation; 
while C supports this, we have not used it in our examples.) The symbolic constants 
BUSY and IDLE are defi ned to be used with the server_status variable, for code 
readability. File pointers *infi le and *outfi le are defi ned to allow us to open the 
input and output fi les from within the code, rather than at the operating-system 
level. Note also that the event list, as we have discussed it so far, will be imple-
mented in an array called time_next_event, whose 0th entry will be ignored in order 
to make the index agree with the event type.

The code for the main function is shown in Fig. 1.11. The input and output 
fi les are opened, and the number of event types for the simulation is initialized to 
2 for this model. The input parameters then are read in from the fi le mm1.in, 
which contains a single line with the numbers 1.0, 0.5, and 1000, separated by 
blanks. After writing a report heading and echoing the input parameters (as a 
check that they were read correctly), the initialization function is invoked. The 
“while” loop then executes the simulation as long as more customer delays are 
needed to fulfi ll the 1000-delay stopping rule. Inside the “while” loop, the timing 
function is fi rst invoked to determine the type of the next event to occur and to 
advance the simulation clock to its time. Before processing this event, the func-
tion to update the areas under the Q(t) and B(t) curves is invoked; by doing this at 
this time we automatically update these areas before processing each event. Then 
a switch statement, based on next_event_type (51 for an arrival and 2 for a depar-
ture), passes control to the appropriate event function. After the “while” loop is 
done, the report function is invoked, the input and output fi les are closed, and the 
simulation ends.

Code for the initialization function is given in Fig. 1.12. Each statement here 
corresponds to an element of the computer representation in Fig. 1.7a. Note that the 
time of the fi rst arrival, time_next_event[1], is determined by adding an exponential 
random variate with mean mean_interarrival, namely, expon(mean_interarrival), to 
the simulation clock, sim_time 5 0. (We explicitly used “sim_time” in this statement, 
although it has a value of 0, to show the general form of a statement to determine 
the time of a future event.) Since no customers are present at time sim_time 5 0, 
the time of the next departure, time_next_event[2], is set to 1.0e 1 30 (C notation 
for 1030), guaranteeing that the fi rst event will be an arrival.

The timing function, which is given in Fig. 1.13, is used to compare 
time_next_event[1], time_next_event[2], . . . , time_next_event[num_events] 
 (recall that num_events was set in the main function) and to set next_event_type 
equal to the event type whose time of occurrence is the smallest. In case of ties, 
the lowest-numbered event type is chosen. Then the simulation clock is advanced 
to the time of occurrence of the chosen event type, min_time_next_event. The 
program is complicated slightly by an error check for the event list’s being empty, 
which we defi ne to mean that all events are scheduled to occur at time 5 1030. If 
this is ever the case (as indicated by next_event_type 5 0), an error message is 
produced along with the current clock time (as a possible debugging aid), and the 
simulation is terminated.
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main()  /* Main function. */
{
    /* Open input and output files. */

    infile  = fopen("mm1.in",  "r");
    outfile = fopen("mm1.out", "w");

    /* Specify the number of events for the timing function. */

    num_events = 2;

    /* Read input parameters. */

    fscanf(infile, "%f %f %d", &mean_interarrival, &mean_service,
           &num_delays_required);

    /* Write report heading and input parameters. */

    fprintf(outfile, "Single-server queueing system\n\n");
    fprintf(outfile, "Mean interarrival time%11.3f minutes\n\n",
            mean_interarrival);
    fprintf(outfile, "Mean service time%16.3f minutes\n\n", mean_service);
    fprintf(outfile, "Number of customers%14d\n\n", num_delays_required);

    /* Initialize the simulation. */

    initialize();

    /* Run the simulation while more delays are still needed. */

    while (num_custs_delayed < num_delays_required) {

        /* Determine the next event. */

        timing();

        /* Update time-average statistical accumulators. */

        update_time_avg_stats();

        /* Invoke the appropriate event function. */

        switch (next_event_type) {
            case 1:
                arrive();
                break;
            case 2:
                depart();
                break;
        }
    }

    /* Invoke the report generator and end the simulation. */

    report();

    fclose(infile);
    fclose(outfile);

    return 0;
}

FIGURE 1.11
C code for the main function, queueing model.
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void initialize(void)  /* Initialization function. */
{
    /* Initialize the simulation clock. */

    sim_time = 0.0;

    /* Initialize the state variables. */

    server_status   = IDLE;
    num_in_q        = 0;
    time_last_event = 0.0;

    /* Initialize the statistical counters. */

    num_custs_delayed  = 0;
    total_of_delays    = 0.0;
    area_num_in_q      = 0.0;
    area_server_status = 0.0;

    /* Initialize event list.  Since no customers are present, the departure
       (service completion) event is eliminated from consideration. */

    time_next_event[1] = sim_time + expon(mean_interarrival);
    time_next_event[2] = 1.0e+30;
}

FIGURE 1.12
C code for function initialize, queueing model.

void timing(void)  /* Timing function. */
{
    int   i;
    float min_time_next_event = 1.0e+29;

    next_event_type = 0;

    /* Determine the event type of the next event to occur. */

    for (i = 1; i <= num_events; ++i)
        if (time_next_event[i] < min_time_next_event) {
            min_time_next_event = time_next_event[i];
            next_event_type     = i;
        }

    /* Check to see whether the event list is empty. */

    if (next_event_type == 0) {

        /* The event list is empty, so stop the simulation. */

        fprintf(outfile, "\nEvent list empty at time %f", sim_time);
        exit(1);
    }

    /* The event list is not empty, so advance the simulation clock. */

    sim_time = min_time_next_event;
}

FIGURE 1.13
C code for function timing, queueing model.
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The code for event function arrive is in Fig. 1.14, and follows the discussion as 
given in Sec. 1.4.3 and in the fl owchart of Fig. 1.8. Note that “sim_time” is the time 
of arrival of the customer who is just now arriving, and that the queue-overfl ow 
check is made by asking whether num_in_q is now greater than Q_LIMIT, the 
length for which the array time_arrival was dimensioned.

Event function depart, whose code is shown in Fig. 1.15, is invoked from the 
main program when a service completion (and subsequent departure) occurs; the

void arrive(void)  /* Arrival event function. */
{
    float delay;

    /* Schedule next arrival. */

    time_next_event[1] = sim_time + expon(mean_interarrival);

    /* Check to see whether server is busy. */

    if (server_status == BUSY) {

        /* Server is busy, so increment number of customers in queue. */

        ++num_in_q;

        /* Check to see whether an overflow condition exists. */

        if (num_in_q > Q_LIMIT) {

            /* The queue has overflowed, so stop the simulation. */

            fprintf(outfile, "\nOverflow of the array time_arrival at");
            fprintf(outfile, " time %f", sim_time);
            exit(2);
        }

        /* There is still room in the queue, so store the time of arrival of the
           arriving customer at the (new) end of time_arrival. */

        time_arrival[num_in_q] = sim_time;
    }

    else {

        /* Server is idle, so arriving customer has a delay of zero.  (The
           following two statements are for program clarity and do not affect
           the results of the simulation.) */

        delay            = 0.0;
        total_of_delays += delay;

        /* Increment the number of customers delayed, and make server busy. */

        ++num_custs_delayed;
        server_status = BUSY;

        /* Schedule a departure (service completion). */

        time_next_event[2] = sim_time + expon(mean_service);
    }
}

FIGURE 1.14
C code for function arrive, queueing model.
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void depart(void)  /* Departure event function. */
{
    int   i;
    float delay;

    /* Check to see whether the queue is empty. */

    if (num_in_q == 0) {

        /* The queue is empty so make the server idle and eliminate the
           departure (service completion) event from consideration. */

        server_status      = IDLE;
        time_next_event[2] = 1.0e+30;
    }

    else {

        /* The queue is nonempty, so decrement the number of customers in
           queue. */

        --num_in_q;

        /* Compute the delay of the customer who is beginning service and update
           the total delay accumulator. */

        delay            = sim_time - time_arrival[1];
        total_of_delays += delay;

        /* Increment the number of customers delayed, and schedule departure. */

        ++num_custs_delayed;
        time_next_event[2] = sim_time + expon(mean_service);

        /* Move each customer in queue (if any) up one place. */

        for (i = 1; i <= num_in_q; ++i)
            time_arrival[i] = time_arrival[i + 1];
    }
}

FIGURE 1.15
C code for function depart, queueing model.

logic for it was discussed in Sec. 1.4.3, with the fl owchart in Fig. 1.9. Note that if 
the statement “time_next_event[2] 5 1.0e 1 30;” just before the “else” were omit-
ted, the program would get into an infi nite loop. (Why?) Advancing the rest of the 
queue (if any) one place by the “for” loop near the end of the function ensures that 
the arrival time of the next customer entering service (after being delayed in queue) 
will always be stored in time_arrival[1]. Note that if the queue were now empty 
(i.e., the customer who just left the queue and entered service had been the only one 
in queue), then num_in_q would be equal to 0, and this loop would not be executed 
at all since the beginning value of the loop index, i, starts out at a value (1) that 
would already exceed its fi nal value (num_in_q 5 0). (Managing the queue in this 
simple way is certainly ineffi cient, and could be improved by using pointers; we 
return to this issue in Chap. 2.) A fi nal comment about depart concerns the subtrac-
tion of time_arrival[1] from the clock value, sim_time, to obtain the delay in queue. 
If the simulation is to run for a long period of (simulated) time, both sim_time 
and time_arrival[1] would become very large numbers in comparison with the
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38 basic simulation modeling

difference between them; thus, since they are both stored as fl oating-point (fl oat) 
numbers with fi nite accuracy, there is potentially a serious loss of precision when 
doing this subtraction. For this reason, it may be necessary to make both sim_time 
and the time_arrival array of type double if we are to run this simulation out for a 
long period of time.

The code for the report function, invoked when the “while” loop in the main 
program is over, is given in Fig. 1.16. The average delay is computed by dividing 
the total of the delays by the number of customers whose delays were observed, and 
the time-average number in queue is obtained by dividing the area under Q(t), now 
updated to the end of the simulation (since the function to update the areas is called 
from the main program before processing either an arrival or departure, one of 
which will end the simulation), by the clock value at termination. The server utiliza-
tion is computed by dividing the area under B(t) by the fi nal clock time, and all three 
measures are written out directly. We also write out the fi nal clock value itself, to see 
how long it took to observe the 1000 delays.

Function update_time_avg_stats is shown in Fig. 1.17. This function is invoked 
just before processing each event (of any type) and updates the areas under the 
two functions needed for the continuous-time statistics; this routine is separate for

void report(void)  /* Report generator function. */
{
    /* Compute and write estimates of desired measures of performance. */

    fprintf(outfile, "\n\nAverage delay in queue%11.3f minutes\n\n",
            total_of_delays / num_custs_delayed);
    fprintf(outfile, "Average number in queue%10.3f\n\n",
            area_num_in_q / sim_time);
    fprintf(outfile, "Server utilization%15.3f\n\n",
            area_server_status / sim_time);
    fprintf(outfile, "Time simulation ended%12.3f minutes", sim_time);
}

FIGURE 1.16
C code for function report, queueing model.

void update_time_avg_stats(void)  /* Update area accumulators for time-average
                                     statistics. */
{
    float time_since_last_event;

    /* Compute time since last event, and update last-event-time marker. */

    time_since_last_event = sim_time - time_last_event;
    time_last_event       = sim_time;

    /* Update area under number-in-queue function. */

    area_num_in_q      += num_in_q * time_since_last_event;

    /* Update area under server-busy indicator function. */

    area_server_status += server_status * time_since_last_event;
}

FIGURE 1.17
C code for function update_time_avg_stats, queueing model.
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coding convenience only, and is not an event routine. The time since the last event 
is fi rst computed, and then the time of the last event is brought up to the current time 
in order to be ready for the next entry into this function. Then the area under the 
number-in-queue function is augmented by the area of the rectangle under Q(t) dur-
ing the interval since the previous event, which is of width time_since_last_event 
and of height num_in_q; remember, this function is invoked before processing 
an event, and state variables such as num_in_q still have their previous values. 
The area under B(t) is then augmented by the area of a rectangle of width 
time_since_last_event and height server_status; this is why it is convenient to 
defi ne server_status to be either 0 or 1. Note that this function, like depart, contains 
a subtraction of two fl oating-point numbers (sim_time 2 time_last_event), both 
of which could become quite large relative to their difference if we were to run 
the simulation for a long time; in this case it might be necessary to declare both 
sim_time and time_last_event to be of type double.

The function expon, which generates an exponential random variate with mean 
b 5 mean (passed into expon), is shown in Fig. 1.18, and follows the algorithm 
discussed in Sec. 1.4.3. The random-number generator lcgrand, used here with an 
int argument of 1, is discussed fully in Chap. 7, and is shown specifi cally in Fig. 7.5. 
The C predefi ned function log returns the natural logarithm of its argument.

The program described here must be combined with the random-number-
generator code from Fig. 7.5. This could be done by separate compilations, fol-
lowed by linking the object codes together in an installation-dependent way.

1.4.5 Simulation Output and Discussion

The output (in a fi le named mm1.out) is shown in Fig. 1.19. In this run, the average 
delay in queue was 0.430 minute, there was an average of 0.418 customer in the 
queue, and the server was busy 46 percent of the time. It took 1027.915 simulated 
minutes to run the simulation to the completion of 1000 delays, which seems rea-
sonable since the expected time between customer arrivals was 1 minute. (It is not 
a coincidence that the average delay, average number in queue, and utilization are 
all so close together for this model; see App. 1B.)

Note that these particular numbers in the output were determined, at root, by the 
numbers the random-number generator happened to come up with this time. If a dif-
ferent random-number generator were used, or if this one were used in another way 
(with another “seed” or “stream,” as discussed in Chap. 7), then different numbers 
would have been produced in the output. Thus, these numbers are not to be regarded

float expon(float mean)  /* Exponential variate generation function. */
{
    /* Return an exponential random variate with mean "mean". */

    return -mean * log(lcgrand(1));
}

FIGURE 1.18
C code for function expon.
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as “The Answers,” but rather as estimates (and perhaps poor ones) of the expected 
quantities we want to know about, d(n), q(n), and u(n); the statistical analysis of 
simulation output data is discussed in Chaps. 9 through 12. Also, the results are 
functions of the input parameters, in this case the mean interarrival and service 
times, and the n 5 1000 stopping rule; they are also affected by the way we initial-
ized the simulation (empty and idle).

In some simulation studies, we might want to estimate steady-state character-
istics of the model (see Chap. 9), i.e., characteristics of a model after the simu-
lation has been running a very long (in theory, an infi nite amount of ) time. For 
the  simple M/M/1 queue we have been considering, it is possible to compute 
 analytically the steady-state average delay in queue, the steady-state time-average 
number in queue, and the steady-state server utilization, all of these measures of 
performance being 0.5 [see, e.g., Ross (2003, pp. 480–487)]. Thus, if we wanted to 
 determine these steady-state measures, our estimates based on the stopping rule 
n 5 1000 delays were not too far off, at least in absolute terms. However, we were 
somewhat lucky, since n 5 1000 was chosen arbitrarily! In practice, the choice of 
a stopping rule that will give good estimates of steady-state measures is quite dif-
fi cult. To illustrate this point, suppose for the M/M/1 queue that the arrival rate of 
customers were increased from 1 per minute to 1.98 per minute (the mean inter-
arrival time is now 0.505 minute), that the mean service time is unchanged, and that 
we wish to estimate the steady-state measures from a run of length n 5 1000 delays, 
as before. We performed this simulation run and got values for the average delay, 
average number in queue, and server utilization of 17.404 minutes, 34.831, and 0.997, 
respectively. Since the true steady-state values of these measures are 49.5 minutes, 
98.01, and 0.99 (respectively), it is clear that the stopping rule cannot be chosen 
arbitrarily. We discuss how to specify the run length for a steady-state simulation 
in Chap. 9.

The reader may have wondered why we did not estimate the expected aver-
age waiting time in the system of a customer, w(n), rather than the expected average 
delay in queue, d(n), where the waiting time of a customer is defi ned as the time 
interval from the instant the customer arrives to the instant the customer completes 
service and departs. There were two reasons. First, for many queueing systems we 

Single-server queueing system

Mean interarrival time      1.000 minutes

Mean service time           0.500 minutes

Number of customers          1000

Average delay in queue      0.430 minutes

Average number in queue     0.418

Server utilization          0.460

Time simulation ended    1027.915 minutes

FIGURE 1.19
Output report, queueing model.
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believe that the customer’s delay in queue while waiting for other customers to be 
served is the most troublesome part of the customer’s wait in the system. Moreover, 
if the queue represents part of a manufacturing system where the “customers” are 
actually parts waiting for service at a machine (the “server”), then the delay in 
queue represents a loss, whereas the time spent in service is “necessary.” Our sec-
ond reason for focusing on the delay in queue is one of statistical effi ciency. The 
usual estimator of w(n) would be

 ŵ(n) 5

^
n

i51

Wi

n
5

^
n

i51

Di

n
1

^
n

i51

Si

n
5 d̂(n) 1 S(n) (1.7)

where Wi 5 Di 1 Si is the waiting time in the system of the ith customer and
S(n) is the average of the n customers’ service times. Since the service-time dis-
tribution would have to be known to perform a simulation in the fi rst place, the 
expected or mean service time, E(S), would also be known and an alternative 
 estimator of w(n) is

 w| (n) 5 d̂(n) 1 E(S)

[Note that S(n) is an unbiased estimator of E(S) in Eq. (1.7).] In almost all queueing 
simulations, w| (n) will be a more effi cient (less variable) estimator of w(n) than 
ŵ(n) and is thus preferable (both estimators are unbiased). Therefore, if one wants an 
estimate of w(n), estimate d(n) and add the known expected service time, E(S). In 
general, the moral is to replace estimators by their expected values whenever pos-
sible (see the discussion of indirect estimators in Sec. 11.5).

1.4.6 Alternative Stopping Rules

In the above queueing example, the simulation was terminated when the number of 
customers delayed became equal to 1000; the fi nal value of the simulation clock 
was thus a random variable. However, for many real-world models, the simulation 
is to stop after some fi xed amount of time, say 8 hours. Since the interarrival and 
service times for our example are continuous random variables, the probability of 
the simulation’s terminating after exactly 480 minutes is 0 (neglecting the fi nite 
 accuracy of a computer). Therefore, to stop the simulation at a specifi ed time, we 
introduce a dummy “end-simulation” event (call it an event of type 3), which is 
scheduled to occur at time 480. When the time of occurrence of this event (being 
held in the third spot of the event list) is less than all other entries in the event list, 
the report generator is called and the simulation is terminated. The number of cus-
tomers delayed is now a random variable.

These ideas can be implemented in the program by making changes in the 
external defi nitions, the main function, and the initialize and report functions, as 
shown in Figs. 1.20 through 1.23; the rest of the program is unaltered. In Figs. 1.20 
and 1.21, note that we now have three events; that the desired simulation run length, 
time_end, is now an input parameter (num_delays_required has been removed); and
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/* External definitions for single-server queueing system, fixed run length. */

#include <stdio.h>
#include <math.h>
#include "lcgrand.h"  /* Header file for random-number generator. */

#define Q_LIMIT 100  /* Limit on queue length. */
#define BUSY      1  /* Mnemonics for server's being busy */
#define IDLE      0  /* and idle. */

int   next_event_type, num_custs_delayed, num_events, num_in_q, server_status;
float area_num_in_q, area_server_status, mean_interarrival, mean_service,
      sim_time, time_arrival[Q_LIMIT + 1], time_end, time_last_event,
      time_next_event[4], total_of_delays;
FILE  *infile, *outfile;

void  initialize(void);
void  timing(void);
void  arrive(void);
void  depart(void);
void  report(void);
void  update_time_avg_stats(void);
float expon(float mean);

FIGURE 1.20
C code for the external defi nitions, queueing model with fi xed run length.

that the “switch” statement has been changed. To stop the simulation, the original 
“while” loop has been replaced by a “do while” loop in Fig. 1.21, where the loop 
keeps repeating itself as long as the type of event just executed is not 3 (end simula-
tion); after a type 3 event is chosen for execution, the loop ends and the simulation 
stops. In the main program (as before), we invoke update_time_avg_stats before 
entering an event function, so that in particular the areas will be updated to the end 
of the simulation here when the type 3 event (end simulation) is next. The only 
change to the initialization function in Fig. 1.22 is the addition of the statement 
time_next_event[3] 5 time_end, which schedules the end of the simulation. The 
only change to the report function in Fig. 1.23 is to write the number of customers 
delayed instead of the time the simulation ends, since in this case we know that the 
ending time will be 480 minutes but will not know how many customer delays will 
have been completed during that time.

The output fi le (named mm1alt.out) is shown in Fig. 1.24. The number of 
customer delays completed was 475 in this run, which seems reasonable in a 
480-minute run where customers are arriving at an average rate of 1 per minute. The 
same three measures of performance are again numerically close to each other, but 
the fi rst two are somewhat less than their earlier values in the 1000-delay simulation. 
A possible reason for this is that the current run is roughly only half as long as the 
earlier one, and since the initial conditions for the simulation are empty and idle (an 
uncongested state), the model in this shorter run has less chance to become congested. 
Again, however, this is just a single run and is thus subject to perhaps considerable 
uncertainty; there is no easy way to assess the degree of uncertainty from only a 
single run.

If the queueing system being considered had actually been a one-operator 
barbershop open from 9 a.m. to 5 p.m., stopping the simulation after exactly 8 hours

Law01323_ch01_001-084.indd Page 42  13/08/13  5:39 PM user-f-w-198 Law01323_ch01_001-084.indd Page 42  13/08/13  5:39 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



chapter one 43

main()  /* Main function. */
{
    /* Open input and output files. */

    infile  = fopen("mm1alt.in",  "r");
    outfile = fopen("mm1alt.out", "w");

    /* Specify the number of events for the timing function. */

    num_events = 3;

    /* Read input parameters. */

    fscanf(infile, "%f %f %f", &mean_interarrival, &mean_service, &time_end);

    /* Write report heading and input parameters. */

    fprintf(outfile, "Single-server queueing system with fixed run");
    fprintf(outfile, " length\n\n");
    fprintf(outfile, "Mean interarrival time%11.3f minutes\n\n",
            mean_interarrival);
    fprintf(outfile, "Mean service time%16.3f minutes\n\n", mean_service);
    fprintf(outfile, "Length of the simulation%9.3f minutes\n\n", time_end);

    /* Initialize the simulation. */

    initialize();

    /* Run the simulation until it terminates after an end-simulation event
       (type 3) occurs. */

    do {

        /* Determine the next event. */

        timing();

        /* Update time-average statistical accumulators. */

        update_time_avg_stats();

        /* Invoke the appropriate event function. */

        switch (next_event_type) {
            case 1:
                arrive();
                break;
            case 2:
                depart();
                break;
            case 3:
                report();
                break;
        }

    /* If the event just executed was not the end-simulation event (type 3),
       continue simulating.  Otherwise, end the simulation. */

    } while (next_event_type != 3);

    fclose(infile);
    fclose(outfile);

    return 0;
}

FIGURE 1.21
C code for the main function, queueing model with fi xed run length.
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void initialize(void)  /* Initialization function. */
{
    /* Initialize the simulation clock. */

    sim_time = 0.0;

    /* Initialize the state variables. */

    server_status   = IDLE;
    num_in_q        = 0;
    time_last_event = 0.0;

    /* Initialize the statistical counters. */

    num_custs_delayed  = 0;
    total_of_delays    = 0.0;
    area_num_in_q      = 0.0;
    area_server_status = 0.0;

    /* Initialize event list.  Since no customers are present, the departure
       (service completion) event is eliminated from consideration.  The end-
       simulation event (type 3) is scheduled for time time_end. */

    time_next_event[1] = sim_time + expon(mean_interarrival);
    time_next_event[2] = 1.0e+30;
    time_next_event[3] = time_end;
}

FIGURE 1.22
C code for function initialize, queueing model with fi xed run length.

void report(void)  /* Report generator function. */
{
    /* Compute and write estimates of desired measures of performance. */

    fprintf(outfile, "\n\nAverage delay in queue%11.3f minutes\n\n",
            total_of_delays / num_custs_delayed);
    fprintf(outfile, "Average number in queue%10.3f\n\n",
            area_num_in_q / sim_time);
    fprintf(outfile, "Server utilization%15.3f\n\n",
            area_server_status / sim_time);
    fprintf(outfile, "Number of delays completed%7d",
            num_custs_delayed);
}

FIGURE 1.23
C code for function report, queueing model with fi xed run length.

Single-server queueing system with fixed run length

Mean interarrival time      1.000 minutes

Mean service time           0.500 minutes

Length of the simulation  480.000 minutes

Average delay in queue      0.399 minutes

Average number in queue     0.394

Server utilization          0.464

Number of delays completed    475

FIGURE 1.24
Output report, queueing model with fi xed run length.
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might leave a customer with hair partially cut. In such a case, we might want to 
close the door of the barbershop after 8 hours but continue to run the simulation 
until all customers present when the door closes (if any) have been served. The 
reader is asked in Prob. 1.10 to supply the program changes necessary to implement 
this stopping rule (see also Sec. 2.6).

1.4.7 Determining the Events and Variables

We defi ned an event in Sec. 1.3 as an instantaneous occurrence that may change 
the system state, and in the simple single-server queue of Sec. 1.4.1 it was not too 
hard to identify the events. However, the question sometimes arises, especially for 
complex systems, of how one determines the number and defi nition of events in 
general for a model. It may also be diffi cult to specify the state variables needed 
to keep the simulation running in the correct event sequence and to obtain the 
desired output measures. There is no completely general way to answer these 
questions, and different people may come up with different ways of representing 
a model in terms of events and variables, all of which may be correct. But there 
are some principles and techniques to help simplify the model’s structure and to avoid 
logical errors.

Schruben (1983b) presented an event-graph method, which was subsequently 
refi ned and extended by Sargent (1988) and Som and Sargent (1989). In this ap-
proach proposed events, each represented by a node, are connected by directed arcs 
(arrows) depicting how events may be scheduled from other events and from them-
selves. For example, in the queueing simulation of Sec. 1.4.3, the arrival event 
schedules another future occurrence of itself and (possibly) a departure event, and 
the departure event may schedule another future occurrence of itself; in addition, 
the arrival event must be initially scheduled in order to get the simulation going. 
Event graphs connect the proposed set of events (nodes) by arcs indicating the type 
of event scheduling that can occur. In Fig. 1.25 we show the event graph for our 
single-server queueing system, where the heavy, smooth arrows indicate that an 
event at the end of the arrow may be scheduled from the event at the beginning of 
the arrow in a (possibly) nonzero amount of time, and the thin jagged arrow indicates 
that the event at its end is scheduled initially. Thus, the arrival event reschedules 
 itself and may schedule a departure (in the case of an arrival who fi nds the server 
idle), and the departure event may reschedule itself (if a departure leaves behind 
someone else in queue).

Arrival Departure

FIGURE 1.25
Event graph, queueing model.
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For this model, it could be asked why we did not explicitly account for the act 
of a customer’s entering service (either from the queue or upon arrival) as a separate 
event. This certainly can happen, and it could cause the state to change (i.e., the 
queue length to fall by 1). In fact, this could have been put in as a separate event 
without making the simulation incorrect, and would give rise to the event diagram 
in Fig. 1.26. The two thin smooth arrows each represent an event at the beginning of 
an arrow potentially scheduling an event at the end of the arrow without any inter-
vening time, i.e., immediately; in this case the straight thin smooth arrow refers to a 
customer who arrives to an empty system and whose “enter-service” event is thus 
scheduled to occur immediately, and the curved thin smooth arrow represents a 
customer departing with a queue left behind, and so the fi rst customer in the queue 
would be scheduled to enter service immediately. The number of events has now 
increased by 1, and so we have a somewhat more complicated representation of our 
model. One of the uses of event graphs is to simplify a simulation’s event structure 
by eliminating unnecessary events. There are several “rules” that allow for simplifi -
cation, and one of them is that if an event node has incoming arcs that are all thin 
and smooth (i.e., the only way this event is scheduled is by other events and without 
any intervening time), then this event can be eliminated from the model and 
its  action built into the events that schedule it in zero time. Here, the “enter-service” 
event could be eliminated, and its action put partly into the arrival event (when a 
customer arrives to an idle server and begins service immediately) and partly into 
the departure event (when a customer fi nishes service and there is a queue from 
which the next customer is taken to enter service); this takes us back to the simpler 
event graph in Fig. 1.25. Basically, “events” that can happen only in conjunction 
with other events do not need to be in the model. Reducing the number of events not 
only simplifi es model conceptualization, but may also speed its execution. Care 
must be taken, however, when “collapsing” events in this way to handle priorities 
and time ties appropriately.

Another rule has to do with initialization. The event graph is decomposed into 
strongly connected components, within each of which it is possible to “travel” from 
every node to every other node by following the arcs in their indicated directions. 
The graph in Fig. 1.25 decomposes into two strongly connected components (with 
a single node in each), and that in Fig. 1.26 has two strongly connected components 
(one of which is the arrival node by itself, and the other of which consists of the 
enter-service and departure nodes). The initialization rule states that in any strongly 

Arrival Enter
service

Departure

FIGURE 1.26
Event graph, queueing model with separate “enter-service” event.
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connected component of nodes that has no incoming arcs from other event nodes 
outside the component, there must be at least one node that is initially scheduled; if 
this rule were violated, it would never be possible to execute any of the events in the 
component. In Figs. 1.25 and 1.26, the arrival node is such a strongly connected com-
ponent since it has no incoming arcs from other nodes, and so it must be initialized. 
Figure 1.27 shows the event graph for the queueing model of Sec. 1.4.6 with the 
fi xed run length, for which we introduced the dummy “end-simulation” event. Note 
that this event is itself a strongly connected component without any arcs coming in, 
and so it must be initialized; i.e., the end of the simulation is scheduled as part of 
the initialization. Failure to do so would result in erroneous termination of the 
simulation.

We have presented only a partial and simplifi ed account of the event-graph 
technique. There are several other features, including event-canceling relations, 
ways to combine similar events into one, refi ning the event-scheduling arcs to include 
conditional scheduling, and incorporating the state variables needed; see the origi-
nal paper by Schruben (1983b). Sargent (1988) and Som and Sargent (1989) extend 
and refi ne the technique, giving comprehensive illustrations involving a fl exible 
manufacturing system and computer network models. Event graphs can also be 
used to test whether two apparently different models might in fact be equivalent 
[Yücesan and Schruben (1992)], as well as to forecast how computationally inten-
sive a model will be when it is executed [Yücesan and Schruben (1998)]. Schruben 
and Schruben (www.sigmawiki.com) developed a software package, SIGMA, for 
interactive event-graph modeling that runs a model and generates source code. A 
general event-graph review and tutorial are given by Buss (1996), and advanced 
 applications of event graphs are described in Schruben et al. (2003).

In modeling a system, the event-graph technique can be used to simplify the 
structure and to detect certain kinds of errors, and is especially useful in complex 
models involving a large number of interrelated events. Other considerations should 
also be kept in mind, such as continually asking why a particular state variable is 
needed; see Prob. 1.4.

DepartureArrival

End
simulation

FIGURE 1.27
Event graph, queueing model with fi xed run length.
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48 basic simulation modeling

1.5
SIMULATION OF AN INVENTORY SYSTEM

We shall now see how simulation can be used to compare alternative ordering poli-
cies for an inventory system. Many of the elements of our model are representative 
of those found in actual inventory systems.

1.5.1 Problem Statement

A company that sells a single product would like to decide how many items it should 
have in inventory for each of the next n months (n is a fi xed input parameter). The 
times between demands are IID exponential random variables with a mean of 
0.1 month. The sizes of the demands, D, are IID random variables (independent of 
when the demands occur), with

 D 5 µ
1 w.p. 1

6

2 w.p. 1
3

3 w.p. 1
3

4 w.p. 1
6

where w.p. is read “with probability.”
At the beginning of each month, the company reviews the inventory level and 

decides how many items to order from its supplier. If the company orders Z items, 
it incurs a cost of K 1 iZ, where K 5 $32 is the setup cost and i 5 $3 is the incre-
mental cost per item ordered. (If Z 5 0, no cost is incurred.) When an order is 
placed, the time required for it to arrive (called the delivery lag or lead time) is a 
random variable that is distributed uniformly between 0.5 and 1 month.

The company uses a stationary (s, S) policy to decide how much to order, i.e.,

 Z 5 e S 2 I if I , s
0 if I $ s

where I is the inventory level at the beginning of the month.
When a demand occurs, it is satisfi ed immediately if the inventory level is at 

least as large as the demand. If the demand exceeds the inventory level, the excess 
of demand over supply is backlogged and satisfi ed by future deliveries. (In this case, 
the new inventory level is equal to the old inventory level minus the demand size, 
resulting in a negative inventory level.) When an order arrives, it is fi rst used to 
eliminate as much of the backlog (if any) as possible; the remainder of the order (if 
any) is added to the inventory.

So far, we have discussed only one type of cost incurred by the inventory 
system, the ordering cost. However, most real inventory systems also have two 
additional types of costs, holding and shortage costs, which we discuss after in-
troducing some additional notation. Let I(t) be the inventory level at time t [note 
that I(t) could be positive, negative, or zero]; let I1(t) 5 max{I(t), 0} be the num-
ber of items physically on hand in the inventory at time t [note that I1(t) $ 0]; and 
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chapter one 49

let I2(t) 5 max{2I(t), 0} be the backlog at time t [I2(t) $ 0 as well]. A possible 
realization of I(t), I1(t), and I2(t) is shown in Fig. 1.28. The time points at which 
I(t) decreases are the ones at which demands occur.

For our model, we shall assume that the company incurs a holding cost of 
h 5 $1 per item per month held in (positive) inventory. The holding cost includes 
such costs as warehouse rental, insurance, taxes, and maintenance, as well as the 
opportunity cost of having capital tied up in inventory rather than invested else-
where. We have ignored in our formulation the fact that some holding costs are still 
incurred when I1(t) 5 0. However, since our goal is to compare ordering policies, 
ignoring this factor, which after all is independent of the policy used, will not affect 
our assessment of which policy is best. Now, since I1(t) is the number of items held 
in inventory at time t, the time-average (per month) number of items held in inven-
tory for the n-month period is

 I1 5
#

n

0
 I1 (t) dt

n

which is akin to the defi nition of the time-average number of customers in queue 
given in Sec. 1.4.1. Thus, the average holding cost per month is hI 1.

Similarly, suppose that the company incurs a backlog cost of p 5 $5 per item 
per month in backlog; this accounts for the cost of extra record keeping when a 
backlog exists, as well as loss of customers’ goodwill. The time-average number of 
items in backlog is

 I2 5
#

n

0
 I2(t) dt

n

so the average backlog cost per month is pI2.

S

s

1 2 3

Place an order Place an orderOrder arrives

t

I –(t)

I(t)
Key

I +(t)
I –(t)

S � I(1)

FIGURE 1.28
A realization of I(t), I1(t), and I2(t) over time.
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50 basic simulation modeling

Assume that the initial inventory level is I(0) 5 60 and that no order is out-
standing. We simulate the inventory system for n 5 120 months and use the average 
total cost per month (which is the sum of the average ordering cost per month, 
the average holding cost per month, and the average shortage cost per month) to 
compare the following nine inventory policies:

s 20 20 20 20 40 40 40 60 60

S 40 60 80 100 60 80 100 80 100

We do not address here the issue of how these particular policies were chosen for 
consideration; statistical techniques for making such a determination are discussed 
in Chap. 12.

Note that the state variables for a simulation model of this inventory system are 
the inventory level I(t), the amount of an outstanding order from the company to the 
supplier, and the time of the last event [which is needed to compute the areas under 
the I1(t) and I2(t) functions].

1.5.2 Program Organization and Logic

Our model of the inventory system uses the following types of events:

Event description Event type

Arrival of an order to the company from the supplier 1
Demand for the product from a customer 2
End of the simulation after n months 3
Inventory evaluation (and possible ordering) at the beginning of a month 4

We have chosen to make the end of the simulation event type 3 rather than type 4, 
since at time 120 both “end-simulation” and “inventory-evaluation” events will 
eventually be scheduled and we would like to execute the former event fi rst at this 
time. (Since the simulation is over at time 120, there is no sense in evaluating the 
inventory and possibly ordering, incurring an ordering cost for an order that will 
never arrive.) The execution of event type 3 before event type 4 is guaranteed 
 because the timing routine gives preference to the lowest-numbered event if two or 
more events are scheduled to occur at the same time. In general, a simulation model 
should be designed to process events in an appropriate order when time ties occur. 
An event graph (see Sec. 1.4.7) appears in Fig. 1.29.

There are three types of random variates needed to simulate this system. The 
interdemand times are distributed exponentially, so the same algorithm (and code) 
as developed in Sec. 1.4 can be used here. The demand-size random variate D must 
be discrete, as described above, and can be generated as follows. First divide the 
unit interval into the contiguous subintervals C1 5 [0, 16), C2 5 [1

6, 
1
2), C3 5 [1

2, 
5
6), 

and C4 5 [5
6, 1], and obtain a U(0, 1) random variate U from the random-number 
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generator. If U falls in C1, return D 5 1; if U falls in C2, return D 5 2; and so on. 
Since the width of C1 is 16 2 0 5 1

6, and since U is uniformly distributed over [0, 1], 
the probability that U falls in C1 (and thus that we return D 5 1) is 16; this agrees with 
the desired probability that D 5 1. Similarly, we return D 5 2 if U falls in C2, hav-
ing probability equal to the width of C2, 

1
2 2 1

6 5 1
3, as desired; and so on for the 

other intervals. The subprogram to generate the demand sizes uses this principle 
and takes as input the cutoff points defi ning the above subintervals, which are the 
cumulative probabilities of the distribution of D.

The delivery lags are uniformly distributed, but not over the unit interval [0,1]. 
In general, we can generate a random variate distributed uniformly over any interval 
[a,b] by generating a U(0, 1) random number U, and then returning a 1 U(b 2 a). 
That this method is correct seems intuitively clear, but will be formally justifi ed in 
Sec. 8.3.1.

We now describe the logic for event types 1, 2, and 4, which actually involve 
state changes.

The order-arrival event is fl owcharted in Fig. 1.30, and must make the changes 
necessary when an order (which was previously placed) arrives from the supplier. 
The inventory level is increased by the amount of the order, and the order-arrival 
event must be eliminated from consideration. (See Prob. 1.12 for consideration of 
the issue of whether there could be more than one order outstanding at a time for 
this model with these parameters.)

A fl owchart for the demand event is given in Fig. 1.31, and processes the 
changes necessary to represent a demand’s occurrence. First, the demand size is 
generated, and the inventory is decremented by this amount. Finally, the time of the 
next demand is scheduled into the event list. Note that this is the place where the 
inventory level might become negative.

End
simulation

Order
arrival Demand Evaluate

FIGURE 1.29
Event graph, inventory model.
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52 basic simulation modeling

The inventory-evaluation event, which takes place at the beginning of each 
month, is fl owcharted in Fig. 1.32. If the inventory level I(t) at the time of the 
evaluation is at least s, then no order is placed, and nothing is done except to 
schedule the next evaluation into the event list. On the other hand, if I(t) , s, we 
want to place an order for S 2 I(t) items. This is done by storing the amount of the 
order [S 2 I(t)] until the order arrives, and scheduling its arrival time. In this case as 
well, we want to schedule the next inventory-evaluation event.

As in the single-server queueing model, it is convenient to write a separate 
nonevent routine to update the continuous-time statistical accumulators. For this 
model, however, doing so is slightly more complicated, so we give a fl owchart for 
this activity in Fig. 1.33. The principal issue is whether we need to update the area 
under I2(t) or I1(t) (or neither). If the inventory level since the last event has been 
negative, then we have been in backlog, so the area under I2(t) only should be 
 updated. On the other hand, if the inventory level has been positive, we need only 
update the area under I1(t). If the inventory level has been zero (a possibility), then 
neither update is needed. The code for this routine also brings the variable for the 
time of the last event up to the present time. This routine will be invoked from the 
main program just after returning from the timing routine, regardless of the event 
type or whether the inventory level is actually changing at this point. This provides 
a simple (if not the most computationally effi cient) way of updating integrals for 
continuous-time statistics.

Demand
event

Return

Generate the size of
this demand

Decrement the
inventory level by this

demand size

Schedule the next
demand event

FIGURE 1.31
Flowchart for demand routine,
inventory model.

Order-arrival
event

Return

Increment the inventory
level by the amount
previously ordered

Eliminate order-arrival
event from consideration

FIGURE 1.30
Flowchart for order-arrival routine, 
inventory model.
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chapter one 53

Section 1.5.3 contains a program to simulate this model in C. Neither the timing 
nor exponential-variate-generation subprograms will be shown, as they are the same 
as for the single-server queueing model in Sec. 1.4. The reader should also note the 
considerable similarity between the main programs of the queueing and inventory 
models.

1.5.3 C Program

The external defi nitions are shown in Fig. 1.34. The array prob_distrib_demand will 
be used to hold the cumulative probabilities for the demand sizes, and is passed into 
the random-integer-generation function random_integer. As for the queueing model, 
we must include the header fi le lcgrand.h (in Fig. 7.6) for the random-number gen-
erator of Fig. 7.5. All code is available at www.mhhe.com/law.

The code for the main function is given in Fig. 1.35. After opening the input and 
output fi les, the number of events is set to 4. The input parameters (except s and S) 
are then read in and written out, and a report heading is produced; for each (s, S)

Inventory-
evaluation event

Return

Determine amount
to be ordered [S � I(t)]

Incur ordering cost and
gather statistics

Schedule order-arrival
event for this order

Schedule the next
inventory-evaluation

event

Yes NoIs
I(t) � s?

FIGURE 1.32
Flowchart for inventory-
evaluation routine, inventory 
model.
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54 basic simulation modeling

Update time-average
statistical accumulators

Return

Update area under
I�(t)

Update area under
I�(t)

Negative Positive

Zero

Was I(t)
during the

previous interval
negative, zero, or

positive?

FIGURE 1.33
Flowchart for routine to update the continuous-time statistical 
accumulators, inventory model.

/* External definitions for inventory system. */

#include <stdio.h>
#include <math.h>
#include "lcgrand.h"  /* Header file for random-number generator. */

int   amount, bigs, initial_inv_level, inv_level, next_event_type, num_events,
      num_months, num_values_demand, smalls;
float area_holding, area_shortage, holding_cost, incremental_cost, maxlag,
      mean_interdemand, minlag, prob_distrib_demand[26], setup_cost,
      shortage_cost, sim_time, time_last_event, time_next_event[5],
      total_ordering_cost;
FILE  *infile, *outfile;

void  initialize(void);
void  timing(void);
void  order_arrival(void);
void  demand(void);
void  evaluate(void);
void  report(void);
void  update_time_avg_stats(void);
float expon(float mean);
int   random_integer(float prob_distrib []);
float uniform(float a, float b);

FIGURE 1.34
C code for the external defi nitions, inventory model.
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main()  /* Main function. */
{
    int i, num_policies;

    /* Open input and output files. */

    infile  = fopen("inv.in",  "r");
    outfile = fopen("inv.out", "w");

    /* Specify the number of events for the timing function. */

    num_events = 4;

    /* Read input parameters. */

    fscanf(infile, "%d %d %d %d %f %f %f %f %f %f %f",
           &initial_inv_level, &num_months, &num_policies, &num_values_demand,
           &mean_interdemand, &setup_cost, &incremental_cost, &holding_cost,
           &shortage_cost, &minlag, &maxlag);
    for (i = 1; i <= num_values_demand; ++i)
        fscanf(infile, "%f", &prob_distrib_demand[i]);

    /* Write report heading and input parameters. */

    fprintf(outfile, "Single-product inventory system\n\n");
    fprintf(outfile, "Initial inventory level%24d items\n\n",
            initial_inv_level);
    fprintf(outfile, "Number of demand sizes%25d\n\n", num_values_demand);
    fprintf(outfile, "Distribution function of demand sizes  ");
    for (i = 1; i <= num_values_demand; ++i)
        fprintf(outfile, "%8.3f", prob_distrib_demand[i]);
    fprintf(outfile, "\n\nMean interdemand time%26.2f\n\n", mean_interdemand);
    fprintf(outfile, "Delivery lag range%29.2f to%10.2f months\n\n", minlag,
            maxlag);
    fprintf(outfile, "Length of the simulation%23d months\n\n", num_months);
    fprintf(outfile, "K =%6.1f   i =%6.1f   h =%6.1f   pi =%6.1f\n\n",
            setup_cost, incremental_cost, holding_cost, shortage_cost);
    fprintf(outfile, "Number of policies%29d\n\n", num_policies);
    fprintf(outfile, "                 Average        Average");
    fprintf(outfile, "        Average        Average\n");
    fprintf(outfile, "  Policy       total cost    ordering cost");
    fprintf(outfile, "  holding cost   shortage cost");

    /* Run the simulation varying the inventory policy. */

    for (i = 1; i <= num_policies; ++i) {

        /* Read the inventory policy, and initialize the simulation. */

        fscanf(infile, "%d %d", &smalls, &bigs);
        initialize();

        /* Run the simulation until it terminates after an end-simulation event
           (type 3) occurs. */

        do {

            /* Determine the next event. */

            timing();

            /* Update time-average statistical accumulators. */

            update_time_avg_stats();

            /* Invoke the appropriate event function. */

FIGURE 1.35
C code for the main function, inventory model.
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56 basic simulation modeling

            switch (next_event_type) {
                case 1:
                    order_arrival();
                    break;
                case 2:
                    demand();
                    break;
                case 4:
                    evaluate();
                    break;
                case 3:
                    report();
                    break;
            }

        /* If the event just executed was not the end-simulation event (type 3),
           continue simulating.  Otherwise, end the simulation for the current
           (s,S) pair and go on to the next pair (if any). */

        } while (next_event_type != 3);
    }

    /* End the simulations. */

    fclose(infile);
    fclose(outfile);

    return 0;
}

FIGURE 1.35
(continued)

pair the simulation will then produce in the report function a single line of output 
corresponding to this heading. Then a “for” loop is begun, each iteration of which 
performs an entire simulation for a given (s, S) pair; the fi rst thing done in the loop 
is to read the next (s, S) pair. The model is initialized, and a “do while” loop is used 
to keep simulating as long as the type 3 (end-simulation) event does not occur, as in 
Sec. 1.4.6. Inside this loop, the timing function is used to determine the next event 
type and to update the simulation clock. After returning from timing with the next 
event type, the continuous-time statistics are updated before executing the event 
routine itself. A “switch” statement is then used as before to transfer control to the 
appropriate event routine. Unlike the fi xed-time stopping rule of Sec. 1.4.6, when 
the “do while” loop ends here, we do not stop the program, but go to the next step 
of the enclosing “for” loop to read in the next (s, S) pair and do a separate simula-
tion; the entire program stops only when the “for” loop is over and there are no more 
(s, S) pairs to consider.

The initialization function appears in Fig. 1.36. Observe that the fi rst inventory 
evaluation is scheduled at time 0 since, in general, the initial inventory level could 
be less than s. Note also that event type 1 (order arrival) is eliminated from consid-
eration, since our modeling assumption was that there are no outstanding orders 
initially.

The event functions order_arrival, demand, and evaluate are shown in Figs. 1.37 
through 1.39, and correspond to the general discussion given in Sec. 1.5.2, and
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void initialize(void)  /* Initialization function. */
{
    /* Initialize the simulation clock. */

    sim_time = 0.0;

    /* Initialize the state variables. */

    inv_level       = initial_inv_level;
    time_last_event = 0.0;

    /* Initialize the statistical counters. */

    total_ordering_cost = 0.0;
    area_holding        = 0.0;
    area_shortage       = 0.0;

    /* Initialize the event list.  Since no order is outstanding, the order-
       arrival event is eliminated from consideration. */

    time_next_event[1] = 1.0e+30;
    time_next_event[2] = sim_time + expon(mean_interdemand);
    time_next_event[3] = num_months;
    time_next_event[4] = 0.0;
}

FIGURE 1.36
C code for function initialize, inventory model.

void order_arrival(void)  /* Order arrival event function. */
{
    /* Increment the inventory level by the amount ordered. */

    inv_level += amount;

    /* Since no order is now outstanding, eliminate the order-arrival event from
       consideration. */

    time_next_event[1] = 1.0e+30;
}

FIGURE 1.37
C code for function order_arrival, inventory model.

void demand(void)  /* Demand event function. */
{
    /* Decrement the inventory level by a generated demand size. */

    inv_level -= random_integer(prob_distrib_demand);

    /* Schedule the time of the next demand. */

    time_next_event[2] = sim_time + expon(mean_interdemand);
}

FIGURE 1.38
C code for function demand, inventory model.

Law01323_ch01_001-084.indd Page 57  13/08/13  5:39 PM user-f-w-198 Law01323_ch01_001-084.indd Page 57  13/08/13  5:39 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



58 basic simulation modeling

void evaluate(void)  /* Inventory-evaluation event function. */
{
    /* Check whether the inventory level is less than smalls. */

    if (inv_level < smalls) {

        /* The inventory level is less than smalls, so place an order for the
           appropriate amount. */

        amount               = bigs - inv_level;
        total_ordering_cost += setup_cost + incremental_cost * amount;

        /* Schedule the arrival of the order. */

        time_next_event[1] = sim_time + uniform(minlag, maxlag);
    }

    /* Regardless of the place-order decision, schedule the next inventory
       evaluation. */

    time_next_event[4] = sim_time + 1.0;
}

FIGURE 1.39
C code for function evaluate, inventory model.

void report(void)  /* Report generator function. */
{
    /* Compute and write estimates of desired measures of performance. */

    float avg_holding_cost, avg_ordering_cost, avg_shortage_cost;

    avg_ordering_cost = total_ordering_cost / num_months;
    avg_holding_cost  = holding_cost * area_holding / num_months;
    avg_shortage_cost = shortage_cost * area_shortage / num_months;
    fprintf(outfile, "\n\n(%3d,%3d)%15.2f%15.2f%15.2f%15.2f",
            smalls, bigs,
            avg_ordering_cost + avg_holding_cost + avg_shortage_cost,
            avg_ordering_cost, avg_holding_cost, avg_shortage_cost);
}

FIGURE 1.40
C code for function report, inventory model.

to the fl owcharts in Figs. 1.30 through 1.32. In evaluate, note that the variable 
total_ordering_cost is increased by the ordering cost for any order that might be 
placed here.

The report generator is listed in Fig. 1.40, and computes the three components 
of the total cost separately, adding them together to get the average total cost per 
month. The current values of s and S are written out for identifi cation purposes, 
along with the average total cost and its three components (ordering, holding, and 
shortage costs).

Function update_time_avg_stats, which was discussed in general in Sec. 1.5.2 
and fl owcharted in Fig. 1.33, is shown in Fig. 1.41. Note that if the inventory level 
inv_level is zero, neither the “if” nor the “else if” condition is satisfi ed, resulting in 
no update at all, as desired. As in the single-server queueing model of Sec. 1.4, it
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might be necessary to make both the sim_time and time_last_event variables be of 
type double to avoid severe roundoff error in their subtraction at the top of the 
routine if the simulation is to be run for a long period of simulated time.

The code for function random_integer is given in Fig. 1.42, and is general in that 
it will generate an integer according to distribution function prob_distrib[I], provided 
that the values of prob_distrib[I] are specifi ed. (In our case, prob_distrib[1] 5 16, 
prob_distrib[2] 5 12, prob_distrib[3] 5 56, and prob_distrib[4] 5 1, all specifi ed to 
three-decimal accuracy on input.) The logic agrees with the discussion in Sec. 1.5.2; 
note that the input array prob_distrib must contain the cumulative distribution func-
tion rather than the probabilities that the variate takes on its possible values.

The function uniform is given in Fig. 1.43, and is as described in Sec. 1.5.2.

void update_time_avg_stats(void)  /* Update area accumulators for time-average
                                     statistics. */
{
    float time_since_last_event;

    /* Compute time since last event, and update last-event-time marker. */

    time_since_last_event = sim_time - time_last_event;
    time_last_event       = sim_time;

    /* Determine the status of the inventory level during the previous interval.
       If the inventory level during the previous interval was negative, update
       area_shortage.  If it was positive, update area_holding.  If it was zero,
       no update is needed. */

    if (inv_level < 0)
        area_shortage -= inv_level * time_since_last_event;
    else if (inv_level > 0)
        area_holding  += inv_level * time_since_last_event;
}

FIGURE 1.41
C code for function update_time_avg_stats, inventory model.

int random_integer(float prob_distrib[])  /* Random integer generation
                                             function. */
{
    int   i;
    float u;

    /* Generate a U(0,1) random variate. */

    u = lcgrand(1);

    /* Return a random integer in accordance with the (cumulative) distribution
       function prob_distrib. */

    for (i = 1; u >= prob_distrib[i]; ++i)
        ;
    return i;
}

FIGURE 1.42
C code for function random_integer.
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1.5.4 Simulation Output and Discussion

The simulation report (in fi le inv.out) is given in Fig. 1.44. For this model, there 
were some differences in the results across different compilers and computers, 
even though the same random-number-generator algorithm was being used; 
see  the discussion at the beginning of Sec. 1.4.4 for an explanation of this 
discrepancy.

float uniform(float a, float b)  /* Uniform variate generation function. */
{
    /* Return a U(a,b) random variate. */

    return a + lcgrand(1) * (b - a);
}

FIGURE 1.43
C code for function uniform.

 Single-product inventory system

 Initial inventory level                      60 items

 Number of demand sizes                        4

 Distribution function of demand sizes     0.167   0.500   0.833   1.000

 Mean interdemand time                      0.10 months

 Delivery lag range                         0.50 to      1.00 months

 Length of the simulation                    120 months

 K =  32.0   i =   3.0   h =   1.0   pi =   5.0

 Number of policies                            9

                  Average        Average        Average        Average
   Policy       total cost    ordering cost  holding cost   shortage cost

 ( 20, 40)         126.61          99.26           9.25          18.10

 ( 20, 60)         122.74          90.52          17.39          14.83

 ( 20, 80)         123.86          87.36          26.24          10.26

 ( 20,100)         125.32          81.37          36.00           7.95

 ( 40, 60)         126.37          98.43          25.99           1.95

 ( 40, 80)         125.46          88.40          35.92           1.14

 ( 40,100)         132.34          84.62          46.42           1.30

 ( 60, 80)         150.02         105.69          44.02           0.31

 ( 60,100)         143.20          89.05          53.91           0.24

FIGURE 1.44
Output report, inventory model.
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The three separate components of the average total cost per month were re-
ported to see how they respond individually to changes in s and S, as a possible 
check on the model and the code. For example, fi xing s 5 20 and increasing S from 
40 to 100 increases the holding cost steadily from $9.25 per month to $36.00 per 
month, while reducing shortage cost at the same time; the effect of this increase in 
S on the ordering cost is to reduce it, evidently since ordering up to larger values of 
S implies that these larger orders will be placed less frequently, thereby avoiding the 
fi xed ordering cost more often. Similarly, fi xing S at, say, 100, and increasing s from 
20 to 60 leads to a decrease in shortage cost ($7.95, $1.30, $0.24) but an increase in 
holding cost ($36.00, $46.42, $53.91), since increases in s translate into less will-
ingness to let the inventory level fall to low values. While we could probably have 
predicted the direction of movement of these components of cost without doing 
the simulation, it would not have been possible to say much about their magnitude 
without the aid of the simulation output.

Since the overall criterion of total cost per month is the sum of three compo-
nents that move in sometimes different directions in reaction to changes in s and S, 
we cannot predict even the direction of movement of this criterion without the simu-
lation. Thus, we simply look at the values of this criterion, and it would appear that 
the (20, 60) policy is the best, having an average total cost of $122.74 per month. 
However, in the present context where the length of the simulation is fi xed (the 
company wants a planning horizon of 10 years), what we really want to estimate for 
each policy is the expected average total cost per month for the fi rst 120 months. 
The numbers in Fig. 1.44 are estimates of these expected values, each estimate 
based on a sample of size 1 (simulation run or replication). Since these estimates 
may have large variances, the ordering of them may differ considerably from the 
ordering of the expected values, which is the desired information. In fact, if we 
reran the nine simulations using different U(0, 1) random variates, the estimates 
obtained might differ greatly from those in Fig. 1.44. Furthermore, the ordering of 
the new estimates might also be different.

We conclude from the above discussion that when the simulation run length is 
fi xed by the problem context, it will generally not be suffi cient to make a single 
simulation run of each policy or system of interest. In Chap. 9 we address the issue 
of just how many runs are required to get a good estimate of a desired expected 
value. Chapters 10 and 12 consider related problems when we are concerned with 
several different expected values arising from alternative system designs.

1.6
PARALLEL/DISTRIBUTED SIMULATION 
AND THE HIGH LEVEL ARCHITECTURE

The simulations in Secs. 1.4 and 1.5 (as well as those to be considered in Chap. 2) 
all operate in basically the same way. A simulation clock and an event list interact 
to determine which event will be processed next, the simulation clock is advanced 
to the time of this event, and the computer executes the event logic, which may in-
clude updating state variables, updating the event list, and collecting statistics. This 
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logic is executed in order of the events’ simulated time of occurrence; i.e., the simu-
lation is sequential. Furthermore, all work is done on a single computer.

In recent years computer technology has enabled individual processors or com-
puters to be linked together into parallel or distributed computing environments. 
This allows the possibility of executing different parts of a single simulation model 
on multiple processors operating at the same time, or in “parallel,” and thus reduc-
ing the overall time to complete the simulation. Alternatively, two or more different 
simulation models operating on separate computers might be tied together over a 
network to produce one overall simulation model, where the individual models 
 interact with each other over time. In this section we introduce these alternative 
 approaches to executing a simulation model.

1.6.1 Parallel Simulation

Parallel discrete-event simulation [see Fujimoto (1998, 2000, 2003)] is concerned 
with the execution of a simulation model on a tightly coupled computer system 
(e.g., a supercomputer or a shared-memory multiprocessor). By spreading the exe-
cution of a simulation over several different processors, it is hoped that the model 
execution time can be reduced considerably (up to a factor equal to the number of 
processors). For example, if one is simulating a communications network with 
thousands of nodes or a large military model, then the execution time could be 
 excessive and parallel simulation might be considered. Another possible use for 
 parallel simulation is in real-time decision making. For example, in an air-traffi c 
control system, it might be of interest to simulate several hours of air traffi c to 
 decide “now” how best to reroute traffi c [see Wieland (1998)].

To develop a parallel simulation, a model is decomposed into several logical 
processes (LPs) (or submodels). The individual LPs (or groups of them) are as-
signed to different processors, each of which goes to work simulating its piece of 
the model. The LPs communicate with each other by sending time-stamped mes-
sages or events to each other. For example, a manufacturing system is typically 
modeled as an interconnected network of queueing systems, each representing a 
different workstation. When a job leaves one workstation, an “arrival” event 
must be sent to the next station on the job’s routing (unless the job is leaving 
the system).

A crucial issue in parallel simulation is to ensure that events in the overall 
simulation model, regardless of their LP, are processed in their proper time sequence. 
For example, if the arrival of a particular job to one station is supposed to take place 
before the departure of another job from a different station, then there must be a 
synchronization mechanism to make sure that this takes place. If each LP processes 
all its events (generated either by itself or by another LP) in increasing order of 
event time, a requirement called the local causality constraint, then it can be shown 
that the parallel simulation will produce exactly the same results as if the overall 
simulation model were run sequentially on a single computer.

Each LP can be viewed as a sequential discrete-event simulation model, having 
its own local state variables, event list, and simulation clock. The overall parallel 
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simulation model, however, does not have global counterparts, as would be the case 
in a sequential simulation model.

Historically, two different types of synchronization mechanisms have been used: 
conservative and optimistic. In conservative synchronization [see Bryant (1977) and 
Chandy and Misra (1979)], the goal is to absolutely avoid violating the local causal-
ity constraint. For example, suppose that a particular LP is currently at simulation 
time 25 and is ready to process its next event that has an event time of 30. Then the 
synchronization mechanism must make sure that this LP won’t later receive an event 
from another LP with an event time of less than 30. Thus, the goal is to determine 
when it is actually “safe” to process a particular event, i.e., when can it be guaranteed 
that no event will later be received by this LP with a smaller event time.

Conservative synchronization mechanisms have two disadvantages [see 
 Fujimoto (1998, pp. 444–446)]:

1. They cannot fully exploit the parallelism that is available in a simulation applica-
tion. If event A could possibly affect event B in any way, then A and B must be 
executed sequentially. If the simulation model is such that A seldom affects B, 
then A and B could have been processed concurrently most of the time.

2. They are not very robust—a seemingly small change in the model can result in 
serious degradation in performance.

In optimistic synchronization, violations of the local causality constraint are 
allowed to occur, but the synchronization mechanism detects violations and re-
covers from them. As above, each LP simulates its own piece of the model for-
ward in time, but does not wait to receive messages from other processors that 
may be moving along at different rates—this waiting is necessary for conservative 
synchronization.

The time-warp mechanism [see Jefferson (1985)] is the best-known optimistic 
approach. If an LP receives a message that should have been received in its past 
(and, thus, possibly affecting its actions from that point on), then a rollback occurs 
for the receiving LP, whereby its simulation clock reverts to the (earlier) time of the 
incoming message. For example, if LP A has been simulated up to time 50 and a 
message from LP B comes in that should have been received at time 40, then the 
clock for A is rolled back to 40, and the simulation of A between times 40 and 50 is 
canceled since it might have been done incorrectly without knowing the contents of 
the time-40 message. Part of the canceled work may have been sending messages 
to other LPs, each of which is nullifi ed by sending a corresponding antimessage—
the antimessages may themselves generate secondary rollbacks at their destination 
LPs, etc.

Optimistic synchronization mechanisms can exploit the parallelism in a simu-
lation application better than a conservative approach, since they are not limited 
by the worst-case scenario (see disadvantage 1 for conservative synchronization). 
However, they do have these disadvantages [see Fujimoto (1998, pp. 449–451)]:

1. They incur the overhead computations associated with executing rollbacks.
2. They require more computer memory since the state of each LP must be saved 

periodically to recover from a rollback.
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The air-traffi c-control application described above used an optimistic synchro-
nization mechanism and ran on a four-processor, shared-memory Sun workstation. 
Another example of optimistic synchronization is the Global-Scale Agent Model 
(GSAM) of disease propagation [see Parker and Epstein (2011)]. It has been used to 
simulate a disease outbreak in a population of 6.5 billion people.

Since computer-processor speeds doubled every 18 months for many years, an 
increasingly smaller number of simulation models require the use of parallel simu-
lation to execute in a reasonable amount of time. On the other hand, parallel simula-
tion can enable certain models to be run that do not fi t into the memory provided by 
a single machine. For example, Fujimoto et al. (2003) have shown that parallel-
simulation methodology allows one to dramatically increase the size of communica-
tions networks that can be simulated.

1.6.2 Distributed Simulation and the High Level Architecture

Distributed simulation is primarily used to create an overall simulation model, 
which is a composition of two or more individual simulation models that are located 
on networked computers. Interest in this form of distributed simulation began with 
the desire to create real-time, man-in-the-loop simulations that could be used for 
training military personnel. The SIMNET (SIMulator NETworking) project, which 
ran from 1983 to 1990, demonstrated the viability of this concept. This led to the 
creation of a set of protocols for interconnecting simulations, which was known as 
the Distributed Interactive Simulation (DIS) standard. DIS has given way to the 
High Level Architecture (HLA) [see Dahmann et al. (1998), Kuhl et al. (2000), and 
the website www.msco.mil], which was developed by the U.S. Department of 
 Defense (DoD) under the leadership of the Defense Modeling and Simulation  Offi ce 
(DMSO), which has been redesignated as the Modeling & Simulation Coordination 
Offi ce (MSCO).

The HLA (IEEE Standard 1516-2010) is a software architecture designed to 
promote the reuse and interoperation of simulations. It was based on the premise 
that no one simulation could satisfy all uses and applications in the defense industry, 
and it will ultimately reduce the time and cost required to create a synthetic environ-
ment for a new purpose. The HLA can combine the following DoD-defi ned types of 
simulations:

• Live—real people operating real systems (e.g., a fi eld test)
• Virtual—real people operating simulated systems (e.g., people in a tank-cockpit 

simulator fi ghting simulation-generated enemy forces)
• Constructive—simulated people operating simulated systems (e.g., a discrete-

event simulation)

All DoD simulations are supposed to be HLA-compliant beginning January l, 2001 
unless a waiver is obtained.

An HLA federation consists of a collection of interacting individual simula-
tions, called federates, a Runtime Infrastructure (RTI), and an interface, as shown 
in Fig. 1.45. The RTI provides a set of general-purpose services that support the 
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simulations in carrying out federate-to-federate interactions, and it also provides 
functions for federation management. All interactions among the federates go 
through the RTI, whose software and algorithms are not defi ned by the HLA. (RTI 
software can be purchased from third-party vendors.) The HLA runtime interface 
specifi cation provides a standard mechanism for federates to interact with the RTI, 
to invoke the RTI services to support interactions among the federates, and to re-
spond to requests from the RTI. The interface is implementation-independent and 
doesn’t depend on the “object” models (e.g., for an entity) and data-exchange 
 requirements of any federate. [HLA objects do not have methods as in classical 
object-oriented simulation (see Sec. 3.6).]

The HLA is formally defi ned by three components: the interface specifi cation, 
the object model template, and the rules. The HLA interface specifi cation describes 
the runtime services provided to the federates by the RTI and to the RTI by the 
federates. There are six classes of services that provide capabilities for creation and 
operation of a federation, for time management (i.e., synchronization), for effi cient 
routing of data among the federates during the execution of the federation, etc.

The HLA object models are descriptions of the essential sharable elements of 
the federation in object terms. Since the HLA is oriented toward interoperability, 
object models describe the critical aspects of federates and federations that are 
shared across the overall simulation model. The HLA puts no constraints on the 
content of the object models, but does require that these models be documented in 
a standard format called the Object Model Template (OMT). There are two types of 
object models: the Federation Object Model (FOM) and the Simulation Object 
Model (SOM). The HLA FOM describes the set of objects, attributes, and interac-
tions (e.g., an event) that are shared across a federation. The HLA SOM describes a 
simulation (federate) in terms of the objects, attributes, and interactions that it can 
offer to future federations, which facilitates the assessment of whether the simula-
tion is appropriate for participation in a new federation.

The HLA rules summarize the key principles underlying the HLA and are 
 divided into two groups: federation and federate rules. Federation rules specify that 
every federation must have a FOM, that all object representations in a federation 
reside in the federates rather than in the RTI, etc. Federate rules state that the public 
information for a simulation is documented in a SOM, that local time manage-
ment is done using the time-management services provided by the RTI, etc. [See 
Fujimoto (2003) for a discussion of time management in the HLA.]

Simulation
federate 1

Simulation
federate 2

Simulation
federate 3

Runtime Infrastructure (RTI)

Interface

FIGURE 1.45
Functional view of an HLA federation.
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HLA federations within the DoD have been used for training military person-
nel, for test and evaluation of military equipment, and for the analysis of new 
military systems and tactics. An example of the latter type of application is pro-
vided by the U.S. Navy’s use of HLA to federate the Network Warfare Simulation 
(NETWARS) and the Naval Simulation System (NSS) [see Alspaugh et al. 
(2004) and Murphy and Flournoy (2002)]. This federation uses conservative time 
management.

There is also interest in distributed simulation and the HLA outside of the de-
fense community. For example, the National Institute of Standards and Technology 
(NIST) MISSION Project applied HLA to distributed simulations of supply chains 
involving multiple organizations (e.g., a supplier and a transportation company) 
[see McLean and Riddick (2000)]. A distributed simulation might be necessary 
because an organization wants to hide the details of its operations from the other 
supply-chain organizations.

Although HLA was originally designed to federate two or more individual sim-
ulations, it is now also being used to self-federate multiple copies of the same simu-
lation model. For example, Fujimoto et al. (2003) and Bodoh and Wieland (2003) 
use this approach to parallelize simulation models of large-scale communications 
networks and commercial air-traffi c control, respectively.

A totally different use of distributed simulation is to make independent replica-
tions of a stand-alone simulation model on networked computers. This will allow an 
analyst to make more replications of a particular system confi guration in a given 
amount of “wall-clock” time, which will result in more statistically precise esti-
mates of the performance measures of interest. This will also allow an analyst to 
simulate a larger number of different system confi gurations in a given amount of 
wall-clock time when trying to “optimize” the performance of a system of interest 
(see Sec. 12.5). The simulation packages AutoMod and Simio (see Chap. 3) explic-
itly support this use of distributed simulation.

Additional information on parallel and distributed simulation can be found in 
the journal ACM Transactions on Modeling and Computer Simulation (TOMACS), 
as well as in the annual Proceedings of the Winter Simulation Conference and 
the Proceedings of the Workshop on Principles of Advanced and Distributed 
Simulation.

1.7
STEPS IN A SOUND SIMULATION STUDY

Now that we have looked in some detail at the inner workings of a discrete-event 
simulation, we need to step back and realize that model programming is just 
part of the overall effort to design or analyze a complex system by simulation. 
Attention must be paid to a variety of other concerns such as modeling system 
randomness, validation, statistical analysis of simulation output data, and project 
management. Figure 1.46 shows the steps that will compose a typical, sound 
simulation study [see also Banks et al. (2010, pp. 16–21) and Law (2003)]. The 
number beside the symbol representing each step refers to the more detailed 
 description of that step below. Note that a simulation study is not a simple 
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chapter one 67

 sequential process. As one proceeds with the study, it may be necessary to go 
back to a previous step.

 1. Formulate the problem and plan the study.

a. Problem of interest is stated by manager.
• Problem may not be stated correctly or in quantitative terms.
• An iterative process is often necessary.

Formulate problem
and plan the study

Collect data and
define a model

1

2

3

4

5

6

7

8

9

10

No

No

Yes

Yes

Construct a computer
program and verify

Make pilot runs

Design experiments

Make production
runs

Analyze output
data

Document, present,
and use results

Assumptions
document

valid?

Programmed
model valid?

FIGURE 1.46
Steps in a simulation study.
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68 basic simulation modeling

b. One or more kickoff meetings for the study are conducted, with the project 
manager, the simulation analysts, and subject-matter experts (SMEs) in at-
tendance. The following things are discussed:
• Overall objectives of the study
• Specifi c questions to be answered by the study (required to decide level of 

model detail)
• Performance measures that will be used to evaluate the effi cacy of differ-

ent system confi gurations
• Scope of the model
• System confi gurations to be modeled (required to decide generality of 

simulation program)
• Time frame for the study and the required resources

c. Select the software for the model (see Chap. 3)

 2. Collect data and defi ne a model.

a. Collect information on the system structure and operating procedures.
• No single person or document is suffi cient.
• Some people may have inaccurate information—make sure that true SMEs 

are identifi ed.
• Operating procedures may not be formalized.

b. Collect data (if possible) to specify model parameters and input probability 
distributions (see Chap. 6).

c. Delineate above information and data in a written assumptions document 
(see Sec. 5.4.3).

d. Collect data (if possible) on the performance of the existing system (for 
 validation purposes in step 6).

e. Choosing the level of model detail (see Sec. 5.2), which is an art, should 
depend on the following:
• Project objectives
• Performance measures
• Data availability
• Credibility concerns
• Computer constraints
• Opinions of SMEs
• Time and money constraints

f. There should not be a one-to-one correspondence between each element of 
the model and the corresponding element of the system.

g. Start with a “simple” model and embellish it as needed. Modeling each as-
pect of the system will seldom be required to make effective decisions, and 
might result in excessive model execution time, in missed deadlines, or in 
obscuring important system factors.

h. Interact with the manager (and other key project personnel) on a regular 
basis (see Sec. 5.4.2).
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chapter one 69

 3. Is the assumptions document valid?

a. Perform a structured walk-through of the assumptions document before an 
audience of managers, analysts, and SMEs (see Sec. 5.4.3). This will
• Help ensure that the model’s assumptions are correct and complete
• Promote interaction among the project members
• Promote ownership of the model
• Take place before programming begins, to avoid signifi cant reprogram-

ming later

 4. Construct a computer program and verify.

a. Program the model in a programming language (e.g., C, C++, or Java) or in 
simulation software (e.g., Arena, ExtendSim, Flexsim, and ProModel). 
 Benefi ts of using a programming language are that one is often known, they 
offer greater program control, they have a low purchase cost, and they may 
result in a smaller model-execution time. The use of simulation software 
(see Chap. 3), on the other hand, reduces programming time and results in a 
lower project cost.

b. Verify (debug) the simulation computer program (see Sec. 5.3).

 5. Make pilot runs.

a. Make pilot runs for validation purposes in step 6.

 6. Is the programmed model valid?

a. If there is an existing system, then compare model and system (from step 2) 
performance measures for the existing system (see Sec. 5.4.5).

b. Regardless of whether there is an existing system, the simulation analysts 
and SMEs should review the model results for correctness.

c. Use sensitivity analyses (see Sec. 5.4.4) to determine what model factors 
have a signifi cant impact on performance measures and, thus, have to be 
modeled carefully.

 7. Design experiments.

a. Specify the following for each system confi guration of interest:
• Length of each simulation run
• Length of the warmup period, if one is appropriate
• Number of independent simulation runs using different random numbers 

(see Chap. 7)—facilitates construction of confi dence intervals

 8. Make production runs.

a. Production runs are made for use in step 9.
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70 basic simulation modeling

 9. Analyze output data.

a. Two major objectives in analyzing output data are to
• Determine the absolute performance of certain system confi gurations (see 

Chap. 9)
• Compare alternative system confi gurations in a relative sense (see Chap. 10 

and Sec. 11.2)

10. Document, present, and use results.

a. Document assumptions (see step 2), computer program, and study’s results 
for use in the current and future projects.

b. Present study’s results.
• Use animation (see Sec. 3.4.3) to communicate model to managers and 

other people who are not familiar with all the model details.
• Discuss model building and validation process to promote credibility.
• Results are used in decision-making process if they are both valid and 

credible.

1.8
ADVANTAGES, DISADVANTAGES, 
AND PITFALLS OF SIMULATION

We conclude this introductory chapter by listing some good and bad characteristics 
of simulation (as opposed to other methods of studying systems), and by noting 
some common mistakes made in simulation studies that can impair or even ruin a 
simulation project. This subject was also discussed to some extent in Sec. 1.2, but 
now that we have worked through some simulation examples, it is possible to be 
more specifi c.

As mentioned in Sec. 1.2, simulation is a widely used and increasingly popular 
method for studying complex systems. Some possible advantages of simulation that 
may account for its widespread appeal are the following.

• Most complex, real-world systems with stochastic elements cannot be accurately 
described by a mathematical model that can be evaluated analytically. Thus, a 
simulation is often the only type of investigation possible.

• Simulation allows one to estimate the performance of an existing system under 
some projected set of operating conditions.

• Alternative proposed system designs (or alternative operating policies for a single 
system) can be compared via simulation to see which best meets a specifi ed 
requirement.

• In a simulation we can maintain much better control over experimental conditions 
than would generally be possible when experimenting with the system itself (see 
Chap. 11).

• Simulation allows us to study a system with a long time frame—e.g., an economic 
system—in compressed time, or alternatively to study the detailed workings of a 
system in expanded time.
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chapter one 71

Simulation is not without its drawbacks. Some disadvantages are as follows.

• Each run of a stochastic simulation model produces only estimates of a model’s 
true characteristics for a particular set of input parameters. Thus, several 
 independent runs of the model will probably be required for each set of input 
parameters to be studied (see Chap. 9). For this reason, simulation models are 
generally not as good at optimization as they are at comparing a fi xed number 
of specifi ed  alternative system designs. On the other hand, an analytic model, 
if appropriate, can often easily produce the exact true characteristics of that 
model for a variety of sets of input parameters. Thus, if a “valid” analytic 
model is available or can easily be developed, it will generally be preferable to 
a simulation model.

• Simulation models are often expensive and time-consuming to develop.
• The large volume of numbers produced by a simulation study or the persuasive 

impact of a realistic animation (see Sec. 3.4.3) often creates a tendency to place 
greater confi dence in a study’s results than is justifi ed. If a model is not a “valid” 
representation of a system under study, the simulation results, no matter how 
 impressive they appear, will provide little useful information about the actual 
system.

When deciding whether or not a simulation study is appropriate in a given situ-
ation, we can only advise that these advantages and drawbacks be kept in mind and 
that all other relevant facets of one’s particular situation be brought to bear as well. 
Finally, note that in some studies both simulation and analytic models might be use-
ful. In particular, simulation can be used to check the validity of assumptions needed 
in an analytic model. On the other hand, an analytic model can suggest reasonable 
alternatives to investigate in a simulation study.

Assuming that a decision has been made to use simulation, we have found the 
following pitfalls to the successful completion of a simulation study [see also Law 
and McComas (1989)]:

• Failure to have a well-defi ned set of objectives at the beginning of the simulation 
study

• Failure to have the entire project team involved at the beginning of the study
• Inappropriate level of model detail
• Failure to communicate with management throughout the course of the simula-

tion study
• Misunderstanding of simulation by management
• Treating a simulation study as if it were primarily an exercise in computer 

programming
• Failure to have people with a knowledge of simulation methodology (Chaps. 5, 

6, 9, etc.) and statistics on the modeling team
• Failure to collect good system data
• Inappropriate simulation software
• Obliviously using simulation-software products whose complex macro state-

ments may not be well documented and may not implement the desired modeling 
logic
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72 basic simulation modeling

• Belief that easy-to-use simulation packages, which require little or no program-
ming, require a signifi cantly lower level of technical competence

• Misuse of animation
• Failure to account correctly for sources of randomness in the actual system
• Using arbitrary distributions (e.g., normal, uniform, or triangular) as input to the 

simulation
• Analyzing the output data from one simulation run (replication) using formulas 

that assume independence
• Making a single replication of a particular system design and treating the output 

statistics as the “true answers”
• Failure to have a warmup period, if the steady-state behavior of a system is of 

interest
• Comparing alternative system designs on the basis of one replication for each 

design
• Using the wrong performance measures

We will have more to say about what to do (rather than what not to do) in the 
remaining chapters of this book.

APPENDIX 1A
FIXED-INCREMENT TIME ADVANCE

As mentioned in Sec. 1.3.1, the second principal approach for advancing the simu-
lation clock in a discrete-event simulation model is called fi xed-increment time 
advance. With this approach, the simulation clock is advanced in increments of 
exactly Dt time units for some appropriate choice of Dt. After each update of the 
clock, a check is made to determine if any events should have occurred during 
the previous interval of length Dt. If one or more events were scheduled to have 
occurred during this interval, these events are considered to occur at the end of 
the interval and the system state (and statistical counters) are updated accordingly. 
The fi xed-increment time-advance approach is illustrated in Fig. 1.47, where the curved 
arrows represent the advancing of the simulation clock and ei (i 5 1, 2, . . .) is the 
actual time of  occurrence of the ith event of any type (not the ith value of the simu-
lation clock). In the time interval [0, Dt), an event occurs at time e1 but is consid-
ered to occur at time Dt by the model. No events occur in the interval [Dt, 2Dt), 
but the model checks to determine that this is the case. Events occur at the times 

Time0 e1 e2 e3 e4�t 2�t 3�t 4�t

FIGURE 1.47
Illustration of fi xed-increment time advance.
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chapter one 73

e2 and e3 in the interval [2Dt, 3Dt), but both events are considered to occur at time 
3Dt, etc. A set of rules must be built into the model to decide in what order to 
process events when two or more events are considered to occur at the same time 
by the model. Two disadvantages of fi xed-increment time advance are the errors 
introduced by processing events at the end of the interval in which they occur and 
the necessity of deciding which event to process fi rst when events that are not 
 simultaneous in reality are treated as such by the model. These problems can be 
made less severe by making Dt smaller, but this increases the amount of checking 
for event occurrences that must be done and results in an increase in execution 
time. Because of these considerations, fi xed-increment time advance is generally 
not used for discrete-event simulation models when the times between successive 
events can vary greatly.

The primary uses of this approach appear to be for systems where it can rea-
sonably be assumed that all events actually occur at one of the times n Dt (n 5 0, 1, 
2, . . .) for an appropriately chosen Dt and, unfortunately, for agent-based simulation 
(see Sec. 13.2). For example, data in economic systems are often available only 
on an annual basis, and it is natural in a simulation model to advance the simulation 
clock in increments of 1 year. [See Naylor (1971) for a discussion of simulation of 
economic systems. See also Sec. 13.6 for discussion of an inventory system that can 
be simulated, without loss of accuracy, by fi xed-increment time advance.]

Note that fi xed-increment time advance can be realized when using the next-
event time-advance approach by artifi cially scheduling “events” to occur every Dt 
time units.

APPENDIX 1B
A PRIMER ON QUEUEING SYSTEMS

A queueing system consists of one or more servers that provide service of some kind 
to arriving customers. Customers who arrive to fi nd all servers busy (generally) join 
one or more queues (or lines) in front of the servers, hence the name “queueing” 
system.

Historically, a large proportion of all discrete-event simulation studies have in-
volved the modeling of a real-world queueing system, or at least some component 
of the system being simulated was a queueing system. Thus, we believe that it is 
important for the student of simulation to have at least a basic understanding of the 
components of a queueing system, standard notation for queueing systems, and 
measures of performance that are often used to indicate the quality of service being 
provided by a queueing system. Some examples of real-world queueing systems 
that have often been simulated are given in Table 1.1. For additional information on 
queueing systems in general, see Gross et al. (2009). Bertsekas and Gallager (1992) 
is recommended for those interested in queueing models of communications 
 networks. Finally, Shanthikumar and Buzacott (1993) discuss stochastic models of 
manufacturing systems.
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74 basic simulation modeling

1B.1
COMPONENTS OF A QUEUEING SYSTEM

A queueing system is characterized by three components: arrival process, service 
mechanism, and queue discipline. Specifying the arrival process for a queueing system 
consists of describing how customers arrive to the system. Let Ai be the  interarrival 
time between the arrivals of the (i 2 1)st and ith customers (see Sec. 1.3). If A1, A2, . . . 
are assumed to be IID random variables, we shall denote the mean (or expected) 
 interarrival time by E(A) and call l 5 1yE(A) the arrival rate of customers.

The service mechanism for a queueing system is articulated by specifying the 
number of servers (denoted by s), whether each server has its own queue or there is 
one queue feeding all servers, and the probability distribution of customers’ service 
times. Let Si be the service time of the ith arriving customer. If S1, S2, . . . are IID 
random variables, we shall denote the mean service time of a customer by E(S) and 
call v 5 1yE(S) the service rate of a server.

The queue discipline of a queueing system refers to the rule that a server uses 
to choose the next customer from the queue (if any) when the server completes the 
service of the current customer. Commonly used queue disciplines include

FIFO: Customers are served in a fi rst-in, fi rst-out manner.
LIFO: Customers are served in a last-in, fi rst-out manner (see Prob. 2.17).
Priority: Customers are served in order of their importance (see Prob. 2.22) or 

on the basis of their service requirements (see Probs. 1.24, 2.20, and 2.21).

1B.2
NOTATION FOR QUEUEING SYSTEMS

Certain queueing systems occur so often in practice that standard notations have 
been developed for them. In particular, consider the queueing system shown in 
Fig. 1.48, which has the following characteristics:

1. s servers in parallel and one FIFO queue feeding all servers
2. A1, A2, . . . are IID random variables.
3. S1, S2, . . . are IID random variables.
4. The Ai’s and Si’s are independent.

TABLE 1.1

Examples of queueing systems

System Servers Customers

Bank Tellers Customers
Hospital Doctors, nurses, beds Patients
Computer system Central processing unit, Jobs
   input /output devices
Manufacturing system Machines, workers Parts
Airport Runways, gates, security Airplanes, travelers
   check-in stations
Communications network Nodes, links Messages, packets
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We call such a system a GI/G/s queue, where GI (general independent) refers to the 
distribution of the Ai’s and G (general) refers to the distribution of the Si’s. If specifi c 
distributions are given for the Ai’s and the Si’s (as is always the case for simulation), 
symbols denoting these distributions are used in place of GI and G. The symbol M 
is used for the exponential distribution because of the Markovian, i.e., memoryless, 
property of the exponential distribution (see Prob. 4.30), the symbol Ek for a 
k-Erlang distribution (if X is a k-Erlang random variable, then X 5 ©k

i51 Yi, where 
the Yi’s are IID exponential random variables), and D for deterministic (or constant) 
times. Thus, a single-server queueing system with exponential interarrival times and 
service times and a FIFO queue discipline is called an M/M/1 queue.

For any GI/G/s queue, we shall call the quantity r 5 ly(sv) the utilization factor 
of the queueing system (sv is the service rate of the system when all servers are busy). 
It is a measure of how heavily the resources of a queueing system are utilized.

1B.3
MEASURES OF PERFORMANCE
FOR QUEUEING SYSTEMS

There are many possible measures of performance for queueing systems. We now 
describe four such measures that are usually used in the mathematical study of 
queueing systems. The reader should not infer from our choices that these measures 
are necessarily the most relevant or important in practice (see Chap. 9 for further 
discussion). As a matter of fact, for some real-world systems these measures may 
not even be well defi ned; i.e., they may not exist.

Let

 Di 5 delay in queue of ith customer

 Wi 5 Di 1 Si 5 waiting time in system of ith customer

 Q(t) 5 number of customers in queue at time t

 L(t) 5  number of customers in system at time t [Q(t) plus number of customers
 being served at time t]

21 s

FIGURE 1.48
A GI/G/s queue.
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Then the measures

  d 5 lim
nS`

^
n

i51

Di

n
   w.p. 1

and  w 5 lim
nS`

^
n

i51

Wi

n
   w.p. 1

(if they exist) are called the steady-state average delay and the steady-state average 
waiting time. Similarly, the measures

  Q 5 lim
TS`

#
T

0
 Q(t) dt

T
   w.p. 1

and  L 5 lim
TS`

#
T

0
 L(t) dt

T
   w.p. 1

(if they exist) are called the steady-state time-average number in queue and the 
steady-state time-average number in system. Here and throughout this book, the 
qualifi er “w.p. 1” (with probability 1) is given for mathematical correctness and has 
little practical signifi cance. For example, suppose that ©n

i51 DiynS d as nS ` 
(w.p. 1) for some queueing system. This means that if one performs a very large (an 
infi nite) number of experiments, then in virtually every experiment ©n

i51 Diyn con-
verges to the fi nite quantity d. Note that r , 1 is a necessary condition for d, w, Q, 
and L to exist for a GI/G/s queue.

Among the most general and useful results for queueing systems are the con-
servation equations

 Q 5 ld  and  L 5 lw

These equations hold for every queueing system for which d and w exist [see 
Stidham (1974)]. (Section 11.5 gives a simulation application of these relationships.) 
Another equation of considerable practical value is given by

 w 5 d 1 E(S)

(see Sec. 1.4.5 and also Sec. 11.5 for further discussion).
It should be mentioned that the measures of performance discussed above can 

be analytically computed for M/M/s queues (s $ 1), M/G/1 queues for any distribu-
tion G, and for certain other queueing systems. In general, the interarrival-time 
distribution, the service-time distribution, or both must be exponential (or a variant 
of exponential, such as k-Erlang) for analytic solutions to be possible [see Gross 
et al. (2009)].
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For example, in the case of an M/M/1 queue, it can be shown analytically that 
the steady-state average number in system is given by

 L 5 ry(1 2 r)

which we plot as a function of r in Fig. 1.49. Note that L is clearly not a linear 
 function of r, and for r . 0.8 the plot of L increases exponentially. Although the 
formula for L is specifi cally for the M/M/1 queue, the nonlinear behavior seen in 
Fig. 1.49 is indicative of queueing systems in general.

Another interesting (and instructive) example of an analytical solution is the 
steady-state average delay in queue for an M/G/1 queue, given by

 d 5
l{Var(S) 1 [E(S) ]2}

2[1 2 lE(S) ]

where Var(S) denotes the variance of the service-time distribution [see, for example, 
Ross (2003, p. 508) for a derivation of this formula]. Thus, we can see that if E(S) 
is large, then congestion (here measured by d) will be larger; this is certainly to be 
expected. The formula also brings out the perhaps less obvious fact that congestion 
also increases if the variability of the service-time distribution is large, even if 
the mean service time stays the same. Intuitively, this is because a highly variable 
 service-time random variable will have a greater chance of taking on a large value 
(since it must be positive), which means that the (single) server will be tied up for a 
long time, causing the queue to build up.
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FIGURE 1.49
Plot of L 5 ry(1 2 r) for the M/M/1 queue.
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PROBLEMS

 1.1. Describe what you think would be the most effective way to study each of the follow-
ing systems, in terms of the possibilities in Fig. 1.1, and discuss why.
(a) A small section of an existing factory
(b) A freeway interchange that has experienced severe congestion
(c) An emergency room in an existing hospital
(d) A pizza-delivery operation
(e) The shuttle-bus operation for a rental-car agency at an airport
( f ) A battlefi eld communications network

 1.2. For each of the systems in Prob. 1.1, suppose that it has been decided to make a study 
via a simulation model. Discuss whether the simulation should be static or dynamic, 
deterministic or stochastic, and continuous or discrete.

 1.3. For the single-server queueing system in Sec. 1.4, defi ne L(t) to be the total number of 
customers in the system at time t (including the queue and the customer in service at 
time t, if any).
(a) Is it true that L(t) 5 Q(t) 1 1? Why or why not?
(b) For the same realization considered for the hand simulation in Sec. 1.4.2, make a 

plot of L(t) vs. t (similar to Figs. 1.5 and 1.6) between times 0 and T(6).
(c) From your plot in part (b), compute /̂(6) 5 the time-average number of customers 

in the system during the time interval [0, T(6)]. What is /̂(6) estimating?
(d) Augment Fig. 1.7 to indicate how /̂(6) is computed during the course of the 

simulation.

 1.4. For the single-server queue of Sec. 1.4, suppose that we did not want to estimate the 
expected average delay in queue; the model’s structure and parameters remain the 
same. Does this change the state variables? If so, how?

 1.5. For the single-server queue of Sec. 1.4, let Wi 5 the total time in the system of the 
ith customer to fi nish service, which includes the time in queue plus the time in service 
of this customer. For the same realization considered for the hand simulation in 
Sec. 1.4.2, compute ŵ(m) 5 the average time in system of the fi rst m customers to 
exit the system, for m 5 5; do this by augmenting Fig. 1.7 appropriately. How does 
this change the state variables, if at all?

 1.6. From Fig. 1.5, it is clear that the maximum length of the queue was 3. Write a general 
expression for this quantity (for the n-delay stopping rule), and augment Fig. 1.7 so 
that it can be computed systematically during the simulation.

 1.7. Modify the code for the single-server queue in Sec. 1.4.4 to compute and write in 
addition the following measures of performance:
(a) The time-average number in the system (see Prob. 1.3)
(b) The average total time in the system (see Prob. 1.5)
(c) The maximum queue length (see Prob. 1.6)
(d) The maximum delay in queue
(e) The maximum time in the system
( f ) The proportion of customers having a delay in queue in excess of 1 minute
Run this program, using the random-number generator given in App. 7A.
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 1.8. The algorithm in Sec. 1.4.3 for generating an exponential random variate with mean b 
was to return 2b ln U, where U is a U(0, 1) random variate. This algorithm could 
validly be changed to return 2b ln(1 2 U). Why?

 1.9. Run the single-server queueing simulation of Sec. 1.4.4 ten times by placing a loop 
around most of the main program, beginning just before the initialization and ending 
just after invoking the report generator. Discuss the results. (This is called replicating 
the simulation 10 times independently.)

1.10. For the single-server queueing simulation of Sec. 1.4, suppose that the facility opens 
its doors at 9 a.m. (call this time 0) and closes its doors at 5 p.m., but operates until all 
customers present (in service or in queue) at 5 p.m. have been served. Change the code 
to refl ect this stopping rule, and estimate the same performance measures as before.

1.11. For the single-server queueing system of Sec. 1.4, suppose that there is room in the 
queue for only two customers, and that a customer arriving to fi nd that the queue is full 
just goes away (this is called balking). Simulate this system for a stopping rule of 
 exactly 480 minutes, and estimate the same quantities as in Sec. 1.4, as well as the 
expected number of customers who balk.

1.12. Consider the inventory simulation of Sec. 1.5.
(a) For this model with these parameters, there can never be more than one order 

outstanding (i.e., previously ordered but not yet delivered) at a time. Why?
(b) Describe specifi cally what changes would have to be made if the delivery lag were 

uniformly distributed between 0.5 and 6.0 months (rather than between 0.5 and 
1.0 month); no other changes to the model are being considered. Should ordering 
decisions be based only on the inventory level I(t)?

1.13. Modify the inventory simulation of Sec. 1.5 so that it makes fi ve replications of each 
(s, S) policy; see Prob. 1.9. Discuss the results. Which inventory policy is best? Are 
you sure?

1.14. A service facility consists of two servers in series (tandem), each with its own FIFO 
queue (see Fig. 1.50). A customer completing service at server 1 proceeds to server 2, 
while a customer completing service at server 2 leaves the facility. Assume that the 
interarrival times of customers to server 1 are IID exponential random variables with 
mean 1 minute. Service times of customers at server 1 are IID exponential random 
variables with mean 0.7 minute, and at server 2 are IID exponential random variables 
with mean 0.9 minute. Run the simulation for exactly 1000 minutes and estimate for 
each server the expected average delay in queue of a customer, the expected time- 
average number of customers in queue, and the expected utilization.

1.15. In Prob. 1.14, suppose that there is a travel time from the exit from server 1 to the 
 arrival to queue 2 (or to server 2). Assume that this travel time is distributed uniformly 

Queue 1 Server 1 Queue 2 Server 2

FIGURE 1.50
A tandem queueing system.
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between 0 and 2 minutes. Modify the simulation and rerun it under the same con-
ditions to obtain the same performance measures. What is the required dimension 
(i.e., length) of the event list?

1.16. In Prob. 1.14, suppose that no queueing is allowed for server 2. That is, if a customer 
completing service at server 1 sees that server 2 is idle, she proceeds directly to 
server 2, as before. However, a customer completing service at server 1 when server 2 
is busy with another customer must stay at server 1 until server 2 gets done; this is called 
blocking. While a customer is blocked from entering server 2, she receives no addi-
tional service from server 1, but prevents server 1 from taking the fi rst customer, if any, 
from queue 1. Furthermore, “fresh” customers continue to arrive to queue 1 during a 
period of blocking. Compute the same six performance measures as in Prob. 1.14.

1.17. For the inventory system of Sec. 1.5, suppose that if the inventory level I(t) at the 
 beginning of a month is less than zero, the company places an express order to its 
 supplier. [If 0 # I(t) , s, the company still places a normal order.] An express order 
for Z items costs the company 48 1 4Z dollars, but the delivery lag is now uniformly 
distributed on [0.25, 0.50] month. Run the simulation for all nine policies and estimate 
the expected average total cost per month, the expected proportion of time that there 
is a backlog, that is, I(t) , 0, and the expected number of express orders placed. Is 
express ordering worth it?

1.18. For the inventory simulation of Sec. 1.5, suppose that the inventory is perishable, hav-
ing a shelf life distributed uniformly between 1.5 and 2.5 months. That is, if an item 
has a shelf life of l months, then l months after it is placed in inventory it spoils and is 
of no value to the company. (Note that different items in an order from the supplier 
will have different shelf lives.) The company discovers that an item is spoiled only 
upon examination before a sale. If an item is determined to be spoiled, it is discarded 
and the next item in the inventory is examined. Assume that items in the inventory are 
processed in a FIFO manner. Repeat the nine simulation runs and assume the same 
costs as before. Also compute the proportion of items taken out of the inventory that 
are discarded due to being spoiled.

1.19. Consider a service facility with s (where s $ 1) parallel servers. Assume that inter-
arrival times of customers are IID exponential random variables with mean E(A) and 
that service times of customers (regardless of the server) are IID exponential random 
variables with mean E(S). If a customer arrives and fi nds an idle server, the customer 
begins service immediately, choosing the leftmost (lowest-numbered) idle server if 
there are several available. Otherwise, the customer joins the tail of a single FIFO 
queue that supplies customers to all the servers. (This is called an M/M/s queue; see 
App. 1B.) Write a general program to simulate this system that will estimate the ex-
pected average delay in queue, the expected time-average number in queue, and the 
expected utilization of each of the servers, based on a stopping rule of n delays having 
been completed. The quantities s, E(A), E(S), and n should be input parameters. Run 
the model for s 5 5, E(A) 5 1, E(S) 5 4, and n 5 1000.

1.20. Repeat Prob. 1.19, but now assume that an arriving customer fi nding more than one 
idle server chooses among them with equal probability. For example, if s 5 5 and a 
customer arrives to fi nd servers 1, 3, 4, and 5 idle, he chooses each of these servers 
with probability 0.25.

Law01323_ch01_001-084.indd Page 80  13/08/13  5:39 PM user-f-w-198 Law01323_ch01_001-084.indd Page 80  13/08/13  5:39 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



chapter one 81

1.21. Customers arrive to a bank consisting of three tellers in parallel.
(a) If there is a single FIFO queue feeding all tellers, what is the required dimension 

(i.e., length) of the event list for a simulation model of this system?
(b) If each teller has his own FIFO queue and if a customer can jockey (i.e., jump) 

from one queue to another (see Sec. 2.6 for the jockeying rules), what is the re-
quired dimension of the event list? Assume that jockeying takes no time.

(c) Repeat part (b) if jockeying takes 3 seconds.
Assume in all three parts that no events are required to terminate the simulation.

1.22. A manufacturing system contains m machines, each subject to randomly occurring 
breakdowns. A machine runs for an amount of time that is an exponential random vari-
able with mean 8 hours before breaking down. There are s (where s is a fi xed, positive 
integer) repairmen to fi x broken machines, and it takes one repairman an exponential 
amount of time with mean 2 hours to complete the repair of one machine; no more 
than one repairman can be assigned to work on a broken machine even if there are 
other idle repairmen. If more than s machines are broken down at a given time, they 
form a FIFO “repair” queue and wait for the fi rst available repairman. Further, a re-
pairman works on a broken machine until it is fi xed, regardless of what else is happen-
ing in the system. Assume that it costs the system $50 for each hour that each machine 
is broken down and $10 an hour to employ each repairman. (The repairmen are paid 
an hourly wage regardless of whether they are actually working.) Assume that m 5 5, 
but write general code to accommodate a value of m as high as 20 by changing an 
input parameter. Simulate the system for exactly 800 hours for each of the employ-
ment policies s 5 1, 2, . . . , 5 to determine which policy results in the smallest 
 expected average cost per hour. Assume that at time 0 all machines have just been 
“freshly” repaired.

1.23. For the facility of Prob. 1.10, suppose that the server normally takes a 30-minute lunch 
break at the fi rst time after 12 noon that the facility is empty. If, however, the server 
has not gone to lunch by 1 p.m., the server will go after completing the customer in 
service at 1 p.m. (Assume in this case that all customers in the queue at 1 p.m. will wait 
until the server returns.) If a customer arrives while the server is at lunch, the customer 
may leave immediately without being served; this is called balking. Assume that 
whether such a customer balks depends on the amount of time remaining before the 
server’s return. (The server posts his time of return from lunch.) In particular, a cus-
tomer who arrives during lunch will balk with the following probabilities:

Time remaining before Probability of a
server’s return (minutes) customer’s balking

[20, 30) 0.75
[10, 20) 0.50
[0, 10) 0.25

 (The random-integer-generation method discussed in Sec. 1.5.2 can be used to deter-
mine whether a customer balks. For a simpler approach, see Sec. 8.4.1.) Run the simu-
lation and estimate the same measures of performance as before. (Note that the server 
is not busy when at lunch and that the time-average number in queue is computed 
including data from the lunch break.) In addition, estimate the expected number of 
customers who balk.
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1.24. For the single-server queueing facility of Sec. 1.4, suppose that a customer’s service 
time is known at the instant of arrival. Upon completing service for a customer, the 
server chooses from the queue (if any) the customer with the smallest service time. Run 
the simulation until 1000 customers have completed their delays and estimate the 
expected average delay in queue, the expected time-average number in queue, and the 
expected proportion of customers whose delay in queue is greater than 1 minute. (This 
priority queue discipline is called shortest job fi rst.)

1.25. For the tandem queue of Prob. 1.14, suppose that with probability 0.2, a customer 
completing service at server 2 is dissatisfi ed with her overall service and must be com-
pletely served over again (at least once) by both servers. Defi ne the delay in queue of 
a customer (in a particular queue) to be the total delay in that queue for all of that 
customer’s passes through the facility. Simulate the facility for each of the following 
cases (estimate the same measures as before):
(a) Dissatisfi ed customers join the tail of queue 1.
(b) Dissatisfi ed customers join the head of queue 1.

1.26. A service facility consists of two type A servers and one type B server (not necessarily 
in the psychological sense). Assume that customers arrive at the facility with inter-
arrival times that are IID exponential random variables with a mean of 1 minute. Upon 
arrival, a customer is determined to be either a type 1 customer or a type 2 customer, 
with respective probabilities of 0.75 and 0.25. A type 1 customer can be served by any 
server but will choose a type A server if one is available. Service times for type 1 cus-
tomers are IID exponential random variables with a mean of 0.8 minute, regardless of 
the type of server. Type 1 customers who fi nd all servers busy join a single FIFO queue 
for type 1 customers. A type 2 customer requires service from both a type A server and 
the type B server simultaneously. Service times for type 2 customers are uniformly 
distributed between 0.5 and 0.7 minute. Type 2 customers who arrive to fi nd both type 
A servers busy or the type B server busy join a single FIFO queue for type 2 custom-
ers. Upon completion of service of any customer, preference is given to a type 2 cus-
tomer if one is present and if both a type A and the type B server are then idle. 
Otherwise, preference is given to a type 1 customer. Simulate the facility for exactly 
1000 minutes and estimate the expected average delay in queue and the expected time-
average number in queue for each type of customer. Also estimate the expected pro-
portion of time that each server spends on each type of customer.

1.27. A supermarket has two checkout stations, regular and express, with a single checker 
per station; see Fig. 1.51. Regular customers have exponential interarrival times with 
mean 2.1 minutes and have exponential service times with mean 2.0 minutes. Express 

Regular
queue

Regular
server

Express
queue

Express
server

FIGURE 1.51
A supermarket checkout 
operation.
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customers have exponential interarrival times with mean 1.1 minutes and exponential 
service times with mean 0.9 minute. The arrival processes of the two types of custom-
ers are independent of each other. A regular customer arriving to fi nd at least one 
checker idle begins service immediately, choosing the regular checker if both are idle; 
regular customers arriving to fi nd both checkers busy join the end of the regular queue. 
Similarly, an express customer arriving to fi nd an idle checker goes right into service, 
choosing the express checker if both are idle; express customers arriving to fi nd both 
checkers busy join the end of the express queue, even if it is longer than the regular 
queue. When either checker fi nishes serving a customer, he takes the next customer 
from his queue, if any, and if his queue is empty but the other one is not, he takes the 
fi rst customer from the other queue. If both queues are empty, the checker becomes 
idle. Note that the mean service time of a customer is determined by the customer 
type, and not by whether the checker is the regular or express one. Initially, the system 
is empty and idle, and the simulation is to run for exactly 8 hours. Compute the aver-
age delay in each queue, the time-average number in each queue, and the utilization of 
each checker. What recommendations would you have for further study or improve-
ment of this system? (On June 21, 1983, the Cleveland Plain Dealer, in a story entitled 
“Fast Checkout Wins over Low Food Prices,” reported that “Supermarket shoppers 
think fast checkout counters are more important than attractive prices, according to a 
survey [by] the Food Marketing Institute. . . . The biggest group of shoppers, 39 percent, 
replied ‘fast checkouts,’ . . . and 28 percent said good or low prices . . . [refl ecting] 
growing irritation at having to stand in line to pay the cashier.”)

1.28. A one-pump gas station is always open and has two types of customers. A police car 
arrives every 30 minutes (exactly), with the fi rst police car arriving at time 15 minutes. 
Regular (nonpolice) cars have exponential interarrival times with mean 5.6 minutes, 
with the fi rst regular car arriving at time 0. Service times at the pump for all cars are 
exponential with mean 4.8 minutes. A car arriving to fi nd the pump idle goes right 
into service, and regular cars arriving to fi nd the pump busy join the end of a single 
queue. A police car arriving to fi nd the pump busy, however, goes to the front of the 
line, ahead of any regular cars in line. [If there are already other police cars at the front 
of the line, assume that an arriving police car gets in line ahead of them as well. 
(How could this happen?)] Initially the system is empty and idle, and the simulation 
is to run until exactly 500 cars (of any type) have completed their delays in queue. 
Estimate the expected average delay in queue for each type of car separately, the 
 expected time-average number of cars (of either type) in queue, and the expected 
utilization of the pump.

1.29. Of interest in telephony are models of the following type. Between two large cities, A 
and B, are a fi xed number, n, of long-distance lines or circuits. Each line can operate 
in either direction (i.e., can carry calls originating in A or B) but can carry only one 
call at a time; see Fig. 1.52. If a person in A or B wants to place a call to the other city 

City
A

City
B

Line 1
Line 2

Line n FIGURE 1.52
A long-distance telephone system.
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and a line is open (i.e., idle), the call goes through immediately on one of the open 
lines. If all n lines are busy, the person gets a recording saying that she must hang up 
and try later; there are no facilities for queueing for the next open line, so these blocked 
callers just go away. The times between attempted calls from A to B are exponential 
with mean 10 seconds, and the times between attempted calls from B to A are expo-
nential with mean 12 seconds. The length of a conversation is exponential with mean 
4 minutes, regardless of the city of origin. Initially all lines are open, and the simula-
tion is to run for 12 hours; compute the time-average number of lines that are busy, the 
time-average proportion of lines that are busy, the total number of attempted calls 
(from either city), the number of calls that are blocked, and the proportion of calls that 
are blocked. Determine approximately how many lines would be needed so that no 
more than 5 percent of the attempted calls will be blocked.

1.30. City buses arrive to the maintenance facility with exponential interarrival times with 
mean 2 hours. The facility consists of a single inspection station and two identical re-
pair stations; see Fig. 1.53. Every bus is inspected, and inspection times are distributed 
uniformly between 15 minutes and 1.05 hours; the inspection station is fed by a single 
FIFO queue. Historically, 30 percent of the buses have been found during inspection 
to need some repair. The two parallel repair stations are fed by a single FIFO queue, 
and repairs are distributed uniformly between 2.1 hours and 4.5 hours. Run the simula-
tion for 160 hours and compute the average delay in each queue, the average length of 
each queue, the utilization of the inspection station, and the utilization of the repair 
station (defi ned to be half of the time-average number of busy repair stations, since 
there are two stations). Replicate the simulation 5 times. Suppose that the arrival rate 
of buses quadrupled, i.e., the mean interarrival time decreased to 30 minutes. Would 
the facility be able to handle it? Can you answer this question without simulation?

FIGURE 1.53
A bus maintenance depot.
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C H A P T E R  2

Modeling Complex Systems

Recommended sections for a fi rst reading: 2.1 through 2.5  

2.1
INTRODUCTION

In Chap. 1 we looked at simulation modeling in general, and then modeled and 
coded two specifi c systems. Those systems were very simple, and it was possible to 
program them directly in a general-purpose language, without using any special 
simulation software or support programs (other than a random-number generator). 
Most real-world systems, however, are quite complex, and coding them without 
supporting software can be a diffi cult and time-consuming task.

In this chapter we fi rst discuss an activity that takes place in most simulations: 
list processing. A group of ANSI-standard C support functions, simlib, is then intro-
duced, which takes care of some standard list-processing tasks as well as several 
other common simulation activities, such as processing the event list, accumulating 
statistics, generating random numbers and observations from a few distributions, as 
well as calculating and writing out results. We then use simlib in four example 
simulations, the fi rst of which is just the single-server queueing system from Sec. 1.4 
(included to illustrate the use of simlib on a familiar model); the last three examples 
are somewhat more complex.

Our purpose in this chapter is to illustrate how more complex systems can be 
modeled, and to show how list processing and the simlib utility functions can aid in 
their programming. Our intention in using a package such as simlib is purely peda-
gogical; it allows the reader to move quickly into modeling more complex systems 
and to appreciate how real simulation-software packages handle lists and other data. 
We do not mean to imply that simlib is as comprehensive or effi cient as, or in any 
other way comparable to, the modern commercial simulation software discussed in 
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Chaps. 3 and 14; in fact, the complete source code for simlib is given in App. 2A and 
Fig. 7.5, and can be downloaded from www.mhhe.com/law (along with the code for 
all the examples in this chapter). A FORTRAN 77 version of simlib, along with 
some documentation specifi c to it and code for the four example models discussed 
in this chapter, can also be downloaded from this website.

2.2
LIST PROCESSING IN SIMULATION

The simulation models considered in Chap. 1 were really quite simple in that they 
contained either one or no lists of records other than the event list. Furthermore, the 
records in these lists consisted of a single attribute and were always processed in a 
fi rst-in, fi rst-out (FIFO) manner. In the queueing example, there was a FIFO list 
containing the records of all customers waiting in queue, and each customer record 
consisted of a single attribute, the time of arrival. In the inventory example there 
were no lists other than the event list. However, most complex simulations require 
many lists, each of which may contain a large number of records, consisting in turn 
of possibly many attributes each. Furthermore, it is often necessary to process these 
lists in a manner other than FIFO. For example, in some models one must be able to 
remove that record in a list with the smallest value for a specifi ed attribute (other 
than the time the record was placed in the list). If this large amount of information 
is not stored and manipulated effi ciently, the model may require so much execution 
time or so many storage locations that the simulation study would not be feasible.

In Sec. 2.2.1 we discuss two approaches to storing lists of records in a 
 computer—sequential and linked allocation—and then explain why the latter ap-
proach is preferable for complex simulations. In Sec. 2.2.2 we present a treatment 
of linked storage allocation that is suffi cient for the development of a simple 
C-based simulation “language,” simlib, in Sec. 2.3. This language, which can be 
completely mastered in just a few hours of study, provides considerable insight into 
the nature of the special-purpose simulation software discussed in Chaps. 3 and 14, 
which requires much more time to learn. More important, simlib provides a vehicle 
for explaining how to simulate systems that are considerably more complicated than 
those discussed in Chap. 1.

2.2.1 Approaches to Storing Lists in a Computer

There are two principal approaches to storing lists of records in a computer. In the 
sequential-allocation approach, used in Chap. 1, the records in a list are put into 
physically adjacent storage locations, one record after another. This was the ap-
proach taken in Sec. 1.4 with the list of arrival times for customers in the queue.

In the linked-allocation approach, each record in a list contains its usual attrib-
utes and, in addition, pointers (or links) giving the logical relationship of the record 
to other records in the list. Records in a list that follow each other logically need not 
be stored in physically adjacent locations. A detailed discussion of linked allocation 
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is given in Sec. 2.2.2. Linked allocation of lists has several advantages for simula-
tion modeling:

• The time required to process certain kinds of lists can be signifi cantly reduced. For 
the queueing example of Sec. 1.4, every time a customer completed service (and 
left a nonempty queue behind) we had to move each entry in the arrival-time array 
up one storage location; this would be quite ineffi cient if the queue were long, in 
which case the array would contain a large number of records. As we shall see in 
Example 2.1, linked allocation expedites processing of such arrays.

• For simulation models where the event list contains a large number of event 
 records simultaneously, we can speed up event-list processing considerably; see 
Example 2.2 and Sec. 2.8 for further discussion.

• For some simulation models, the amount of computer memory required for storage 
can be reduced; see the discussion at the end of Sec. 2.2.2.

• Linked allocation provides a general framework that allows one to store and 
 manipulate many lists simultaneously with ease, whereby records in different lists 
may be processed in different ways. This generality is one of the reasons for the 
use of the linked-allocation approach by all major simulation software.

2.2.2 Linked Storage Allocation

In this section we present a discussion of linked storage allocation suffi cient for 
 development of the simple C-based simulation “language” simlib, described in the 
next section. For a more complete and general discussion of list-processing princi-
ples, see, for example, Knuth (1997, chap. 2).

Suppose that a list of records is to be stored in an array, that the rows of the 
array correspond to the records, and that the columns of the array correspond to the 
attributes (or data fi elds) that make up the records. For the queueing simulation of 
Sec. 1.4, each customer waiting in the queue had a record in the arrival-time list, 
and each record consisted of a single attribute, the corresponding customer’s time 
of arrival. In general, a customer’s record might have additional attributes such as 
age, a priority number, service requirement, etc.

A list of records is called doubly linked if each record has associated with it a 
predecessor link and a successor link. The successor link (or forward pointer) for a 
particular record gives the physical row number in the array of the record that logi-
cally succeeds the specifi ed record. If no record succeeds the specifi ed record, the 
successor link is set to zero. The predecessor link (or backward pointer) for a par-
ticular record gives the physical row number in the array of the record that logically 
precedes the specifi ed record. If no record precedes the specifi ed record, the prede-
cessor link is set to zero. The number of the physical row in the array that contains 
the record that is logically fi rst in the list is identifi ed by a head pointer, which is set to 
zero when the list contains no records. The physical row number of the record that 
is logically last in the list is identifi ed by a tail pointer, which is set to zero when the 
list is empty.

At any given time a list will probably occupy only a subset of the rows of 
the array in which it is physically stored. The “empty” rows of the array that are 
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available for future use are linked together in a list of available space (LAS). The 
LAS is usually processed in a LIFO (last-in, fi rst-out) manner: This means that 
when a row is needed to store an additional record, the row is taken from the head 
of the LAS; and when a row is no longer needed to store a record, the row is returned 
to the head of the LAS. Since all operations are done at the head of the LAS, it re-
quires neither a tail pointer nor predecessor links. (We call such a list singly linked.) 
At time 0 in a simulation, all rows in the array are members of the LAS, the succes-
sor link of row i is set to i 1 1 (except for that of the last row, which is set to 0), all 
predecessor links are set to 0, and the head of the LAS is set to 1. (The predecessor 
link for a particular row is set to a positive integer only when that row is occupied 
by a record.) In languages that support dynamic storage allocation (like C), the LAS 
can be thought of as all memory available for dynamic allocation.

E X A M P L E  2 . 1 .  For the queueing simulation of Sec. 1.4, consider the list containing 
the customers waiting in queue to be served. Each record in this list has the single 
 attribute, “time of arrival.” Suppose that at time 25 in the simulation there are three 
 customers in queue, with times of arrival 10, 15, and 25, and that these records are stored 
in (physical) rows 2, 3, and 1 of an array with 5 rows and 1 column. (To make the fi gures 
below manageable, we assume that there will never be more than fi ve customers 
in queue at any time.) Rows 4 and 5 are members of the LAS. The situation is depicted 
in Fig. 2.1. Note that the head pointer of the list is equal to 2, the successor link for 
the record in row 2 is equal to 3, the predecessor link for the record in row 3 is equal 
to 2, etc.
 Suppose that the next event in the simulation (after time 25) is the arrival of a cus-
tomer at time 40 and that we would like to add an appropriate record to the list, which 
is to be processed in a FIFO manner. Since the head pointer for the LAS is equal to 4, 
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FIGURE 2.1
State of the lists for the 
 queueing simulation at time 25.
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the record for the arriving customer will be placed in physical row 4 of the array and 
the head pointer of the LAS is now set to 5, which is the value of the successor link for 
row 4. Since the new record will be added to the tail of the list and the tail pointer for 
the list is now equal to 1, the successor link for the record in row 1 is set to 4, the prede-
cessor link for the new record, i.e., the one in (physical) row 4, is set to 1, the succes-
sor link for the new record is set to 0, and the tail pointer for the list is set to 4. The state 
of both lists after these changes have been made is shown in Fig. 2.2.
 Suppose that the next event in the simulation (after time 40) is the service comple-
tion at time 50 of the customer who was being served (at least since time 25) and that 
we want to remove the record of the customer at the head of the list so that this cus-
tomer can begin service. Since the head pointer for the list is equal to 2 and the succes-
sor link for the record in (physical) row 2 is equal to 3, the time of arrival of the record 
in row 2 is used to compute the delay of the customer who will enter service (this delay 
is 50 2 10), the head pointer for the list is set to 3, the predecessor link for the record 
in row 3 is set to 0, and row 2 (which is no longer needed) is placed at the head of the 
LAS by setting its head pointer to 2 and the successor link for row 2 to 5 (the previous 
head of the LAS). The state of both lists after these changes have been made is shown 
in Fig. 2.3.
 Thus, removing a record from the head of the list always requires setting only four 
links or pointers. Contrast this with the brute-force approach of Chap. 1, which requires 
moving each record in the (sequential) list up by one location. If the list contained, say, 
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State of the lists for the 
 queueing simulation at time 40.
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90 modeling complex systems

100 records, this would be a much more time-consuming task than with the linked-list 
approach.

While storing a queue as a linked list as in the above example seems fairly 
 natural, the next example illustrates how the event list can also be processed as a 
linked list.

E X A M P L E  2 . 2 .  For the inventory simulation of Sec. 1.5, the event list was stored in 
an array with each of the four event types having a dedicated physical location. If an 
event was not currently scheduled to occur, its entry in the list was set to ` (represented 
as 1030 in the computer). However, for many complex simulations written in a general-
purpose language and for simulations using the special-purpose simulation software 
described in Chaps. 3 and 14, the event list is stored as a linked list ranked in increasing 
order on event time. Now, events having an event time of ` are simply not included in 
the event list. Moreover, since the event list is kept ranked in increasing order on the 
event times (attribute 1), the next event to occur will always be at the head of the list, so 
we need only remove this record to determine the next event time (attribute 1) and its 
type (attribute 2). For instance, suppose that the event list for the inventory simulation 
is to be stored in an array of 4 rows and 2 columns, column 1 being for the attribute 
“event time” and column 2 being for the attribute “event type,” i.e., 1, 2, 3, or 4. Sup-
pose that at time 0 we know that the fi rst demand for the product (event type 2) will 
occur at time 0.25, the fi rst inventory evaluation (event type 4) will occur immediately 
at time 0, the simulation will end (event type 3) at time 120, and there is no outstanding 
order scheduled to arrive (event type 1). The state of the event list and the LAS just after 
initialization at time 0 is shown in Fig. 2.4. Note that event type 1 is not included in the 
event list, and that event type 2 is in (physical) row 1 of the array since it was the fi rst 
event record to be placed in the event list.
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 To determine the next (fi rst) event to occur at time 0, the fi rst record is removed 
from the event list, the simulation clock is updated to the fi rst attribute of this record, 
i.e., the clock is set to 0, the event type of the next event to occur is set to the second at-
tribute of this record, i.e., is set to 4, and row 3, which contained this record, is placed 
at the head of the LAS. Since the next event type is 4, an inventory-evaluation event will 
occur next (at time 0). Suppose that an order is placed at time 0 and that it will arrive 
from the supplier at time 0.6. To place this order-arrival event in the event list, fi rst 0.6 
and 1 are placed in columns 1 and 2, respectively, of row 3 (the head of the LAS), and 
then this new record is added to the event list by logically proceeding down the event 
list (using the successor links) until the correct location is found. In particular, attribute 1 
of the new record (0.6) is fi rst compared with attribute 1 of the record in row 1 (0.25). 
Since 0.6 . 0.25, the new record should be farther down the event list. Next, 0.6 is 
compared with attribute 1 of the record in row 2 (120). (Note that the successor link of 
the record in row 1 is equal to 2.) Since 0.6 , 120, the new record is logically placed 
between the records in physical rows 1 and 2 by adjusting the successor and predeces-
sor links for the three records. After this has been done, another inventory-evaluation 
event is scheduled at time 1 and placed in the event list in a manner similar to that for 
the order-arrival event. The state of both lists after all processing has been done at time 
0 is shown in Fig. 2.5.

In the above discussion, a single list was stored in an array where the empty 
rows were members of the LAS, but we could just as well store many different lists 
simultaneously in the same physical array. There is a single LAS, and the beginning 
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 initialization at time 0.
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92 modeling complex systems

and end of each list are identifi ed by separate head and tail pointers. This approach 
can lead to signifi cant savings in storage space for some applications. For example, 
suppose that a simulation requires 20 lists, each containing up to 100 records of 
10 attributes each. Using the sequential storage method (as in Chap. 1), 20 arrays 
with 100 rows and 10 columns each would be required, for a total storage require-
ment of 20,000 locations. Suppose, however, that at any given time an average of 
only 25 percent of all available rows are actually being used. Then an alternative 
approach might be to store all 20 lists in one array consisting of 1000 rows and 
10 columns. This approach would require 10,000 locations for the array plus an 
 additional 2040 locations for the links and pointers, for a total of 12,040 storage 
locations. Furthermore, at a particular point in a simulation, some lists may be 
 occupying more than their “fair” share of the available rows without causing a 
memory overfl ow condition.

The simple simulation language simlib, developed in the next section, stores all 
lists (including the event list) in dynamic memory, which is allocated when needed 
to store a new record in a list, and is freed for other uses after a record is removed 
from a list.
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2.3
A SIMPLE SIMULATION LANGUAGE: simlib

In this section we describe an easy-to-understand C-based simulation “language,” 
simlib, which implements the concept of linked storage allocation presented in 
Sec. 2.2.2. The language makes it easy to fi le a record in a list (the record may be 
fi led fi rst in the list, last in the list, or so that the list is kept ranked in increasing or 
decreasing order on a specifi ed attribute), to remove a record from a list (either the 
fi rst record or the last record in the list may be removed), to process the event list, 
to compute discrete-time statistics on variables of interest (e.g., the average delay in 
queue in a queueing system), to compute continuous-time statistics on variables of 
interest (e.g., the time-average number of items in an inventory system), to generate 
the random variates used in the examples in this chapter and in Chap. 1, and to pro-
vide output in a “standard” format if desired. Although simlib provides many of the 
important features found in special-purpose simulation software (see Chaps. 3 
and 14), it is designed for neither completeness nor computational effi ciency. Our 
 reasons for presenting it here are to provide some insight into the operation of simu-
lation software and to provide a vehicle for understanding how to simulate systems 
that are much more complicated than those in Chap. 1.

The heart of simlib is a collection of doubly linked lists, all residing together in 
dynamic memory, with space allocated as new records are fi led into the lists, and 
space freed as records are removed from the lists. There is a maximum of 25 lists, 
and the records in each list can have up to 10 attributes, with all data stored as type 
fl oat. Since simlib uses dynamic storage allocation, the total number of records in 
all the lists is limited only by the amount of memory available on the computer.

List 25 is always reserved for the event list, with attribute 1 being the event time 
and attribute 2 being the event type. This list is furthermore kept sorted in increas-
ing order on attribute 1 (event time) so that the top (fi rst) record always refers to the 
next event.

To use simlib, the fi le simlib.h must be #included by the user. This fi le in turn 
#includes the fi le simlibdefs.h. These fi les are shown in Figs. 2.47 and 2.48 in 
App. 2A, and they contain (among other things) declarations and defi nitions of the 
following variables and constants germane to the user:

sim_time The simulation clock, a fl oat variable, updated by simlib function timing 
 (see the discussion of function timing below)

next_event_type The type of the next event, an int variable, determined by simlib function 
 timing (see the discussion of function timing below)

transfer[i] A fl oat array with indices i 5 1, 2, . . . , 10 (index i 5 0 is not used) for 
  transferring into and out of the lists used in the simulation, where trans-

fer[i] refers to attribute i of a record. The transfer array is also used by 
 simlib as a place to transfer to the user the values of certain summary 
statistics.

maxatr The maximum number of attributes for any record in any list in the 
  simulation model, an int variable. If maxatr is not set in the main function 

by the user, a default value of 10 is used; maxatr cannot be greater than 10. 
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Setting maxatr to a value less than 10, if possible, will result in faster 
 pro gram execution. Because of the way simlib is written, the user must 
specify maxatr to be at least 4.

list_size[list] The current number of records in list “list”, an int array, which is 
  automatically updated by simlib. The user should not need to alter the 

value of list_size[list], but only query its value if appropriate. For exam-
ple, if list 3 has been set up to represent a queue, then list_size[3] will 
 always be the number in this queue, so that we can tell if it is empty by 
asking if list_size[3] is equal to 0.

list_rank[list] The attribute number, if any, according to which the records in list “list” 
  are to be ranked (in increasing or decreasing order) by simlib function 

list_fi le; this is an int array. For example, if list 4 is to be kept so that the 
records are ranked on attribute 2, then the user would need to set 
list_rank[4] to be equal to 2 before using list_fi le to fi le a record in list 4; 
one of the arguments in function list_fi le controls whether the ranking is 
increasing or decreasing. Typically, list_rank[list] is set by the user in the 
main function. If list “list” is not ranked (i.e., records are inserted only at 
the end or the beginning), then list_rank[list] need not be set at all. Note 
that list_rank[25] is set to 1 in the simlib initialization routine init_simlib, 
since attribute 1 of the event list (list number 25) is always the event time, 
and we wish to keep the event list ranked in increasing order of the event 
times.

FIRST A symbolic constant for the option of fi ling or removing a record at the 
  beginning of a list, automatically set to 1 in simlibdefs.h

LAST A symbolic constant for the option of fi ling or removing a record at the end 
 of a list, automatically set to 2 in simlibdefs.h

INCREASING A symbolic constant for the option of keeping a list ranked in increasing 
  order according to the attribute specifi ed in the list_rank array, automati-

cally set to 3 in simlibdefs.h

DECREASING A symbolic constant for the option of keeping a list ranked in decreasing 
  order according to the attribute specifi ed in the list_rank array, automati-

cally set to 4 in simlibdefs.h

LIST_EVENT A symbolic constant for the number of the event list, 25, automatically set 
 to 25 in simlibdefs.h

EVENT_TIME A symbolic constant for the attribute number of the event time in the event 
 list, automatically set to 1 in simlibdefs.h

EVENT_TYPE A symbolic constant for the attribute number of the event type in the event 
 list, automatically set to 2 in simlibdefs.h

These variables and arrays are used or set by the user during the simulation, as ap-
propriate, and must have the names and types given above, as declared in simlib.h.

There are some 19 functions composing simlib, each designed to perform a 
frequently occurring simulation activity:

• init_simlib. This function, to be invoked from the user-written main function 
at the beginning of each simulation run, allocates storage for the lists, initializes 
the successor and predecessor links as well as the head and tail pointers for 
each list, initializes the simulation clock to 0, sets list_rank[LIST_EVENT] to 
EVENT_TIME to keep the event list ranked on event times, and sets maxatr to a 
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default value of 10. Also, the statistical accumulators for functions sampst and 
timest (see their discussion below) are set to 0.

• list_fi le(option, list). This function places the attributes of a record that the user 
has placed in the transfer array into list “list” (“list” is an int) in a location con-
trolled by the int argument “option”. That is, when list_fi le is invoked, transfer[i] 
is placed in list “list” as attribute i of the new record, for i 5 1, 2, . . . , maxatr. The 
following options are available:

option Action

1 (or FIRST) File the record in transfer before the fi rst record currently in list “list”.

2 (or LAST) File the record in transfer after the last record currently in list “list”.

3 (or INCREASING) File the record in transfer into list “list” so that the list is kept ranked in 
   increasing order on attribute list_rank[list], which must have been 

given a value previously. (If two records have the same value of at-
tribute list_rank[list], the rule is FIFO.)

4 (or DECREASING) File the record in transfer into list “list” so that the list is kept ranked in 
   decreasing order on attribute list_rank[list], which must have been 

given a value previously. (If two records have the same value of 
 attribute list_rank[list], the rule is FIFO.)

 Thus, list_fi le(l, 3) would fi le transfer[1], . . . , transfer[maxatr] into list 3, with 
this becoming the fi rst record in the list; list_fi le(FIRST, 3) would do the same 
thing. If we want list 2 to be kept ranked in decreasing order according to attribute 
4 of the records in that list, then we could execute list_fi le(DECREASING, 2), 
making sure that we had set list_rank[2] to 4 previously, probably in the main 
function. Finally, we could schedule an event into the event list by executing 
list_fi le(INCREASING, LIST_EVENT) after setting (at least) transfer[1] to the 
time of occurrence of this event, and transfer[2] to the type of this event (see the 
description of simlib function event_schedule below, however, for an easier way 
to schedule events into the event list). Storage is dynamically allocated by list_fi le 
for the new record in list “list”.

• list_remove(option, list). Invoking this function removes a record from list 
“list” (an int), and copies it (i.e., its attributes) into the transfer array. The int ar-
gument “option” determines which record is removed:

option Action

1 (or FIRST) Remove the fi rst record from list “list” and place it into the transfer array.

2 (or LAST) Remove the last record from list “list” and place it into the transfer array.

 After invoking list_remove, the elements in transfer, now being equal to those in 
the record just removed, are typically used for some purpose in the simulation. 
For example, list_remove(2, 1) removes the last record in list 1 and places it in the 
transfer array; list_remove(LAST, 1) does the same thing. Storage is dynamically 
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freed by list_remove since space in list “list” for the record just removed is no 
longer needed.

• timing. This function, invoked by the user from the main function, accomplishes 
what the timing functions of Chap. 1 did, except now timing is an internal simlib 
function, and it uses the list structure of the event list exactly as described in 
 Example 2.2. The type of the next event, next_event_type (a simlib int variable 
declared in simlib.h), is determined, and the clock, sim_time, is updated to the 
time of this next event. Actually, timing simply invokes list_remove(FIRST, 
LIST_EVENT) to remove the fi rst record from list 25, the event list; since the 
event list is kept in increasing order on the event time, we know that this will be 
the next event to occur. Thus, attributes 1 through maxatr of the fi rst event record 
are placed in transfer, and can be used if desired. In particular, it is sometimes 
advantageous to make use of attributes other than 1 and 2 in event records; see 
Secs. 2.6 and 2.7 as well as Prob. 2.3.

• event_schedule(time_of_event, type_of_event). The user can invoke this func-
tion to schedule an event to occur at time time_of_event (a fl oat) of type 
type_of_event (an int) into the event list. Normally, event_schedule will be in-
voked to schedule an event in the simulated future, so time_of_event would be of 
the form sim_time 1 time_interval, where time_interval is an interval of time 
from now until the event is to happen. If attributes other than 1 (event time) and 
2 (event type) of event records are being used in the event list, it is the user’s re-
sponsibility to place their values in the appropriate locations in the transfer array 
before invoking event_schedule.

• event_cancel(event_type). This function cancels (removes) the fi rst event in 
the event list with event type event_type (an int), if there is such an event, and 
places the attributes of the canceled event record in the transfer array. If the event 
list does not have an event of type event_type, no action is taken by event_cancel. 
If event_cancel fi nds an event of type event_type and cancels it, the function 
 returns an int value of 1; if no such event is found, the function returns an int 
value of 0.

• sampst(value, variable). This function accumulates and summarizes discrete-
time data, such as customer delays in a queue. There is provision for up to 20 
“sampst variables,” maintained and summarized separately, and indexed by the 
int argument “variable”. For example, a model could involve three separate 
queues, and sampst variables 1, 2, and 3 could be used to accumulate and sum-
marize customer delays in each of these queues, separately. There are three 
different typical uses of sampst:

During the simulation. Each time a new value of sampst variable “variable” 
is observed (e.g., the end of a delay in queue), its value is placed in the fl oat 
argument “value”, and sampst is invoked. For instance, if we have defi ned 
sampst variable 2 to be the delays in queue 2 of a model, we could execute 
sampst(delay2, 2) after having placed the desired delay in the fl oat variable 
delay2. The function sampst internally maintains separate registers for 
each variable, in which statistics are accumulated to produce the output 
described below.
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At the end of the simulation. The user can invoke sampst with the negative 
of the variable “variable” desired, to produce summary statistics that are 
placed into the transfer array as follows:

i transfer[i]

1  Mean (average) of the values of variable “variable” observed

2  Number of values of variable “variable” observed

3  Maximum value of variable “variable” observed

4  Minimum value of variable “variable” observed

 In addition, sampst returns as a fl oat the mean (in its name), the same thing 
that is placed into transfer[1], as a convenience since means are often de-
sired. For example, executing sampst(0.0, 22) would place the summary 
statistics on sampst variable 2 in the transfer array, as described above, and 
return the mean; the desired summary statistics would then typically be 
written out by the user, or perhaps used in some other way. Note that in this 
use of sampst, the value of “value” is ignored. (A technicality: If no values 
for variable “variable” were observed, the mean, maximum, and minimum 
are undefi ned. In this case, sampst returns the mean as 0, the maximum as 
21030, and the minimum as 1030.)

To reset all sampst variable accumulators. The accumulators for all sampst 
variables are reinitialized, as at the start of the simulation, by executing 
sampst(0.0, 0); note that this is done in init_simlib at time 0. This capabil-
ity would be useful during a simulation if we wanted to start observing 
data only after the simulation had “warmed up” for some time, as de-
scribed in Sec. 9.5.1; see also Prob. 2.7.

• timest(value, variable). This function is similar to sampst, but operates instead 
on continuous-time data such as the number-in-queue function; see Sec. 1.4.1. 
Again, the int argument “variable” refers to one of up to 20 “timest variables” on 
which data are accumulated and summarized when desired. For example, timest 
variables 1, 2, and 3 could refer to the number of customers in queues 1, 2, and 3, 
respectively. As with sampst, there are three “typical” uses:

During the simulation. Each time timest variable “variable” attains a new 
value, we must execute timest(value, variable), where the fl oat argument 
“value” contains the new (i.e., after the change) value of the variable. For 
example, if the length of queue 2 changes as a result of an arrival or 
 departure to the fl oat variable q2, we would execute timest(q2, 2) to do 
the proper accumulation. The accumulators for timest are initialized in 
init_simlib under the assumption that all continuous-time functions being 
tracked by timest are initially zero; this can be overridden by executing 
timest(value, variable) just after invoking init_simlib, where value con-
tains the desired (nonzero) initial value of timest variable “variable”. (This 
would be done for each desired timest variable.)
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At the end of the simulation. The user can invoke timest with the negative 
of the variable “variable” desired, to produce summary statistics that are 
placed into the transfer array as follows:

i  transfer[i]

1 Time average of the values of variable “variable” observed, updated to the time of 
  this invocation

2 Maximum value of variable “variable” observed up to the time of this invocation

3 Minimum value of variable “variable” observed up to the time of this invocation

 In addition, timest returns as a fl oat the time average (in its name), the 
same thing that is placed into transfer[1], as a convenience since means 
are often desired. For example, executing timest(0.0, 22) would place 
the summary statistics on timest variable 2 in the transfer array, as 
 described above, and return the time average; the desired summary statis-
tics would then typically be written out by the user, or perhaps used in 
some other way.

To reset all timest variable accumulators. The accumulators for all timest 
variables are reinitialized to zero, as at the start of the simulation, by 
executing timest(0.0, 0); this is done in init_simlib at time 0. Note that 
this assumes that all timest variables should have the value 0, which can 
be overridden by immediately executing timest(value, variable) to reset 
timest variable “variable” to the value “value”.

• fi lest(list). This function, typically invoked only at the end of a simulation run, 
provides summary data on the number of records in list “list”, placing them into 
the transfer array in a manner similar to timest, as follows:

i transfer[i]

1 Time-average number of records in list “list”, updated to the time of this invocation

2 Maximum number of records in list “list”, up to the time of this invocation

3 Minimum number of records in list “list”, up to the time of this invocation

In addition, fi lest returns as a fl oat the time average (in its name), the same thing 
that is placed into transfer[1], as a convenience since means are often desired. 
 In ternally, simlib treats the number of records in a list as a continuous-time func-
tion whose value may rise or fall only at the times of events, so that it is sensible 
to speak of the time-average number of records in a list, etc. In addition, simlib 
automatically tracks each list in this way, and can produce these statistics when 
fi lest is invoked. Who cares about the history of list lengths? This capability turns 
out to be quite convenient, since the number of records in a list often has some 
physical meaning. For example, a queue will usually be represented in a simula-
tion by a list, and the number of records in that list is thus identical to the number 
of customers in the queue; hence the time-average and maximum number of 
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 customers in the queue are simply the time average and maximum of the number 
of records in the list. Another example is a list being used to represent a server, 
where the list will have one record in it if the server is busy and will be empty if 
the server is idle; the server utilization is thus the time-average number of records 
in this list, since the only possibilities for its length are 0 and 1. In this way, we 
can often (but not always) avoid explicitly tracking a continuous-time function 
via timest. However, timest should probably be used instead of fi lest if the corre-
sponding list is set up merely for convenience in statistics collection, especially 
when the function being tracked rises or falls by increments other than 1 (e.g., the 
inventory level in the model of Sec. 1.5), due to the overhead in fi ling and re-
moving many dummy records. Moreover, timest would have to be used instead 
of fi lest if the function being tracked can take on noninteger values. [Internally, 
simlib treats the number of records in list “list” as timest variable 20 1 list, so 
that there are actually 45 timest variables, but only the fi rst 20 are accessible to 
the user. Then fi lest simply invokes timest with variable 5 2(20 1 list) to get 
statistics on list “list”.]

• out_sampst(unit, lowvar, highvar). If desired, this function may be invoked to 
produce the summary statistics on sampst variables lowvar through highvar 
 (inclusively) and write them to fi le “unit”; lowvar and highvar are both int argu-
ments.This produces “standard” output format (which fi ts within an 80-character 
line), and obviates the need for the fi nal invocation of sampst (but not the invoca-
tions during the course of the simulation) and also eliminates the need for fprintf 
statements, formatting, etc. The disadvantage of using out_sampst is that the an-
notation and layout of the output cannot be controlled or customized. For example, 
out_sampst(outfi le, 1, 3) would write summary statistics to fi le outfi le on sampst 
variables 1, 2, and 3; sampst(outfi le, 4, 4) would write summary statistics on 
sampst variable 4. In the simlib simulations later in this chapter, we show ex-
amples of using (and ignoring) this standard-format output option.

• out_timest(unit, lowvar, highvar). Similar to out_sampst, this optional function 
may be used to produce standard-format output on fi le “unit” for timest variables 
lowvar through highvar.

• out_fi lest(unit, lowfi le, highfi le). This function uses fi lest to produce summary 
statistics on the number of records in fi les lowfi le through highfi le, written to fi le 
“unit”; lowfi le and highfi le are both int arguments.

• expon(mean, stream). This function returns a fl oat with an observation from an 
exponential distribution with mean “mean” (a fl oat argument). The int argument 
stream is the user-specifi ed random-number stream number, discussed more fully 
in Sec. 7.1 and App. 7A. For now, we can think of the stream number as a sepa-
rate, independent random-number generator (or list of random numbers) to be 
used for the purpose of generating the desired observations from the exponential 
distribution. It is generally a good idea to “dedicate” a random-number stream 
to a particular source of randomness in a simulation, such as stream 1 for inter-
arrivals and stream 2 for service times, etc., to facilitate the use of variance-
reduction techniques (see Chap. 11). These techniques can often provide a great 
improvement in the statistical precision of simulations. Furthermore, using 
 dedicated streams can facilitate program verifi cation (debugging). Except for the 
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stream specifi cation, this is the same function used in Sec. 1.4.4 for generating 
observations from an exponential distribution. There are 100 separate streams 
available in simlib; i.e., “stream” must be an int between 1 and 100 inclusively, 
and the length of each stream is 100,000 random numbers.

• random_integer(prob_distrib[], stream). This function returns an int with an 
observation from a discrete probability distribution with cumulative distribution-
function values specifi ed by the user in the fl oat array prob_distrib. For i a positive 
integer between 1 and 25, prob_distrib[i] should be specifi ed by the user,  
before invoking random_integer, to be the desired probability of generating a value 
less than or equal to i. If the range of random integers desired is 1, 2,  .  .  .  , k, 
where k , 25, then prob_distrib[k] should be set to 1.0, and it is then not nec-
essary to specify prob_distrib[j] for j . k. The int argument stream, between 1 
and 100, gives the random-number stream to be used. Except for the random-
number stream specifi cation, this is the same function used for the inventory 
model in Sec. 1.5.3.

• uniform(a, b, stream). This function returns a fl oat with an observation from a 
(continuous) uniform distribution between a and b (both fl oat arguments). As before, 
stream is an int between 1 and 100 giving the random-number stream to be used.

• erlang(m, mean, stream). This function returns a fl oat with an observation 
from an m-Erlang distribution with mean “mean” using random-number stream 
“stream”; m is an int, mean is a fl oat, and stream is an int. This distribution will 
be discussed in Sec. 2.7.

• lcgrand(stream). This is the random-number generator used by simlib, a func-
tion returning a fl oat with an observation from a (continuous) uniform distribu-
tion between 0 and 1, using stream “stream” (an int argument). Its code is given in 
Fig. 7.5 in App. 7A, instead of in App. 2A. When using simlib, and in particular 
#including the fi le simlib.h, it is not necessary to #include lcgrand.h from Fig. 7.6 
in App. 7A, since simlib.h contains the required declarations.

• lcgrandst(zset, stream). This function “sets” the random-number seed for 
stream “stream” to the long argument zset. It is shown in Fig. 7.5 in App. 7A.

• lcgrandgt(stream). This function returns a long with the current underlying in-
teger for the random-number generator for stream “stream”; it is shown in Fig. 7.5 
in App. 7A, and discussed more fully in Chap. 7. It could be used to restart a 
subsequent simulation (using lcgrandst) from where the current one left off, as far 
as random-number usage is concerned.

This completes the description of simlib, but before proceeding with concrete 
examples of its use, we conclude this section with an overview of how simlib’s 
components are typically used together in a simulation. It is still up to the user to 
write a C main function and event functions, but the simlib functions will make the 
coding much easier. First, we must determine the events and decide what lists will 
be used for what purpose; the numbering of lists and their attributes is in large mea-
sure arbitrary, but it is essential to be consistent. Also, any sampst and timest vari-
ables to be used must be defi ned, as should the usage of random-number streams. In 
addition to the global variables defi ned by simlib (via the header fi le simlib.h), the 
user will generally need to declare some global and perhaps local variables through 
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the model. In the main function, the following activities take place, roughly in the 
order listed:

1. Read and write (for confi rmation) the input parameters.
2. Invoke init_simlib to initialize the simlib variables.
3. (If necessary) Set list_rank[list] to the attribute number on which list “list” is to 

be ranked, for lists that need to be kept in some sort of order according to the 
value of a particular attribute. (If no lists other than the event list are to be ranked, 
then this step is skipped.)

4. Set maxatr to the maximum number of attributes used in any list. Note that max-
atr must be at least 4 for proper operation of simlib. If this is skipped, maxatr 
defaults to 10 and the simulation will run correctly, but setting maxatr to a smaller 
value will make the simulation faster, since it avoids repeated copying of unused 
attributes into and out of the lists.

5. (If necessary) Invoke timest to initialize any timest variables that are not to be 
zero initially.

6. Initialize the event list by invoking event_schedule for each event to be sched-
uled at time 0. If event attributes beyond the fi rst (event time) and second (event 
type) are used in the data structure, it is the user’s responsibility to set trans-
fer[3], transfer[4], etc., before invoking event_schedule for that event. Events 
that cannot occur are simply not placed into the event list.

7. Invoke timing to determine next_event_type and update sim_time to the time of 
that event.

8. Invoke the appropriate event function (user-written, but using simlib variables 
and functions where possible), as determined by next_event_type. This is typi-
cally done with a case statement, routing control to one of several event- function-
invocation statements, as was done in the C programs of Chap. 1.

9. When the simulation ends, invoke a report-generator function (user-written), 
which in turn will invoke sampst, timest, or fi lest and then write out the desired 
summary statistics. Alternatively, the report generator could invoke out_sampst, 
out_timest, or out_fi lest to write out the summary statistics in standard format.

While the simulation is running, lists are maintained by using list_fi le and 
list_remove, together with the transfer array to transfer the data in the attributes of 
records into and out of lists. When needed, sampst and timest are used to gather 
statistics on variables of interest.

A fi nal note on simlib’s capabilities concerns error checking. While no software 
package can detect all errors and suggest how to fi x them, there are special oppor-
tunities to do some of this in simulation programs, as discussed in Chap. 1. Accord-
ingly, simlib contains several such error checks, and will write out a message (to 
standard output) indicating the nature of the error and the clock value when it oc-
curred. For example, simlib function timing checks for a “time reversal,” i.e., an 
attempt to schedule an event at a time earlier than the present. Also, there are checks 
for illegal list numbers, illegal variable numbers, etc., and for attempting to remove 
a record from a list that is empty.

In Secs. 2.4 through 2.7 we show how to use simlib to simulate systems of vary-
ing complexity.
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2.4
SINGLE-SERVER QUEUEING SIMULATION WITH simlib

2.4.1 Problem Statement

In this section we show how to simulate the single-server queueing system from 
Sec. 1.4, using simlib. The model is exactly the same, so that we can concentrate on 
the use of simlib without having to worry about the structure of a new model. We 
will use the 1000-delay stopping rule, as originally described in Sec. 1.4.3.

2.4.2 simlib Program

The fi rst step is to identify the events; they are the same as before—an arrival is a 
type 1 event, and a departure (service completion) is a type 2 event.

Next, we must defi ne the simlib lists and the attributes in their records. It is im-
portant to write this down, as it will be referenced while the program is developed:

List Attribute 1 Attribute 2

 1, queue  Time of arrival to queue —
 2, server — —
25, event list Event time Event type

Note that list 1 (representing the queue) is quite similar to the array time_arrival used 
in Sec. 1.4.4, except that now we are taking advantage of simlib’s list-processing 
capabilities; list 1 has only a single attribute. List 2 represents the server and either 
will be empty (if the server is idle) or will contain a single record (if the server is 
busy); a record in list 2 when the server is busy is a “dummy” record, in that it has 
no actual attributes. The purpose for defi ning such a list is to allow the use of fi lest 
at the end of the simulation to get the server utilization. Also, we can tell whether 
the server is busy by asking whether list_size[2] is equal to 1. This use of a dummy 
list is convenient in that the server_status variable is eliminated, and we need not 
use timest during or at the end of the simulation to get the utilization. However, it is 
not the most computationally effi cient approach, since all the machinery of the 
linked lists is invoked whenever the server changes status, rather than simply alter-
ing the value of a server_status variable. (This is a good example of the tradeoff 
between computation time and analyst’s time in coding a model.) Finally, list 25 is the 
event list, with attribute 1 being event time and attribute 2 being event type; this is 
required in all simlib programs, but for some models we will use additional attrib-
utes for the event record in list 25.

Next, we should identify all sampst and timest variables used. Our only sampst 
variable is as follows:

sampst variable number Meaning

 1 Delays in queue
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Since we can obtain both the number-in-queue and utilization statistics using fi lest 
(or out_fi lest if standard output format is acceptable), we do not need any timest 
variables for this model.

Finally, we allocate separate random-number streams for generating the inter-
arrival and service times, as follows:

Stream Purpose

 1 Interarrival times
 2 Service times

Figure 2.6 shows the external declarations, which are at the top of the fi le 
mm1smlb.c. The fi rst thing we do is #include the header fi le simlib.h, which is re-
quired for all programs using simlib. To make the code more readable and more 
general, we defi ne symbolic constants for the event types, list numbers, the sampst 
variable, and the random-number streams. We must still declare some non-simlib 
variables for the model, though far fewer than in Sec. 1.4.4 since much of the infor-
mation is held internally by simlib. And we must still have our own functions, 
init_model to initialize this particular model, arrive and depart for the events, and a 
report generator, but we no longer need a timing function or the expon function 
since they are provided by simlib.

Figure 2.7 shows the main function, which must still be written by the user. 
After opening the input and output fi les, we read the input parameters and then 
immediately write them out for confi rmation that they were read properly (and to 
document our output). Invoking init_simlib initializes simlib, after which we set 
maxatr to 4; while we have no records with more than two attributes, maxatr must 
be at least 4 for simlib to operate properly. We are not using any ranked lists (other 

/* External definitions for single-server queueing system using simlib. */

#include "simlib.h"               /* Required for use of simlib.c. */

#define EVENT_ARRIVAL          1  /* Event type for arrival. */
#define EVENT_DEPARTURE       2  /* Event type for departure. */
#define LIST_QUEUE            1  /* List number for queue. */
#define LIST_SERVER           2  /* List number for server. */
#define SAMPST_DELAYS         1  /* sampst variable for delays in queue. */
#define STREAM_INTERARRIVAL   1  /* Random-number stream for interarrivals. */
#define STREAM_SERVICE        2  /* Random-number stream for service times. */

/* Declare non-simlib global variables. */

int   num_custs_delayed, num_delays_required;
float mean_interarrival, mean_service;
FILE  *infile, *outfile;

/* Declare non-simlib functions. */

void init_model(void);
void arrive(void);
void depart(void);
void report(void);

FIGURE 2.6
C code for the external defi nitions, queueing model with simlib.
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main()  /* Main function. */
{
    /* Open input and output files. */

    infile  = fopen("mm1smlb.in",  "r");
    outfile = fopen("mm1smlb.out", "w");

    /* Read input parameters. */

    fscanf(infile, "%f %f %d", &mean_interarrival, &mean_service,
           &num_delays_required);

    /* Write report heading and input parameters. */

    fprintf(outfile, "Single-server queueing system using simlib\n\n");
    fprintf(outfile, "Mean interarrival time%11.3f minutes\n\n",
            mean_interarrival);
    fprintf(outfile, "Mean service time%16.3f minutes\n\n", mean_service);
    fprintf(outfile, "Number of customers%14d\n\n\n", num_delays_required);

    /* Initialize simlib */

    init_simlib();

    /* Set maxatr = max(maximum number of attributes per record, 4) */

    maxatr = 4;  /* NEVER SET maxatr TO BE SMALLER THAN 4. */

    /* Initialize the model. */

    init_model();

    /* Run the simulation while more delays are still needed. */

    while (num_custs_delayed < num_delays_required) {

        /* Determine the next event. */

        timing();

        /* Invoke the appropriate event function. */

        switch (next_event_type) {
            case EVENT_ARRIVAL:
                arrive();
                break;
            case EVENT_DEPARTURE:
                depart();
                break;
        }
    }

    /* Invoke the report generator and end the simulation. */

    report();

    fclose(infile);
    fclose(outfile);

    return 0;
}

FIGURE 2.7
C code for the main function, queueing model with simlib.
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than the event list), so we do not need to set anything in the list_rank array; also, 
both of the continuous-time functions (queue length and server status) are initially 
zero, so we need not override their default values. The user-written function 
init_model is then invoked to set up our own, non-simlib modeling variables. The 
rest of the main function is similar to Fig. 1.11 for the non-simlib version of this 
model, except that we need not update the continuous-time statistical accumulators 
since simlib takes care of that internally.

Figure 2.8 shows init_model, which begins by setting the num_custs_delayed 
counter to 0 for the number of delays observed. The fi rst arrival event is then sched-
uled by invoking event_schedule with the desired event time (a fl oat) as the fi rst 
argument and the event type (an int) as the second argument; note that adding 
sim_time to the generated exponential interarrival time in the fi rst argument is not 
strictly necessary here since sim_time is now zero, but we write it this way to show 
the general form and to emphasize that the fi rst argument of event_schedule is the 
(absolute) time in the simulated future when the event is to occur, not the interval of 
time from now until then. In Chap. 1 we had to set the time of impossible events to 
` (actually, 1030), but now we simply leave them out of the event list, ensuring that 
they cannot be chosen to happen next. Thus, we just do not schedule a departure 
event at all here.

In Fig. 2.9 is the code for event function arrive, which begins by using 
event_schedule to schedule the next arrival event, in a manner similar to that in 
init_model (here, adding sim_time to the generated exponential interarrival time is 
necessary since sim_time will be positive). We then check to see whether the server 
is busy, by asking whether the server list contains a (dummy) record; this is done by 
checking whether list_size[LIST_SERVER] is equal to 1. If so, the arriving cus-
tomer must join the end of the queue, which is done by placing the time of arrival 
(the current clock value, sim_time) into the fi rst location of the transfer array, and 
by fi ling this record at the end (option 5 LAST 5 2) of the queue list (list 5 
LIST_QUEUE 5 1). Note that we do not have to check for overfl ow of the queue 
here since simlib is automatically allocating storage dynamically for the lists as it is 
needed. On the other hand, if the server is idle, the customer experiences a delay of 0, 
which is noted by invoking sampst; this is necessary even though the delay is 0, 
since sampst will also increment the number of observations by 1. We increment 
num_custs_delayed since a delay is being observed, and a departure event is sched-
uled into the event list; note that we are dedicating stream EVENT_DEPARTURE 
(52) to generating service times.

Event function depart, in Fig. 2.10, checks whether the queue is empty, by look-
ing at the length of the queue list, held by simlib in list_size[LIST_QUEUE]. If so, 

void init_model(void)  /* Initialization function. */
{
    num_custs_delayed = 0;

    event_schedule(sim_time + expon(mean_interarrival, STREAM_INTERARRIVAL),
                   EVENT_ARRIVAL);
}

FIGURE 2.8
C code for function init_model, queueing model with simlib.
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the server is made idle by removing the (dummy) record from list LIST_SERVER, 
the only action needed; note that we are removing the fi rst record in the list, but we 
could also have removed the last one since there is only one record there. On the 
other hand, if there is a queue, the fi rst customer is removed from it, and that cus-
tomer’s time of arrival is placed in transfer[1] by list_remove. The delay in queue of 
that customer is thus sim_time 2 transfer[1], which is computed and tallied in 
sampst, and the number of delays observed is incremented; as in the examples of 
Chap. 1, if the simulation were to be run for a long period of simulated time, it might 
be necessary to make both sim_time and transfer of type double to avoid loss of 
precision in the subtraction to compute the delay in queue. Finally, the service com-
pletion of this customer is scheduled by invoking event_schedule. Note that we 
need no longer move the queue up, since this is done internally by simlib, using 
linked lists as discussed in Example 2.1.

The report-generation function is shown in Fig. 2.11, and uses the standard 
output formatting in out_sampst for the delay-in-queue measure and out_fi lest for the 

void arrive(void)  /* Arrival event function. */
{
    /* Schedule next arrival. */

    event_schedule(sim_time + expon(mean_interarrival, STREAM_INTERARRIVAL),
                   EVENT_ARRIVAL);

    /* Check to see whether server is busy (i.e., list SERVER contains a
       record). */

    if (list_size[LIST_SERVER] == 1) {

        /* Server is busy, so store time of arrival of arriving customer at end
           of list LIST_QUEUE. */

        transfer[1] = sim_time;
        list_file(LAST, LIST_QUEUE);
    }

    else {

        /* Server is idle, so start service on arriving customer, who has a
           delay of zero.  (The following statement IS necessary here.) */

        sampst(0.0, SAMPST_DELAYS);

        /* Increment the number of customers delayed. */

        ++num_custs_delayed;

        /* Make server busy by filing a dummy record in list LIST_SERVER. */

        list_file(FIRST, LIST_SERVER);

        /* Schedule a departure (service completion). */

        event_schedule(sim_time + expon(mean_service, STREAM_SERVICE),
                       EVENT_DEPARTURE);
    }
}

FIGURE 2.9
C code for function arrive, queueing model with simlib.
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number-in-queue and utilization measures. Note that we write out brief headers be-
fore invoking out_sampst and out_fi lest to make the report a little more readable.

2.4.3 Simulation Output and Discussion

The output fi le mm1smlb.out is given in Fig. 2.12, and illustrates the standard 
 format produced by out_sampst and out_fi lest. We use general formatting of the 
numerical results to avoid the possibility of overfl owing the fi eld widths. We get all 
characteristics of the output measures, i.e., average, maximum, and minimum, as 
well as the number of observations for the discrete-time variables used by sampst. 
We also write out the fi nal clock value, as a check.

An important point is that these numerical results are not the same as those in 
Fig. 1.19 for the non-simlib version of this same model; in fact, they are quite a bit 
different, with the average delay in queue changing from 0.430 in Chap. 1 to 0.525 

void depart(void)  /* Departure event function. */
{
    /* Check to see whether queue is empty. */

    if (list_size[LIST_QUEUE] == 0)

        /* The queue is empty, so make the server idle and leave the departure
           (service completion) event out of the event list. (It is currently
           not in the event list, having just been removed by timing before
           coming here.) */

        list_remove(FIRST, LIST_SERVER);

    else {

        /* The queue is nonempty, so remove the first customer from the queue,
           register delay, increment the number of customers delayed, and
           schedule departure. */

        list_remove(FIRST, LIST_QUEUE);
        sampst(sim_time - transfer[1], SAMPST_DELAYS);
        ++num_custs_delayed;
        event_schedule(sim_time + expon(mean_service, STREAM_SERVICE),
                       EVENT_DEPARTURE);
    }
}

FIGURE 2.10
C code for function depart, queueing model with simlib.

void report(void)  /* Report generator function. */
{
    /* Get and write out estimates of desired measures of performance. */

    fprintf(outfile, "\nDelays in queue, in minutes:\n");
    out_sampst(outfile, SAMPST_DELAYS, SAMPST_DELAYS);
    fprintf(outfile, "\nQueue length (1) and server utilization (2):\n");
    out_filest(outfile, LIST_QUEUE, LIST_SERVER);
    fprintf(outfile, "\nTime simulation ended:%12.3f minutes\n", sim_time);
}

FIGURE 2.11
C code for function report, queueing model with simlib.
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here, a difference of some 22 percent. The reason for this is that we are now using 
the concept of “dedicating” a random-number stream to a particular source of ran-
domness, while in Chap. 1 we used the same stream (number 1) for everything. 
Both programs are correct, and this illustrates the need for careful statistical analy-
sis of simulation output data, as discussed in Chaps. 9 through 12.

While using simlib did simplify the coding of this model considerably, the 
value of such a package becomes more apparent in complex models with richer list 
structures. Such models are considered next, in Secs. 2.5 through 2.7.

2.5
TIME-SHARED COMPUTER MODEL

In this section we use simlib to simulate a model of a time-shared computer facility 
considered by Adiri and Avi-Itzhak (1969).

2.5.1 Problem Statement

A company has a computer system consisting of a single central processing unit 
(CPU) and n terminals, as shown in Fig. 2.13. The operator of each terminal “thinks” 

 Single-server queueing system using simlib

 Mean interarrival time      1.000 minutes

 Mean service time           0.500 minutes

 Number of customers          1000

 Delays in queue, in minutes:

  SAMPST                         Number
 variable                          of
  number       Average           values          Maximum          Minimum
 ____________________________________________________________________________

     1      0.5248728E+00    0.1000000E+04    0.5633087E+01    0.0000000E+00
 ____________________________________________________________________________

 Queue length (1) and server utilization (2):

   File         Time
  number       average          Maximum          Minimum
 ___________________________________________________________

     1      0.5400774E+00    0.8000000E+01    0.0000000E+00

     2      0.5106925E+00    0.1000000E+01    0.0000000E+00
 ___________________________________________________________

 Time simulation ended:     971.847 minutes

FIGURE 2.12
Output report, queueing model with simlib.
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for an amount of time that is an exponential random variable with mean 25 seconds, 
and then sends to the CPU a job having service time distributed exponentially with 
mean 0.8 second. Arriving jobs join a single queue for the CPU but are served in a 
round-robin rather than FIFO manner. That is, the CPU allocates to each job a maxi-
mum service quantum of length q 5 0.1 second. If the (remaining) service time of 
a job, s seconds, is no more than q, the CPU spends s seconds, plus a fi xed swap time 
of t 5 0.015 second, processing the job, which then returns to its terminal. How-
ever, if s . q, the CPU spends q 1 t seconds processing the job, which then joins 
the end of the queue, and its remaining service time is decremented by q seconds. 
This process is repeated until the job’s service is eventually completed, at which 
point it returns to its terminal, whose operator begins another think time.

Let Ri be the response time of the ith job to fi nish service, which is defi ned as 
the time elapsing between the instant the job leaves its terminal and the instant it is 
fi nished being processed at the CPU. For each of the cases n 5 10, 20, . . . , 80, we 
use simlib to simulate the computer system for 1000 job completions (response 
times) and estimate the expected average response time of these jobs, the expected 
time-average number of jobs waiting in the queue, and the expected utilization of 
the CPU. Assume that all terminals are in the think state at time 0. The company 
would like to know how many terminals it can have on its system and still provide 
users with an average response time of no more than 30 seconds.

2.5.2 simlib Program

The events for this model are:

Event description Event type

Arrival of a job to the CPU from a terminal, at the end of a think time 1
End of a CPU run, when a job either completes its service requirement  2
 or has received the maximum processing quantum q
End of the simulation 3

1

2

n

CPU

Computer

Queue

Unfinished jobs

Terminals

Finished jobs

FIGURE 2.13
Time-shared computer model.
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Note that we have defi ned an end-simulation event, even though the stopping rule 
for this model is not a fi xed point in simulated time. The end-simulation event is 
scheduled at the time the 1000th response time is observed, and is scheduled to 
occur immediately, i.e., at that time. Clearly, there are other ways in which this stop-
ping rule could be implemented, as discussed below.

An event graph (see Sec. 1.4.7) for this model is shown in Fig. 2.14. The n sep-
arate initializations of the arrival (i.e., end-think-time) event refer to the fact that 
each of the n terminals will be initially scheduled to have such an event. Note also 
that the arrival and end-CPU-run events can potentially schedule each other; an ar-
rival can schedule the end of a CPU run if the arriving job fi nds the CPU idle, and 
an end-CPU-run event can schedule an arrival if the job exiting the CPU is fi nished 
and returns to its terminal. Also, an end-CPU-run event can schedule itself in the 
case of a job’s leaving the CPU before its total processing is fi nished, and looping 
back to the queue only to fi nd that the queue is empty and the CPU is idle since all 
other jobs are at their terminals. Finally, note that the end-simulation event can be 
scheduled only from the end-CPU-run event and in zero time, in the case that a fi n-
ished job leaves the CPU and supplies the last (1000th) response time required; as 
discussed in Sec. 1.4.7, an event having incoming arcs that are all thin and smooth 
(representing a scheduling of the event in zero time from the event from which the 
smooth arrow emanates) can be eliminated from the model and its action incorpo-
rated elsewhere. Problem 2.2 deals with this issue for this model.

Three lists of records will be used, one corresponding to the jobs in queue (list 1), 
one for the job being served by the CPU (list 2), and one for the event list (list 25, 
as usual). These lists have the following attributes:

List  Attribute 1  Attribute 2

 1, queue  Time of arrival of Remaining service time
  job to computer

 2, CPU Time of arrival of Remaining service time after the present CPU pass 
  job to computer    (negative if the present CPU pass is the last one needed 

for this job)

25, event list Event time Event type

As in Sec. 2.4, we are using a list to represent a server (list 2 for the CPU), thereby 
facilitating estimation of the CPU utilization via fi lest at the end of the simulation. 
Here, however, this “server” list’s attributes are not dummies; they carry necessary 
information about the job in service, since it may have to revisit the CPU several 

Arrival
End
CPU
run

End
simulation

1

2

n

FIGURE 2.14
Event graph, computer model.
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times, and its time of arrival and remaining service time must be carried along for 
it  to be processed correctly. Note also that we have matched up the attributes in 
lists 1 and 2, so that transferring a record between these lists can be done simply by 
 invoking list_remove and then list_fi le without having to rearrange the attributes in 
the transfer array. Finally, we are not explicitly keeping track of the terminal of 
 origin for a job, so that when its processing is complete in the computer we do not 
know what terminal to send it back to in order for its next think time to begin. This 
would certainly not do in reality, since the terminal operators would be getting each 
others’ output back, but in the simulation we need not represent the ownership of 
each job by a particular terminal since we want only overall (i.e., over all the termi-
nals) performance measures for the response times. Furthermore, all the terminals 
are probabilistically identical, as the think-time and CPU-time distributions are the 
same. Problem 2.3 asks that the model be enriched by collecting separate response-
time statistics for each terminal, and allowing the terminal characteristics to vary; 
any of these changes would require that the terminal of origin of a job be carried 
along with it while it is inside the computer.

Since there is only a single discrete-time statistic of interest (the response 
times), we need only a single sampst variable:

sampst variable number Meaning

1 Response times

For each of the continuous-time statistics desired (number in queue and CPU 
utilization), there is a corresponding list whose length represents the desired quan-
tity, so we can again obtain the output via fi lest, and we do not need any of our own 
timest variables.

There are two types of random variables for this model, and we use the follow-
ing stream assignments:

Stream Purpose

1 Think times
2 Service times

Figure 2.15 shows the global external defi nitions for this model, which are at the 
top of the fi le tscomp.c. After #including the header fi le simlib.h, we defi ne symbolic 
constants for the event types, list numbers, sampst variable number, and random-
number streams. The non-simlib variables are declared, including ints for the 
 minimum and maximum number of terminals across the simulations (min_terms 5 
10 and max_terms 5 80), the increment in the number of terminals across the simu-
lations (incr_terms 5 10), the number of terminals for a particular simulation 
(num_terms), the number of response times observed in the current simulation 
(num_responses), and the number of responses required (num_responses_required 5 
1000); fl oats are required only for the input parameters for mean think and service 
times, the quantum q, and the swap time t. The user-written, non-simlib functions 
are declared, including event functions for arrival and end-CPU-run events; we have 
written a non-event function, start_CPU_run, to process a particular activity that 
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may occur when either an arrival or an end-CPU-run event occurs, avoiding having 
to repeat this same block of code in each of those event functions. There is not a sep-
arate model-initialization function since there is little required to initialize this model 
(beyond what simlib does in init_simlib), so this activity was simply put into the 
main function. For this model we chose not to use the standard output formatting op-
tion, since we are really doing eight separate simulations and would like to arrange 
the output data in a customized table, with one line per simulation; also, we wish to 
get only the mean of the output performance measures rather than all of their char-
acteristics (maximum, etc.).

The main function is shown in Fig. 2.16. As usual, we open the input and out-
put fi les, read the input parameters, and then write them out in a report heading. 
Since we will be doing eight simulations, with one output line per simulation, we 
also write out column headings for the output at this time. A “for” loop setting 
num_terms in turn to 10, 20, . . . , 80 then begins, and encompasses the rest of the 
main function except for closing the fi les at the very end; a separate simulation is 
run, including initialization and results writing, within this “for” loop for each value 
of num_terms. Each simulation begins with a fresh initialization of simlib by in-
voking init_simlib, then sets maxatr to 4, initializes num_responses to 0, and sched-
ules the fi rst arrival to the CPU from each terminal by invoking event_schedule for 
each of the num_terms terminals. Note that we will then have num_terms events 
scheduled in the event list, all of type 1, each one representing the end of the initial 
think time for a particular terminal. A “do while” loop then starts, invoking the tim-
ing function and the appropriate event function as long as the event type is not the 
end-simulation event; when the event just executed is the end-simulation event (and 
report has been invoked), the “do while” loop ends and we go back to the enclosing 

/* External definitions for time-shared computer model. */

#include "simlib.h"               /* Required for use of simlib.c. */

#define EVENT_ARRIVAL          1  /* Event type for arrival of job to CPU. */
#define EVENT_END_CPU_RUN      2  /* Event type for end of a CPU run. */
#define EVENT_END_SIMULATION   3  /* Event type for end of the simulation. */
#define LIST_QUEUE             1  /* List number for CPU queue. */
#define LIST_CPU               2  /* List number for CPU. */
#define SAMPST_RESPONSE_TIMES  1  /* sampst variable for response times. */
#define STREAM_THINK           1  /* Random-number stream for think times. */
#define STREAM_SERVICE         2  /* Random-number stream for service times. */

/* Declare non-simlib global variables. */

int   min_terms, max_terms, incr_terms, num_terms, num_responses,
      num_responses_required, term;
float mean_think, mean_service, quantum, swap;
FILE  *infile, *outfile;

/* Declare non-simlib functions. */

void arrive(void);
void start_CPU_run(void);
void end_CPU_run(void);
void report(void);

FIGURE 2.15
C code for the external defi nitions, computer model.
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main()  /* Main function. */
{
    /* Open input and output files. */

    infile  = fopen("tscomp.in",  "r");
    outfile = fopen("tscomp.out", "w");

    /* Read input parameters. */

    fscanf(infile, "%d %d %d %d %f %f %f %f",
           &min_terms, &max_terms, &incr_terms, &num_responses_required,
           &mean_think, &mean_service, &quantum, &swap);

    /* Write report heading and input parameters. */

    fprintf(outfile, "Time-shared computer model\n\n");
    fprintf(outfile, "Number of terminals%9d to%4d by %4d\n\n",
            min_terms, max_terms, incr_terms);
    fprintf(outfile, "Mean think time  %11.3f seconds\n\n", mean_think);
    fprintf(outfile, "Mean service time%11.3f seconds\n\n", mean_service);
    fprintf(outfile, "Quantum          %11.3f seconds\n\n", quantum);
    fprintf(outfile, "Swap time        %11.3f seconds\n\n", swap);
    fprintf(outfile, "Number of jobs processed%12d\n\n\n",
            num_responses_required);
    fprintf(outfile, "Number of      Average         Average");
    fprintf(outfile, "       Utilization\n");
    fprintf(outfile, "terminals   response time  number in queue     of CPU");

    /* Run the simulation varying the number of terminals. */

    for (num_terms = min_terms; num_terms <= max_terms;
         num_terms += incr_terms) {

        /* Initialize simlib */

        init_simlib();

        /* Set maxatr = max(maximum number of attributes per record, 4) */

        maxatr = 4;  /* NEVER SET maxatr TO BE SMALLER THAN 4. */

        /* Initialize the non-simlib statistical counter. */

        num_responses = 0;

        /* Schedule the first arrival to the CPU from each terminal. */

        for (term = 1; term <= num_terms; ++term)
            event_schedule(expon(mean_think, STREAM_THINK), EVENT_ARRIVAL);

        /* Run the simulation until it terminates after an end-simulation event
           (type EVENT_END_SIMULATION) occurs. */

        do {

            /* Determine the next event. */

            timing();

            /* Invoke the appropriate event function. */

            switch (next_event_type) {
                case EVENT_ARRIVAL:
                    arrive();
                    break;

FIGURE 2.16
C code for the main function, computer model.
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“for” loop on the number of terminals. The end-simulation event is not scheduled 
initially, but will be scheduled in the function end_CPU_run at the time of the 
1000th response-time completion, to occur at that time, whereupon the main func-
tion will invoke function report and end the current simulation. When the outer 
“for” loop ends, we have run all the simulations we want, including producing the 
output for each, and so the entire program ends by closing the fi les.

The arrival event is fl owcharted in Fig. 2.17 and the code is in Fig. 2.18. While 
in the computer (i.e., in the queue or in the CPU), each job has its own record with 

               case EVENT_END_CPU_RUN:
                   end_CPU_run();
                   break;
               case EVENT_END_SIMULATION:
                   report();
                   break;
            }

        /* If the event just executed was not the end-simulation event (type
           EVENT_END_SIMULATION), continue simulating.  Otherwise, end the
           simulation. */

        } while (next_event_type != EVENT_END_SIMULATION);
    }

    fclose(infile);
    fclose(outfile);

    return 0;
}

FIGURE 2.16
(continued)

Return

Compute job's attributes
and place in queue

Invoke start_CPU_run

Yes

No

Is
the CPU

idle?

Function
arrive

FIGURE 2.17
Flowchart for arrival function, computer 
model.

Law01323_ch02_085-180.indd Page 114  16/08/13  8:04 PM user-f-w-198 Law01323_ch02_085-180.indd Page 114  16/08/13  8:04 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



chapter two 115

attributes as described earlier. Since this event represents a job’s arrival to the com-
puter at the end of a think time, its attributes must be defi ned now, so the time of ar-
rival is stored in the fi rst attribute and the total service requirement is generated and 
stored in the second attribute. The record for this newly arrived job is then placed at 
the end of the queue. It could be, however, that the CPU is actually idle (i.e., the 
number of records in list LIST_CPU, list_size[LIST_CPU], is equal to 0), in which 
case the function start_CPU_run is invoked to take this job out of the queue (it 
would be the only one there) and place it in the CPU to begin its processing. Implicit 
in the logic of this function is that a job arriving to the computer and fi nding the 
CPU idle cannot just go right in, but must fi rst enter the queue and then be removed 
immediately; this is really a physical assumption that does matter, since there is a 
swap time incurred whenever a job leaves the queue and enters the CPU, as exe-
cuted by function start_CPU_run, to be discussed next.

The non-event function start_CPU_run is fl owcharted in Fig. 2.19, and its code 
is in Fig. 2.20. This function is designed to be invoked from the event function ar-
rive, as just discussed, or from the event function end_CPU_run; thus it must be 
general enough to handle either case. The purpose of the function is to take the fi rst 
job out of the queue, place it in the CPU, and schedule the time when it will leave 
the CPU, by virtue of either being completely done or having used up an entire 
quantum. The fi rst thing to do is to remove the job from the front of the queue, which 
is done by invoking list_remove. Next, the time that the job will occupy the CPU is 
computed, being the smaller of a quantum and the remaining service time (held in 
the job’s second attribute, having just been placed in transfer[2] by list_remove), 
plus a swap time. Before fi ling the job’s record in the CPU list, its remaining service 
time (in transfer[2]) is decremented by a full quantum, even if it needs only a par-
tial quantum to get done; in this case the second attribute of the job becomes nega-
tive, and we use this condition as a fl ag that the job, when leaving the CPU after the 
pass just beginning, is done and is to be sent back to its terminal. On the other hand, 
if the job will not be done after this pass through the CPU, it will be getting a full 

void arrive(void)  /* Event function for arrival of job at CPU after think
                      time. */
{

    /* Place the arriving job at the end of the CPU queue.
       Note that the following attributes are stored for each job record:
            1. Time of arrival to the computer.
            2. The (remaining) CPU service time required (here equal to the
               total service time since the job is just arriving). */

    transfer[1] = sim_time;
    transfer[2] = expon(mean_service, STREAM_SERVICE);
    list_file(LAST, LIST_QUEUE);

    /* If the CPU is idle, start a CPU run. */

    if (list_size[LIST_CPU] == 0)
        start_CPU_run();
}

FIGURE 2.18
C code for function arrive, computer model.
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and compute CPU time
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remaining service time

Place job in CPU

Schedule an
end-CPU-run event

for this job on this pass

Return

Function
start_CPU_run

FIGURE 2.19
Flowchart for function start_CPU_run, computer model.

FIGURE 2.20
C code for function start_CPU_run, computer model.

void start_CPU_run(void)  /* Non-event function to start a CPU run of a job. */
{
    float run_time;

    /* Remove the first job from the queue. */

    list_remove(FIRST, LIST_QUEUE);

    /* Determine the CPU time for this pass, including the swap time. */

    if (quantum < transfer[2])
        run_time = quantum + swap;
    else
        run_time = transfer[2] + swap;

    /* Decrement remaining CPU time by a full quantum.  (If less than a full
       quantum is needed, this attribute becomes negative.  This indicates that
       the job, after exiting the CPU for the current pass, will be done and is
       to be sent back to its terminal.) */

    transfer[2] -= quantum;

    /* Place the job into the CPU. */

    list_file(FIRST, LIST_CPU);

    /* Schedule the end of the CPU run. */

    event_schedule(sim_time + run_time, EVENT_END_CPU_RUN);
}
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quantum of service this time, and its second attribute should be decremented by a 
full quantum, correctly representing the (nonnegative) remaining service time 
needed after this CPU pass. Finally, the job is placed in the CPU list by invoking 
list_fi le (note that transfer[1], the time of this job’s arrival to the computer, is al-
ready correctly set since it is from the record that was just removed from the queue 
list, where the fi rst attribute has the same defi nition), and the end of this CPU run is 
scheduled into the event list.

Event function end_CPU_run is invoked from the main function when a job 
completes a pass through the CPU; it is fl owcharted in Fig. 2.21, and its code is 
listed in Fig. 2.22. The job is fi rst removed from the CPU, after which a check is 
made to see if it still needs more CPU time, i.e., if its second attribute is positive. If 
so, it is simply put back at the end of the queue (note that the attributes for the queue 
and CPU lists match up, so that the contents of transfer are correct), and 
start_CPU_run is invoked to remove the fi rst job from the queue and begin its pro-
cessing. On the other hand, if the job coming out of the CPU is fi nished, its response 
time, sim_time 2 transfer[1], is registered with sampst; as before for long simula-
tions, both sim_time and transfer might have to be of type double to avoid loss of 
precision in this subtraction. The end of its next think time is scheduled, and the 
number of response times observed is incremented. Then a check is made to see 
whether this response time was the last one required; if so, an end-simulation event 
is scheduled to occur immediately (the fi rst argument passed to event_schedule is 
sim_time, the current simulation time), and the timing function will pick off this 
end-simulation event immediately (i.e., without the passage of any simulated time), 
and the main function will invoke the report function to end this simulation. If, how-
ever, the simulation is not over, start_CPU_run is invoked provided that the queue 
is not empty; if the queue is empty, no action is taken and the simulation simply 
continues.

The report generator is listed in Fig. 2.23, and it simply writes to the output fi le 
a single line with the number of terminals for the simulation just completed, the av-
erage returned by sampst for the response times, and the time averages returned by 
fi lest for the queue length and server utilization (recall that sampst, timest, and fi lest 
return in their names the averages they compute, in addition to placing the average 
into transfer[1]).

2.5.3 Simulation Output and Discussion

The output fi le, tscomp.out, is shown in Fig. 2.24. As expected, congestion in the 
computer gets worse as the number of terminals rises, as measured by the average 
response time, average queue length, and CPU utilization. In particular, it appears 
that this system could handle about 60 terminals before the average response time 
degrades to a value much worse than 30 seconds. At this level, we see that the av-
erage queue length would be around 30 jobs, which could be useful for determining 
the amount of space needed to hold these jobs (the maximum queue length might 
have been a better piece of information for this purpose); further, the CPU would be 
busy nearly all the time with such a system. However, our usual caveat applies to 
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FIGURE 2.21
Flowchart for function end_CPU_run, computer model.

Law01323_ch02_085-180.indd Page 118  16/08/13  8:04 PM user-f-w-198 Law01323_ch02_085-180.indd Page 118  16/08/13  8:04 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



chapter two 119

void end_CPU_run(void)  /* Event function to end a CPU run of a job. */
{
    /* Remove the job from the CPU. */

    list_remove(FIRST, LIST_CPU);

    /* Check to see whether this job requires more CPU time. */

    if (transfer[2] > 0.0) {

        /* This job requires more CPU time, so place it at the end of the queue
           and start the first job in the queue. */

        list_file(LAST, LIST_QUEUE);
        start_CPU_run();
    }

    else {

        /* This job is finished, so collect response-time statistics and send it
           back to its terminal, i.e., schedule another arrival from the same
           terminal. */

        sampst(sim_time - transfer[1], SAMPST_RESPONSE_TIMES);

        event_schedule(sim_time + expon(mean_think, STREAM_THINK),
                       EVENT_ARRIVAL);

        /* Increment the number of completed jobs. */

        ++num_responses;

        /* Check to see whether enough jobs are done. */

        if (num_responses >= num_responses_required)

            /* Enough jobs are done, so schedule the end of the simulation
               immediately (forcing it to the head of the event list). */

            event_schedule(sim_time, EVENT_END_SIMULATION);

        else

            /* Not enough jobs are done; if the queue is not empty, start
               another job. */

            if (list_size[LIST_QUEUE] > 0)
                start_CPU_run();
    }
}

FIGURE 2.22
C code for function end_CPU_run, computer model.

FIGURE 2.23
C code for function report, computer model.

void report(void)  /* Report generator function. */
{
    /* Get and write out estimates of desired measures of performance. */

    fprintf(outfile, "\n\n%5d%16.3f%16.3f%16.3f", num_terms,
            sampst(0.0, -SAMPST_RESPONSE_TIMES), filest(LIST_QUEUE),
            filest(LIST_CPU));
}
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these conclusions: The output data on which they are based resulted from just a 
single run of the system (of somewhat arbitrary length) and are thus of unknown 
precision.

2.6
MULTITELLER BANK WITH JOCKEYING

We now use simlib to simulate a multiteller bank where the customers are allowed 
to jockey (move) from one queue to another if it seems to be to their advantage. 
This model also illustrates how to deal with another common stopping rule for a 
simulation.

2.6.1 Problem Statement

A bank with fi ve tellers opens its doors at 9 a.m. and closes its doors at 5 p.m., but 
operates until all customers in the bank by 5 p.m. have been served. Assume that the 
interarrival times of customers are IID exponential random variables with mean 
1 minute and that service times of customers are IID exponential random variables 
with mean 4.5 minutes.

Time-shared computer model

Number of terminals       10 to  80 by   10

Mean think time       25.000 seconds

Mean service time      0.800 seconds

Quantum                0.100 seconds

Swap time              0.015 seconds

Number of jobs processed        1000

Number of      Average         Average       Utilization
terminals   response time  number in queue     of CPU

   10           1.324           0.156           0.358

   20           2.165           0.929           0.658

   30           5.505           4.453           0.914

   40          12.698          12.904           0.998

   50          24.593          23.871           0.998

   60          31.712          32.958           1.000

   70          42.310          42.666           0.999

   80          47.547          51.158           1.000

FIGURE 2.24
Output report, computer model.
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Each teller has a separate queue. An arriving customer joins the shortest queue, 
choosing the leftmost shortest queue in case of ties. Let ni be the total number of 
customers in front of teller i (including customers in queue as well as the customer 
in service, if any) at a particular instant. If the completion of a customer’s service at 
teller i causes nj . ni 1 1 for some other teller j, then the customer from the tail of 
queue j jockeys to the tail of queue i. (If there are two or more such customers, the 
one from the closest, leftmost queue jockeys.) If teller i is idle, the jockeying cus-
tomer begins service at teller i; see Fig. 2.25.

The bank’s management is concerned with operating costs as well as the 
quality of service currently being provided to customers, and is thinking of chang-
ing the number of tellers. For each of the cases n 5 4, 5, 6, and 7 tellers, we use 
simlib to simulate the bank and estimate the expected time-average total number of 
customers in queue, the expected average delay in queue, and the expected maxi-
mum delay in queue. In all cases we assume that no customers are present when the 
bank opens.

2.6.2 simlib Program

The events for this model are:

Event description Event type

Arrival of a customer to the bank 1
Departure of a customer upon completion of his or 2
 her service
Bank closes its doors at 5 p.m. 3

An event graph for this model is given in Fig. 2.26. It is identical to that for the 
single-server queue with fi xed run length (see Fig. 1.27), except that the end- 
simulation event has been replaced by the close-doors event. Even though these two 
events fi t into the event diagram in the same way, the action they must take is quite 
different.

This model requires 2n 1 1 lists of records, where n is the number of tellers for 
a particular simulation run. Lists 1 through n contain the records of the customers 
waiting in the respective queues. Lists n 1 1 through 2n are used to indicate 

1 2 3 4 5
FIGURE 2.25
The customer being served 
by teller i 5 3 completes 
 service, causing the customer 
from the tail of queue j 5 2 
to jockey.
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whether the tellers are busy. If list n 1 i (where i 5 1, 2, . . . , n) contains one 
record, teller i is busy; if it contains no records, teller i is idle. Finally, list 25 is the 
event list, as usual. The attributes for all these lists are as follows:

List Attribute 1 Attribute 2 Attribute 3

1 through n,  Time of arrival to — —
 queues  queue

n 1 1 through 2n,  — — —
 tellers

25, event list Event time Event type Teller number if event 
    type 5 2

Here again we are using separate lists for the servers in the model; in this case the 
only reason for doing so is to represent the busy/idle status of the servers, since no 
meaningful information is stored in the attributes of the records in these lists, and 
we are not asking for server utilization statistics. Note also that we are taking ad-
vantage of the opportunity to store more than just the event time and type in the 
records in the event list. The reason for this is that in the case of a departure event 
(type 2), we need to know the teller number from which the departure will occur in 
order to manage the queues and the jockeying rules correctly. A programming im-
plication of this is that we must remember to defi ne a value for transfer[3] before in-
voking the simlib function event_schedule for type 2 events, since event_schedule 
copies the attributes into only transfer[1] and transfer[2] before fi ling the event 
 record into the event list.

The statistics collection in this model is somewhat different. Since there are 
several different queues, a customer may experience his or her delay (the time 
 elapsing between arrival to the system and commencement of service at some 
server) in several different queues, due to the possibility of jockeying. The cus-
tomer carries along the time of his or her arrival (in attribute 1 of the queue lists) 
regardless of what queue he or she may be in, so that the delay can be computed 

Arrival Departure

Close
doors

FIGURE 2.26
Event graph, bank model.
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when service begins. Thus, we simply lump all the customer delays together into a 
single sampst variable:

sampst variable number Meaning

1 Delay in queue (or queues)

By using sampst, we will automatically get the maximum delay in queue (or queues) 
as well.

We also want to get the time-average total number of customers in queue, which 
is computed as follows. If we let Qi(t) be the number of customers in queue i at time t, 
for i 5 1, 2, . . . , n, then

 Q(t) 5 ^
n

i51

Qi(t) (2.1)

is the total number of customers in all the queues at time t. Thus, what we want to 
compute is

 q̂ 5
#

T

0
Q(t) dt

T
 (2.2)

where T is the time the simulation ends (as determined by the stopping rule de-
scribed above). However, if we substitute Eq. (2.1) into Eq. (2.2) and use linearity 
of integrals, we get
 q̂ 5 q̂1 1 q̂2 1 p 1 q̂n

where

 q̂i 5
#

T

0
Qi(t) dt

T

is simply the time-average number of customers in queue i. All this really says is 
that the average of the sum of the individual queue lengths is the sum of their aver-
age lengths. Thus, we can use fi lest (applied to the lists for the individual queues) at 
the end of the simulation to obtain the q̂i’s, and then just add them together to get q̂. 
To be sure, q̂ could be obtained directly by defi ning a timest variable corresponding 
to Q(t), incrementing it upon each arrival, and decrementing it with the commence-
ment of each service; but we have to keep the queue lists anyway, so the above ap-
proach is preferred. (Problem 2.4 considers an extension of this model where we 
want to know the maximum total number of customers in the queues as well as the 
above statistics; the question addressed there concerns whether the maximum of the 
total is equal to the total of the maxima.)

There are two types of random variables in this model: interarrival times and 
service times. We use the following stream assignments:

Stream Purpose

1 Interarrival times
2 Service times
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Figure 2.27 shows the external defi nitions and global variables for the model. 
As usual, we #include the simlib header fi le simlib.h and then defi ne symbolic con-
stants for the event types, sampst variable, and random-number stream numbers. 
Next, ints are declared for the minimum and maximum number of tellers (4 and 7, 
respectively) for the different simulations we will carry out, and for the number of 
tellers for a given simulation; the “short” ints pertain to queue-selection decisions of 
arriving customers. The input parameters are declared as fl oats; length_doors_open 
is assumed to be read in units of hours, while the time units used elsewhere in 
the simulation are minutes, so an adjustment must be made in the code for this. The 
functions are prototyped, with arrive being for type 1 events, depart for type 2 
events (with an int argument giving the teller number from which the departure is to 
occur), jockey being a non-event function with int argument being the teller number 
where a service is being completed (so is the possible destination for a jockeying 
customer), and report writing the results when the simulation ends at or after 5 p.m.

The main function is shown in Fig. 2.28, and it begins by opening the input and 
output fi les, reading the input parameters, writing them back out, and producing a 
report heading. As in the computer model, there is a for loop around most of the 
main function, with the index num_tellers representing the number of tellers n for 
the current model variant. Invoking init_simlib initializes simlib (note that this 
must be done for each model variant, so is inside the for loop), and maxatr is set to 
4 (we have no more than 3 attributes in any of our records, but maxatr can be no less 
than 4 for simlib to work properly). The fi rst arrival is scheduled, and the close-
doors event is also scheduled, taking care to change the time units to minutes. A 
while loop then begins, continuing to run the current simulation so long as the event 
list is not empty, after which the current simulation is terminated; some explanation 
is required to argue why this is a valid way to implement the termination rule for 

/* External definitions for multiteller bank. */

#include "simlib.h"             /* Required for use of simlib.c. */

#define EVENT_ARRIVAL        1  /* Event type for arrival of a customer. */
#define EVENT_DEPARTURE      2  /* Event type for departure of a customer. */
#define EVENT_CLOSE_DOORS    3  /* Event type for closing doors at 5 P.M. */
#define SAMPST_DELAYS        1  /* sampst variable for delays in queue(s). */
#define STREAM_INTERARRIVAL  1  /* Random-number stream for interarrivals. */
#define STREAM_SERVICE       2  /* Random-number stream for service times. */

/* Declare non-simlib global variables. */

int   min_tellers, max_tellers, num_tellers, shortest_length, shortest_queue;
float mean_interarrival, mean_service, length_doors_open;
FILE  *infile, *outfile;

/* Declare non-simlib functions. */

void arrive(void);
void depart(int teller);
void jockey(int teller);
void report(void);

FIGURE 2.27
C code for the external defi nitions, bank model.
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main()  /* Main function. */
{
    /* Open input and output files. */

    infile  = fopen("mtbank.in",  "r");
    outfile = fopen("mtbank.out", "w");

    /* Read input parameters. */

    fscanf(infile, "%d %d %f %f %f", &min_tellers, &max_tellers,
           &mean_interarrival, &mean_service, &length_doors_open);

    /* Write report heading and input parameters. */

    fprintf(outfile, "Multiteller bank with separate queues & jockeying\n\n");
    fprintf(outfile, "Number of tellers%16d to%3d\n\n",
            min_tellers, max_tellers);
    fprintf(outfile, "Mean interarrival time%11.3f minutes\n\n",
            mean_interarrival);
    fprintf(outfile, "Mean service time%16.3f minutes\n\n", mean_service);
    fprintf(outfile,
            "Bank closes after%16.3f hours\n\n\n\n", length_doors_open);

    /* Run the simulation varying the number of tellers. */

    for (num_tellers = min_tellers; num_tellers <= max_tellers; ++num_tellers) {

        /* Initialize simlib */

        init_simlib();

        /* Set maxatr = max(maximum number of attributes per record, 4) */

        maxatr = 4;  /* NEVER SET maxatr TO BE SMALLER THAN 4. */

        /* Schedule the first arrival. */

        event_schedule(expon(mean_interarrival, STREAM_INTERARRIVAL),
                       EVENT_ARRIVAL);

        /* Schedule the bank closing.  (Note need for consistency of units.) */

        event_schedule(60 * length_doors_open, EVENT_CLOSE_DOORS);

        /* Run the simulation while the event list is not empty. */

        while (list_size[LIST_EVENT] != 0) {

            /* Determine the next event. */

            timing();

            /* Invoke the appropriate event function. */

            switch (next_event_type) {

                case EVENT_ARRIVAL:
                    arrive();
                    break;
                case EVENT_DEPARTURE:
                    depart((int) transfer[3]);  /* transfer[3] is teller
                                                   number. */
                    break;
                case EVENT_CLOSE_DOORS:
                    event_cancel(EVENT_ARRIVAL);
                    break;
            }
        }

FIGURE 2.28
C code for the main function, bank model.
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the model. So long as it is before 5 p.m. the close-doors event will be in the event 
list, and there will always be the next arrival scheduled, so the list will not be 
empty. At 5 p.m. the close-doors event will occur, removing this event record from 
the list, and the action of this event will be to remove (using simlib function 
event_cancel) the next-arrival event, thus “choking off” the arrival stream and re-
moving this event from the event list from then on (since an arrival is scheduled 
only upon initialization and by the preceding arrival). The only other types of 
events are the departure events; and if there are any customers left in the bank at 
5 p.m., some of them will be in service and their departure events will be in the event 
list. Eventually (or perhaps immediately at 5 p.m. if there happen to be no customers 
in the bank at that time), all the customers in the bank will receive service and de-
part, at which point the event list will become empty and the simulation will end. 
As long as the while loop is executing, we have the usual activities of invoking the 
timing function, passing control to arrive or depart for an arrival or departure event 
(note the int cast on the argument passed to depart, being the teller number in the 
third attribute of a departure event record), and executing the close-doors event, as 
described above, when it becomes time to do so. When the while loop ends, the cur-
rent simulation is over and report is invoked to produce the output. After the for 
loop ends, all the simulations are over, so we close the input and output fi les and 
terminate the program.

A fl owchart and the code for the arrival event are given in Figs. 2.29 and 2.30. 
The function begins by scheduling the next arrival event. Then a for loop begins, 
with index variable “teller” running over the teller numbers, and each teller is 
looked at in turn (list numbers n 1 1, n 1 2, . . . , 2n) to see whether they are idle 
(i.e., whether list_size[num_tellers 1 teller] is equal to 0). As soon as an idle teller 
is found, the customer’s delay of 0 is registered in sampst, the teller is made busy 
by fi ling a dummy record in that teller’s list, and this customer’s service-completion 
event is scheduled. Then the return statement transfers control back to the main 
function, and neither the rest of the arrive function nor the rest of this for loop (if 
any) is executed. The remainder of the function refers to the case when all tellers 
are busy, and the rest of this for loop refers to other, higher-numbered tellers at 
whom we don’t want to look in any case due to the preference for the lowest-
numbered idle teller. If this for loop is completed, then all tellers are busy, and 
the next for loop searches across the queues to fi nd the shortest one, choosing the 
lowest-numbered one if there is a tie. This tie-breaking rule is implemented by the 

        /* Report results for the simulation with num_tellers tellers. */

        report();
    }

    fclose(infile);
    fclose(outfile);

    return 0;
}

FIGURE 2.28
(continued)
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strict inequality (,) in the if statement in the for loop, meaning that in the left-to-
right search a new choice of the queue would be taken only if the new queue is 
strictly shorter than the earlier choice. After fi nishing this for loop, the int short-
est_queue will contain the queue number chosen, and the arriving customer is put 
at the end of that queue, with the time of arrival being the only attribute needed.

Event function depart, with the fl owchart and code given in Figs. 2.31 and 
2.32, is invoked from the main program when a customer completes service; the int 
argument “teller” is the number of the teller who is completing a service. If the 
queue for this teller is empty (list_size[teller] is 0), the teller is made idle by re-
moving the dummy record from the corresponding list, and function jockey is in-
voked to determine whether a customer from another queue can jockey into service 
at teller number “teller”, who just became idle. On the other hand, if the queue for 
this teller is not empty, the fi rst customer is removed, his or her delay in queue 

Function
arrive

Return

Schedule the next
arrival event

Place the customer at
the end of queue

number shortest_queue

Schedule a
departure event for

this customer

Find the number,
shortest_queue, of the
leftmost shortest queue

Tally a delay of 0
for this customer

Make the
teller busy

Is
a teller
idle?

Yes No

FIGURE 2.29
Flowchart for arrival function, bank model.
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(sim_time 2 transfer[1]) is registered in sampst, and the service-completion event 
is scheduled; for long simulations, sim_time and transfer might have to be made 
type double to avoid loss of precision in the subtraction to calculate the delay in 
queue. Note that it is our responsibility to defi ne transfer[3] to be the teller number 
before invoking event_schedule, since this function only copies the time and type of 
event (attributes 1 and 2) into the transfer array before fi ling it into the event list. In 
any case, we must invoke jockey to see if any customers from other queues want to 

void arrive(void)  /* Event function for arrival of a customer to the bank. */
{
    int teller;

    /* Schedule next arrival. */

    event_schedule(sim_time + expon(mean_interarrival, STREAM_INTERARRIVAL),
                   EVENT_ARRIVAL);

    /* If a teller is idle, start service on the arriving customer. */

    for (teller = 1; teller <= num_tellers; ++teller) {

        if (list_size[num_tellers + teller] == 0) {

            /* This teller is idle, so customer has delay of zero. */

            sampst(0.0, SAMPST_DELAYS);

            /* Make this teller busy (attributes are irrelevant). */

            list_file(FIRST, num_tellers + teller);

            /* Schedule a service completion. */

            transfer[3] = teller;  /* Define third attribute of type-two event-
                                      list record before event_schedule. */

            event_schedule(sim_time + expon(mean_service, STREAM_SERVICE),
                           EVENT_DEPARTURE);

            /* Return control to the main function. */

            return;
        }
    }

    /* All tellers are busy, so find the shortest queue (leftmost shortest in
       case of ties). */

    shortest_length = list_size[1];
    shortest_queue  = 1;
    for (teller = 2; teller <= num_tellers; ++teller)
        if (list_size[teller] < shortest_length) {
            shortest_length = list_size[teller];
            shortest_queue  = teller;
        }

    /* Place the customer at the end of the leftmost shortest queue. */

    transfer[1] = sim_time;
    list_file(LAST, shortest_queue);
}

FIGURE 2.30
C code for function arrive, bank model.
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jockey into this queue. (No customers should jockey after an arrival occurs, since 
this would not decrease their expected time to departure.)

The non-event function jockey is invoked with an int argument “teller” to see if 
a customer can jockey to the queue for teller “teller” from another (longer) queue, 
or possibly right into service at teller “teller” if he just became idle; its fl owchart 
and code are shown in Figs. 2.33 and 2.34. The int variable jumper will hold 
the queue number of the jockeying customer, if any; it is set to zero initially and is 
made positive only if such a customer is found. The int variable min_distance is the 
(absolute) distance (in number of queues) of a potential jockeyer to the destination 
queue, and it is set to a large number initially, since we want to scan for the  
minimum such distance. The number of customers facing teller “teller” is the int 
variable ni, that is, ni 5 ni for i 5 “teller”. The for loop examines the queues 
(other_teller) to see if any of them satisfy the jockeying requirements, represented 

Function
depart

Compute this
customer's delay and

gather statistics

Schedule a
departure event

for this customer

Invoke jockey

Remove the first
customer from

this queue
Make this teller idle

Return

Is the
queue for this teller

empty?

Yes No

FIGURE 2.31
Flowchart for departure function, bank model.
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here by the condition other_teller fi teller (since a customer would not jockey to 
his or her own queue) and nj . ni 1 1, where nj is the number of customers fac-
ing teller other_teller, that is, nj 5 nj for j 5 other_teller. If both of these condi-
tions are satisfi ed, then the customer at the end of queue number other_teller would 
like to jockey, and this customer will (temporarily, perhaps) be issued a jockeying 
pass if she is strictly closer to the target queue than earlier customers who would 
also like to jockey (i.e., if the variable “distance”, the number of queues this 
would-be jockeyer is away, is strictly less than the distance of the earlier closest 
would-be jockeyer). Note that in the case of two closest would-be jockeyers (one 
on the left and one on the right), we would jockey the one from the left since the 
one on the right would have to have been strictly closer. When this for loop ends, 
jumper will be zero if the other queue lengths were such that nobody wants to 
jockey, in which case control is passed back to the main function and no action is 
taken. If, however, jumper is positive, then it is equal to the queue number from 
which a customer will jockey, and that customer is removed from the end of his 
queue. A check is then made to see whether the teller who just fi nished service is 
busy (with the customer who was fi rst in this teller’s queue), in which case the 
jockeying customer just joins the end of his new queue. If this teller is idle, how-
ever, the jockeying customer jockeys right into service, so his delay is computed 
and registered, the server is made busy again, and the jockeying customer’s service 
completion is scheduled.

The code for the report generator is in Fig. 2.35, and starts with a loop to add up 
the average numbers in the separate queues to get the average total number in 
queue, as explained earlier; this is then written out together with the number of 

void depart(int teller)  /* Departure event function. */
{
    /* Check to see whether the queue for teller "teller" is empty. */

    if (list_size[teller] == 0)

        /* The queue is empty, so make the teller idle. */

        list_remove(FIRST, num_tellers + teller);

    else {

        /* The queue is not empty, so start service on a customer. */

        list_remove(FIRST, teller);
        sampst(sim_time - transfer[1], SAMPST_DELAYS);
        transfer[3] = teller;  /* Define before event_schedule. */
        event_schedule(sim_time + expon(mean_service, STREAM_SERVICE),
                       EVENT_DEPARTURE);
    }

    /* Let a customer from the end of another queue jockey to the end of this
       queue, if possible. */

    jockey(teller);
}

FIGURE 2.32
C code for function depart, bank model.
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tellers in this model variant. Finally, the standard-format output function is invoked 
for the sole sampst variable to write out the average and maximum of the customer 
delays in queue(s).

2.6.3 Simulation Output and Discussion

Figure 2.36 contains the results (in the fi le mtbank.out) of the simulations. Com-
pared to the current policy of fi ve tellers, a reduction to four tellers would seem to 
penalize customer service quality heavily in terms of both delays in queue and the 

Make the
teller  busy

Schedule a departure
event for the

jockeying customer

Compute the delay of
the jockeying customer

and gather statistics

Return

Is 
the teller who just
completed service

now busy?

Yes No

Function
jockey

Remove this customer
from the tail of 

his or her current queue

Is there
a customer to

jockey?

Yes No

Place the jockeying
customer at the tail of

the queue of the teller who
just completed service

FIGURE 2.33
Flowchart for function jockey, bank model.
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void jockey(int teller)  /* Jockey a customer to the end of queue "teller" from
                            the end of another queue, if possible. */
{
    int jumper, min_distance, ni, nj, other_teller, distance;

    /* Find the number, jumper, of the queue whose last customer will jockey to
       queue or teller "teller", if there is such a customer. */

    jumper       = 0;
    min_distance = 1000;
    ni           = list_size[teller] + list_size[num_tellers + teller];

    /* Scan all the queues from left to right. */

    for (other_teller = 1; other_teller <= num_tellers; ++other_teller) {

        nj = list_size[other_teller] + list_size[num_tellers + other_teller];
        distance = abs(teller - other_teller);

        /* Check whether the customer at the end of queue other_teller qualifies
           for being the jockeying choice so far. */

        if (other_teller != teller && nj > ni + 1 && distance < min_distance) {

            /* The customer at the end of queue other_teller is our choice so
               far for the jockeying customer, so remember his queue number and
               its distance from the destination queue. */

            jumper       = other_teller;
            min_distance = distance;
        }
    }

    /* Check to see whether a jockeying customer was found. */

    if (jumper > 0) {

        /* A jockeying customer was found, so remove him from his queue. */

        list_remove(LAST, jumper);

        /* Check to see whether the teller of his new queue is busy. */

        if (list_size[num_tellers + teller] > 0)

            /* The teller of his new queue is busy, so place the customer at the
               end of this queue. */

            list_file(LAST, teller);

        else {

            /* The teller of his new queue is idle, so tally the jockeying
               customer's delay, make the teller busy, and start service. */

            sampst(sim_time - transfer[1], SAMPST_DELAYS);
            list_file(FIRST, num_tellers + teller);
            transfer[3] = teller;  /* Define before event_schedule. */
            event_schedule(sim_time + expon(mean_service, STREAM_SERVICE),
                           EVENT_DEPARTURE);
        }
    }
}

FIGURE 2.34
C code for function jockey, bank model.
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void report(void)  /* Report generator function. */
{
    int   teller;
    float avg_num_in_queue;

    /* Compute and write out estimates of desired measures of performance. */

    avg_num_in_queue = 0.0;
    for (teller = 1; teller <= num_tellers; ++teller)
        avg_num_in_queue += filest(teller);
    fprintf(outfile, "\n\nWith%2d tellers, average number in queue = %10.3f",
            num_tellers, avg_num_in_queue);
    fprintf(outfile, "\n\nDelays in queue, in minutes:\n");
    out_sampst(outfile, SAMPST_DELAYS, SAMPST_DELAYS);
}

FIGURE 2.35
C code for function report, bank model.

Multiteller bank with separate queues & jockeying

Number of tellers               4 to  7

Mean interarrival time      1.000 minutes

Mean service time           4.500 minutes

Bank closes after           8.000 hours

With 4 tellers, average number in queue =     51.319

Delays in queue, in minutes:

 sampst                         Number
variable                          of
 number       Average           values          Maximum          Minimum
________________________________________________________________________

    1         63.2229          501.000          156.363         0.000000 
________________________________________________________________________

With 5 tellers, average number in queue =      2.441

Delays in queue, in minutes:

 sampst                         Number
variable                          of
 number       Average           values          Maximum          Minimum
________________________________________________________________________

    1         2.48149          483.000          21.8873         0.000000 
________________________________________________________________________

With 6 tellers, average number in queue =      0.718

Delays in queue, in minutes:

 sampst                         Number
variable                          of
 number       Average           values          Maximum          Minimum
________________________________________________________________________

    1        0.763755          467.000          16.5103         0.000000 
________________________________________________________________________

FIGURE 2.36
Output report, bank model.
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queue lengths. In the other direction, adding a sixth teller would bring a substantial 
improvement in customer service and average queue lengths; whether this is eco-
nomically advisable would depend on how management values this improvement 
in customer service with respect to the cost of the extra teller. It seems unlikely in 
this example that adding a seventh teller could be justifi ed, since the service im-
provement does not appear great relative to the six-teller system. Note also that we 
know how many customers were served during the day in each system variant, 
being the number of delays observed. There is little variation in this quantity across 
the system variants, since the arrival rate is the same and the lobby has unlimited 
space.

Problem 2.4(b) and (c) embellishes this model by adding new output measures 
(a measure of server utilization and the maximum total number of customers in the 
queues), and Prob. 2.4(d) further enhances the model by considering the realistic 
possibility of a limit on the size of the bank’s lobby to hold the customers in the 
queues.

2.7
JOB-SHOP MODEL

In this section, we use simlib to simulate a model of a manufacturing system. This 
example, the most complex one we have considered, illustrates how simulation can 
be used to identify bottlenecks in a production process.

2.7.1 Problem Statement

A manufacturing system consists of fi ve workstations, and at present stations 1, 
2, . . . , 5 consist of 3, 2, 4, 3, and 1 identical machine(s), respectively, as shown 
in Fig. 2.37. In effect, the system is a network of fi ve multiserver queues. Assume 
that jobs arrive at the system with interarrival times that are IID exponential 
 random variables with mean 0.25 hour. There are three types of jobs, and arriving 
jobs are of type 1, 2, and 3 with respective probabilities 0.3, 0.5, and 0.2. Job types 1, 
2, and 3 require 4, 3, and 5 tasks to be done, respectively, and each task must be 

With 7 tellers, average number in queue =      0.179

Delays in queue, in minutes:

 sampst                         Number
variable                          of
 number       Average           values          Maximum          Minimum
________________________________________________________________________

    1        0.176180          493.000          6.97122         0.000000 
________________________________________________________________________

FIGURE 2.36
(continued)
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done at a specifi ed station and in a prescribed order. The routings for the different 
job types are:

Job type Workstations in routing

1 3, 1, 2, 5
2 4, 1, 3
3 2, 5, 1, 4, 3

Thus, type 2 jobs fi rst have a task done at station 4, then have a task done at station 1, 
and fi nally have a task done at station 3.

If a job arrives at a particular station and fi nds all machines in that station al-
ready busy, the job joins a single FIFO queue at that station. The time to perform a 
task at a particular machine is an independent 2-Erlang random variable whose 
mean depends on the job type and the station to which the machine belongs. (If X is 
a 2-Erlang random variable with mean r, then X 5 Y1 1 Y2, where Y1 and Y2 are 
independent exponential random variables each with mean ry2. Alternatively X is 
known as a gamma random variable with shape parameter 2 and scale parameter 
ry2. See Sec. 6.2.2 for further details.) We chose the 2-Erlang distribution to repre-
sent service times because experience has shown that if one collects data on the time 
to perform some task, the histogram of these data will often have a shape similar to 

1 2

4 5

3

Type 1 job

FIGURE 2.37
Manufacturing system with fi ve 
workstations, showing the route 
of type 1 jobs.
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that of the density function for an Erlang distribution. The mean service times for 
each job type and each task are:

Job type Mean service times for successive tasks, hours

1 0.50, 0.60, 0.85, 0.50
2 1.10, 0.80, 0.75
3 1.20, 0.25, 0.70, 0.90, 1.00

Thus, a type 2 job requires a mean service time of 1.10 hours at station 4 (where its 
fi rst task will be done).

Assuming no loss of continuity between successive days’ operations of the 
system, we simulate the system for 365 eight-hour days and estimate the expected 
average total delay in queue (exclusive of service times) for each job type and 
the expected overall average job total delay. We use the true job-type probabilities 
0.3, 0.5, and 0.2 as weights in computing the latter quantity. In addition, we estimate 
the expected average number in queue, the expected utilization (using simlib func-
tion timest), and the expected average delay in queue for each station.

Suppose that all machines cost approximately the same and that the system 
has the opportunity to purchase one new machine with an eye toward effi ciency 
improvement. We will use the results of the above simulation to decide what addi-
tional simulation runs should be made. (Each of these new runs will involve a total of 
14 machines, being 1 more than the original number.) From these additional runs, 
we will use the overall average job total delay to help decide what type of machine 
the system should purchase.

2.7.2 simlib Program

The events for this model are quite straightforward:

Event description Event type

Arrival of a job to the system 1
Departure of a job from a particular station 2
End of the simulation 3

Note that for this model, the departure event refers to a job’s departing from any 
 station on its route, so does not represent the job’s leaving the system unless the 
 de parture is from the fi nal station on its route. An event graph for this model is given 
in Fig. 2.38.

We will use the following list structure:

List Attribute 1 Attribute 2 Attribute 3 Attribute 4

1 through 5, Time of arrival to Job type Task number  —
 queues  station
25, event list Event time Event type Job type Task number
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The “time of arrival” in attribute 1 of a queue list refers to the arrival time of the job 
to the station for that list, rather than the original arrival time to the system. The 
“task number” of a job represents how far along it is on its route, and will be equal 
to 1 for the fi rst task, 2 for the second task, and so on; for example, task number 2 
for a job of type 3 refers to its processing at station 5. Thus, the station for a job can 
be determined by knowing the job type and task number.

The delays of the jobs in the queues are used in different ways in this model, so 
the sampst variable structure is richer than in our previous models. We want the 
average delay in queue for each station (regardless of job type), and sampst 
 variables 1 through 5 will be used for this. Also, we want to fi nd the average delay 
in all the queues visited by each job type (regardless of station), for which sampst 
variables 6 through 8 will be used:

sampst variable number Meaning

1 Delay in queue at station 1
2 Delay in queue at station 2
3 Delay in queue at station 3
4 Delay in queue at station 4
5 Delay in queue at station 5
6 Delay in queues for job type 1
7 Delay in queues for job type 2
8 Delay in queues for job type 3

Thus, each delay in each queue will be registered into two different sampst vari-
ables, one for the station and another for the job type.

For the continuous-time statistics, we will use fi lest as before and will now use 
timest as well. Since we have a list for each queue, we can easily get the time- 
average number in each of the queues by using fi lest. We also want to observe the 
utilization of each station; since there may be more than one machine in a station, 
this is defi ned as the time-average number of machines that are busy in the station, 
divided by the total number of machines in the station. To fi nd the average number 
of busy machines in a station, we will keep our own (i.e., non-simlib) array 
num_machines_busy[j], which we will maintain as the number of machines 

Depart
from a
 station

Arrival
of a new

job

End
simulation

FIGURE 2.38
Event graph, job-shop model.
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 currently busy in station j, and timest will be invoked whenever this changes value 
for any station. Thus, we have the following timest variables:

timest variable number Meaning

1 Number of machines busy in station 1
2 Number of machines busy in station 2
3 Number of machines busy in station 3
4 Number of machines busy in station 4
5 Number of machines busy in station 5

For this model, there are three types of random variables needed, to which we 
assign the following streams:

Stream Purpose

1 Interarrival times
2 Job types
3 Service times

Stream 3 is used to generate the service times of all jobs, regardless of type; in some 
simulations we might want to dedicate a separate stream to generate the service time 
of each job type or at each station in order to control the exact characteristics of each 
job type or each station.

The external defi nitions for the program are in Fig. 2.39. After the required 
#include of simlib.h, we defi ne symbolic constants for the event types, random-
number stream numbers, as well as maximum values for the number of stations and 
job types; these maxima will be used to allocate space in arrays, and using them in-
stead of putting the numbers directly in the array declarations makes the program 
more general. We next declare several ints and int arrays with names that are mostly 
self-explanatory; we will use i as a job-type index and j as a station or task-number 
index. The number of machines that exist in station j is num_machines[j], the total 
number of tasks (i.e., station visits) for a job of type i is num_tasks[i], and route[i][j] 
is the station for task j for a type i job. Several fl oats and fl oat arrays are declared: 
mean_interarrival is in units of hours (being the time unit for the model), but 
length_simulation is the length of the simulation in 8-hour days (5 365) so a time-
unit adjustment will have to be made; prob_distrib_job_type[i] is the probability 
that a job will be of type less than or equal to i; and mean_service[i][j] is the mean 
service time (in hours) of task j for a job of type i. The functions are then declared; 
note that an int argument new_job is passed into arrive, with a value of 1 if this is a 
new arrival to the system (in which case arrive will serve as an event function) and 
with a value of 2 if this is the non-event of a job’s leaving one station and “arriving” 
at the next station along its route (in which case arrive will serve as a non-event 
“utility” function).

The main function, which is somewhat lengthy but of the usual form, is in 
Fig. 2.40. Note the correction done in the invocation of event_schedule for the end-
simulation event to maintain consistency of time units.
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The function arrive, fl owcharted in Fig. 2.41 and listed in Fig. 2.42, begins 
by checking new_ job to determine whether it is being used as an event function 
to process a new arrival to the system (new_ job 5 1), or whether it is being used 
as the last part of a station-departure event to process an existing job’s arrival at 
the next station along its route (new_job 5 2). If this is a new arrival, the next 
arrival is scheduled and the job type of this new arrival is generated as a random 
integer between 1 and 3, using simlib function random_integer and the cumula-
tive probabilities in prob_distrib_ job_type; fi nally, the task number for this new 
job is initialized to 1. As we will see in the discussion of depart below, if this is 
not a new arrival, its job type and task number will already have the correct val-
ues in the global variables job_type and task. Regardless of whether the job is 
new, the function continues by determining the station of the arrival from its job 
type and task number, by a lookup in the route array. Then a check is made to see 
whether all the machines in the station are busy. If so, the job is just put at the 
end of the station’s queue. If not, the job has a zero delay here (registered in 
sampst for both the station and the job type), a machine in this station is made 
busy, and this is noted in the appropriate timest variable. Note the use of the 
fl oat cast on the int array num_machines_busy to transform its value into a fl oat, 
as required by timest. Finally, this job’s exit from the station is scheduled, being 
careful to defi ne event-record attributes beyond the fi rst two before invoking 
event_schedule.

/* External definitions for job-shop model. */

#include "simlib.h"              /* Required for use of simlib.c. */

#define EVENT_ARRIVAL         1  /* Event type for arrival of a job to the
                                    system. */
#define EVENT_DEPARTURE       2  /* Event type for departure of a job from a
                                    particular station. */
#define EVENT_END_SIMULATION  3  /* Event type for end of the simulation. */
#define STREAM_INTERARRIVAL   1  /* Random-number stream for interarrivals. */
#define STREAM_JOB_TYPE       2  /* Random-number stream for job types. */
#define STREAM_SERVICE        3  /* Random-number stream for service times. */
#define MAX_NUM_STATIONS      5  /* Maximum number of stations. */
#define MAX_NUM_JOB_TYPES     3  /* Maximum number of job types. */

/* Declare non-simlib global variables. */

int   num_stations, num_job_types, i, j, num_machines[MAX_NUM_STATIONS + 1],
      num_tasks[MAX_NUM_JOB_TYPES +1],
      route[MAX_NUM_JOB_TYPES +1][MAX_NUM_STATIONS + 1],
      num_machines_busy[MAX_NUM_STATIONS + 1], job_type, task;
float mean_interarrival, length_simulation, prob_distrib_job_type[26],
      mean_service[MAX_NUM_JOB_TYPES +1][ MAX_NUM_STATIONS + 1];
FILE  *infile, *outfile;

/* Declare non-simlib functions. */

void  arrive(int new_job);
void  depart(void);
void  report(void);

FIGURE 2.39
C code for the external defi nitions, job-shop model.
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main()  /* Main function. */
{
    /* Open input and output files. */

    infile  = fopen("jobshop.in",  "r");
    outfile = fopen("jobshop.out", "w");

    /* Read input parameters. */

    fscanf(infile, "%d %d %f %f", &num_stations, &num_job_types,
           &mean_interarrival, &length_simulation);
    for (j = 1; j <= num_stations; ++j)
        fscanf(infile, "%d", &num_machines[j]);
    for (i = 1; i <= num_job_types; ++i)
        fscanf(infile, "%d", &num_tasks[i]);
    for (i = 1; i <= num_job_types; ++i) {
        for (j = 1; j <= num_tasks[i]; ++j)
            fscanf(infile, "%d", &route[i][j]);
        for (j = 1; j <= num_tasks[i]; ++j)
            fscanf(infile, "%f", &mean_service[i][j]);
    }
    for (i = 1; i <= num_job_types; ++i)
        fscanf(infile, "%f", &prob_distrib_job_type[i]);

    /* Write report heading and input parameters. */

    fprintf(outfile, "Job-shop model\n\n");
    fprintf(outfile, "Number of workstations%21d\n\n", num_stations);
    fprintf(outfile, "Number of machines in each station     ");
    for (j = 1; j <= num_stations; ++j)
        fprintf(outfile, "%5d", num_machines[j]);
    fprintf(outfile, "\n\nNumber of job types%25d\n\n", num_job_types);
    fprintf(outfile, "Number of tasks for each job type      ");
    for (i = 1; i <= num_job_types; ++i)
        fprintf(outfile, "%5d", num_tasks[i]);
    fprintf(outfile, "\n\nDistribution function of job types  ");
    for (i = 1; i <= num_job_types; ++i)
        fprintf(outfile, "%8.3f", prob_distrib_job_type[i]);
    fprintf(outfile, "\n\nMean interarrival time of jobs%14.2f hours\n\n",
            mean_interarrival);
    fprintf(outfile, "Length of the simulation%20.1f eight-hour days\n\n\n",
            length_simulation);
    fprintf(outfile, "Job type     Workstations on route");
    for (i = 1; i <= num_job_types; ++i) {
        fprintf(outfile, "\n\n%4d        ", i);
        for (j = 1; j <= num_tasks[i]; ++j)
            fprintf(outfile, "%5d", route[i][j]);
    }
    fprintf(outfile, "\n\n\nJob type     ");
    fprintf(outfile, "Mean service time (in hours) for successive tasks");
    for (i = 1; i <= num_job_types; ++i) {
        fprintf(outfile, "\n\n%4d    ", i);
        for (j = 1; j <= num_tasks[i]; ++j)
            fprintf(outfile, "%9.2f", mean_service[i][j]);
    }

    /* Initialize all machines in all stations to the idle state. */

    for (j = 1; j <= num_stations; ++j)
        num_machines_busy[j] = 0;

    /* Initialize simlib */

    init_simlib();

FIGURE 2.40
C code for the main function, job-shop model.
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   /* Set maxatr = max(maximum number of attributes per record, 4) */

    maxatr = 4;  /* NEVER SET maxatr TO BE SMALLER THAN 4. */

    /* Schedule the arrival of the first job. */

    event_schedule(expon(mean_interarrival, STREAM_INTERARRIVAL),
                   EVENT_ARRIVAL);

    /* Schedule the end of the simulation.  (This is needed for consistency of
       units.) */

    event_schedule(8 * length_simulation, EVENT_END_SIMULATION);

    /* Run the simulation until it terminates after an end-simulation event
       (type EVENT_END_SIMULATION) occurs. */

    do {

        /* Determine the next event. */

        timing();

        /* Invoke the appropriate event function. */

        switch (next_event_type) {
            case EVENT_ARRIVAL:
                arrive(1);
                break;
            case EVENT_DEPARTURE:
                depart();
                break;
            case EVENT_END_SIMULATION:
                report();
                break;
        }

    /* If the event just executed was not the end-simulation event (type
       EVENT_END_SIMULATION), continue simulating.  Otherwise, end the
       simulation. */

    } while (next_event_type != EVENT_END_SIMULATION);

    fclose(infile);
    fclose(outfile);

    return 0;
}

FIGURE 2.40
(continued)

A fl owchart and listing for event function depart are given in Figs. 2.43 and 
2.44. The values of job_type and task for the departing job are obtained from the 
departure event record, which was just placed in the transfer array by timing, and 
the station “station” from which this job is leaving is then looked up in the route 
array. If the queue for this station is empty, a machine in this station is made idle, 
and timest is notifi ed of this. If there is a queue, the fi rst job is removed from it 
 (having job type job_type_queue and task number task_queue, to maintain its 
 distinction from the earlier job that is leaving this station), its delay is registered in 
the two appropriate sampst variables, and its departure from this station is sched-
uled; again, for long simulations both sim_time and transfer might have to be of 
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FIGURE 2.41
Flowchart for arrival function, job-shop model.
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void arrive(int new_job)  /* Function to serve as both an arrival event of a job
                             to the system, as well as the non-event of a job's
                             arriving to a subsequent station along its
                             route. */
{
    int station;

    /* If this is a new arrival to the system, generate the time of the next
       arrival and determine the job type and task number of the arriving
       job. */

    if (new_job == 1) {

        event_schedule(sim_time + expon(mean_interarrival, STREAM_INTERARRIVAL),
                       EVENT_ARRIVAL);
        job_type = random_integer(prob_distrib_job_type, STREAM_JOB_TYPE);
        task     = 1;
    }

    /* Determine the station from the route matrix. */

    station = route[job_type][task];

    /* Check to see whether all machines in this station are busy. */

    if (num_machines_busy[station] == num_machines[station]) {

        /* All machines in this station are busy, so place the arriving job at
           the end of the appropriate queue. Note that the following data are
           stored in the record for each job:
             1. Time of arrival to this station.
             2. Job type.
             3. Current task number. */

        transfer[1] = sim_time;
        transfer[2] = job_type;
        transfer[3] = task;
        list_file(LAST, station);
    }

    else {

        /* A machine in this station is idle, so start service on the arriving
           job (which has a delay of zero). */

        sampst(0.0, station);                              /* For station. */
        sampst(0.0, num_stations + job_type);              /* For job type. */
        ++num_machines_busy[station];
        timest((float) num_machines_busy[station], station);

        /* Schedule a service completion.  Note defining attributes beyond the
           first two for the event record before invoking event_schedule. */

        transfer[3] = job_type;
        transfer[4] = task;
        event_schedule(sim_time
                       + erlang(2, mean_service[job_type][task],
                                STREAM_SERVICE),
                       EVENT_DEPARTURE);
    }
}

FIGURE 2.42
C code for the function arrive, job-shop model.
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FIGURE 2.43
Flowchart for departure function, job-shop model.
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void depart(void)  /* Event function for departure of a job from a particular
                      station. */
{
    int station, job_type_queue, task_queue;

    /* Determine the station from which the job is departing. */

    job_type = transfer[3];
    task     = transfer[4];
    station  = route[job_type][task];

    /* Check to see whether the queue for this station is empty. */

    if (list_size[station] == 0) {

        /* The queue for this station is empty, so make a machine in this
           station idle. */

        --num_machines_busy[station];
        timest((float) num_machines_busy[station], station);
    }

    else {

        /* The queue is nonempty, so start service on first job in queue. */

        list_remove(FIRST, station);

        /* Tally this delay for this station. */

        sampst(sim_time - transfer[1], station);

        /* Tally this same delay for this job type. */

        job_type_queue = transfer[2];
        task_queue     = transfer[3];
        sampst(sim_time - transfer[1], num_stations + job_type_queue);

        /* Schedule end of service for this job at this station.  Note defining
           attributes beyond the first two for the event record before invoking
           event_schedule. */

        transfer[3] = job_type_queue;
        transfer[4] = task_queue;
        event_schedule(sim_time
                       + erlang(2, mean_service[job_type_queue][task_queue],
                                STREAM_SERVICE),
                       EVENT_DEPARTURE);
}

    /* If the current departing job has one or more tasks yet to be done, send
       the job to the next station on its route. */

    if (task < num_tasks[job_type]) {
        ++task;
        arrive(2);
    }
}

FIGURE 2.44
C code for the function depart, job-shop model.
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type double to avoid excessive roundoff error in the subtraction for the delay calcu-
lation. Finally, if the job leaving this station still has more tasks to be done, its task 
number is incremented and it is sent on its way to the next station on its route by 
invoking arrive, now with new_job set to 2 to indicate that this is not a newly arriv-
ing job.

The code for the report-generator function is in Fig. 2.45. The fi rst for loop 
computes the average total delay in all the queues for each job type i; the word 
“total” is used here to indicate that this is to be the average delay summed for all the 
queues along the route for each job type. We must multiply the average returned 
in  sampst by the number of tasks for this job type, num_tasks[i], since sampst 
was invoked for each job of this type that left the system num_tasks[i] times rather 
than once, so that the denominator used by sampst to compute the average is 
num_tasks[i] times too large. We then weight these average total delays by the prob-
abilities for the job types and add them up to get the overall average job total delay; 
we use these true (exact) probabilities of job types to obtain a more precise (less 
variable) estimate than if we simply averaged all the job total delays regardless of 
job type. Also, we must take successive differences in the prob_distrib_ job_type 
array to recover the probabilities of the job types’ occurring, since this array 
 contains the cumulative probabilities. (A technicality: The above multiplication of 

void report(void)  /* Report generator function. */
{
    int   i;
    float overall_avg_job_tot_delay, avg_job_tot_delay, sum_probs;

    /* Compute the average total delay in queue for each job type and the
       overall average job total delay. */

    fprintf(outfile, "\n\n\n\nJob type     Average total delay in queue");
    overall_avg_job_tot_delay = 0.0;
    sum_probs                 = 0.0;
    for (i = 1; i <= num_job_types; ++i) {
        avg_job_tot_delay = sampst(0.0, -(num_stations + i)) * num_tasks[i];
        fprintf(outfile, "\n\n%4d%27.3f", i, avg_job_tot_delay);
        overall_avg_job_tot_delay += (prob_distrib_job_type[i] - sum_probs)
                                     * avg_job_tot_delay;
        sum_probs = prob_distrib_job_type[i];
    }
    fprintf(outfile, "\n\nOverall average job total delay =%10.3f\n",
            overall_avg_job_tot_delay);

    /* Compute the average number in queue, the average utilization, and the
       average delay in queue for each station. */

    fprintf(outfile,
           "\n\n\n Work      Average number      Average       Average delay");
    fprintf(outfile,
             "\nstation       in queue       utilization        in queue");
    for (j = 1; j <= num_stations; ++j)
        fprintf(outfile, "\n\n%4d%17.3f%17.3f%17.3f", j, filest(j),
                timest(0.0, -j) / num_machines[j], sampst(0.0, -j));
}

FIGURE 2.45
C code for the function report, job-shop model.
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the sampst average by num_tasks[i] is slightly incorrect. Since there will generally 
be some jobs left in the system at the end of the simulation that have not experi-
enced their delays in all the queues, they should not have had any of their delays 
registered in sampst. However, since this simulation is 365 3 8 5 2920 hours long 
and since there are 4 job arrivals expected each hour, there will be an expected 
11,680 job arrivals, so this error is likely to be minor. See Prob. 2.5 for an alternative 
way of collecting the total delays in queue by job type, which avoids this diffi culty.) 
The function closes with a for loop to write out, for each station j, the time-average 
number in queue, the utilization (computed as the time-average number of ma-
chines busy divided by the number of machines in the station), and the average 
delay in queue.

The function to generate an m-Erlang random variable is in Fig. 2.66 in 
App. 2A (it is part of simlib, not this model), and follows the physical model for the 
Erlang distribution described earlier. Note that we must divide the desired expec-
tation of the fi nal Erlang random variable by m to determine the expectation of 
the component exponential random variables. Also, the user-specifi ed stream num-
ber, “stream”, is taken as input here and simply passed through to the exponential 
generator (Fig. 2.63 in App. 2A) and then on to the random-number generator 
lcgrand.

2.7.3 Simulation Output and Discussion

Figure 2.46 shows the output fi le (jobshop.out) for this simulation. Weighted by job 
type, the average time spent by jobs waiting in the queues was almost 11 hours; this 

Job-shop model

Number of workstations                    5

Number of machines in each station         3    2    4    3    1

Number of job types                        3

Number of tasks for each job type          4    3    5

Distribution function of job types     0.300   0.800   1.000

Mean interarrival time of jobs          0.25 hours

Length of the simulation               365.0 eight-hour days

Job type     Workstations on route

   1            3    1    2    5

   2            4    1    3

   3            2    5    1    4    3

FIGURE 2.46
Output report, job-shop model.
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is not the average time in the system, since it does not include processing times 
at  the stations (see Prob. 2.6). We might add that this model produced different 
 numerical results on different computer systems due to its length and complexity, 
affording greater opportunity for roundoff error and change in order of use of the 
random-number stream.

Looking at the statistics by station, it appears that the bottlenecks are at sta-
tions 1, 2, and 4, although the order of their apparent severity depends on whether 
we look at average number in queue, utilization, or average delay in queue. Thus, 
we made three additional runs, adding a machine to each of these stations (stations 
3 and 5 appear to be comparatively uncongested, so we did not consider them for 
a new machine) to see which type of new machine would have the greatest impact 
on the system’s effi ciency. Using the overall average job total delay as a single mea-
sure of performance, the results from these additional simulations are given in 
Table 2.1. From simply looking at these numbers, we see that a machine should 
apparently be added to station 4 to achieve the greatest reduction in overall aver-
age job total delay. As usual, however, this conclusion is rather tentative, since we 
have only a single simulation run of each model variant; this is especially true in 
this case, since the results for the three new machine confi gurations are really 
much too close to call.

Job type     Mean service time (in hours) for successive tasks

   1         0.50     0.60     0.85     0.50

   2         1.10     0.80     0.75

   3         1.20     0.25     0.70     0.90     1.00

Job type     Average total delay in queue

   1                     10.022

   2                      9.403

   3                     15.808

Overall average job total delay =    10.870

 Work      Average number      Average       Average delay
station       in queue       utilization        in queue

   1           12.310            0.969            3.055

   2           11.404            0.978            5.677

   3            0.711            0.719            0.177

   4           17.098            0.961            6.110

   5            2.095            0.797            1.043

FIGURE 2.46
(continued)
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2.8
EFFICIENT EVENT-LIST MANAGEMENT

Common to all dynamic simulations we have considered in this and the preceding 
chapter is the need to schedule events in some way, as well as to determine which of 
the events scheduled should occur next. We have looked at two different ways to 
handle the event list. In Chap. 1 it was stored sequentially, with the storage index 
number being the event type, and the next-event determination was made by search-
ing the event list from top to bottom for the smallest event time. Then in this chapter, 
armed with simlib’s ability to handle linked lists, we stored the event list as a doubly 
linked list ranked in increasing order on the event-time attribute while using another 
attribute for the event type; it was easy to determine the next event since it was al-
ways on top of the event list. Placing an event record on the list, however, was more 
work, since it involved searching for the correct location. In either case, a search of 
the event list is required, either when taking the event off the list or when putting it on.

The need for some sort of event-list processing in dynamic simulations has led 
a number of researchers to investigate whether other methods might be faster, at 
least for some types of simulations. For complex simulations involving a large num-
ber of events, much of the computer time required to perform the simulation can be 
expended on even-list processing. Comfort (1981) reported that for one example 
class of models, the number of instructions required to process the event list can 
comprise as much as 40 percent of the total number of instructions for the whole 
simulation. McCormack and Sargent (1981) provide additional evidence that the 
choice of event-processing algorithm can have a great impact on the simulation 
execution time. Henriksen (1983) used the term “spectacular failure” to describe the 
performance (in the case of one example model) of the simple top-to-bottom search 
to insert event records into the event list.

One way to improve the simlib method of determining the correct location of a 
new event record would be to use a more effi cient data structure and search technique. 
One well-known approach uses a median-pointer linked list, which introduces a 
pointer to the median record in the event list (with respect to the number of records), 
in addition to the head and tail pointers. When a new record is to be placed on the list, 
the record corresponding to the median pointer is fi rst examined to determine whether 
the new record should be placed in the fi rst half or the second half of the event list. The 
appropriate half of the event list is then searched sequentially to determine the new 

TABLE 2.1

Estimated expected overall average job total delays for 
current and proposed machine confi gurations

  Overall average job
Number of machines in stations total delay, in hours

3, 2, 4, 3, 1 (current confi guration) 10.9
4, 2, 4, 3, 1 (add a machine to station 1)  8.1
3, 3, 4, 3, 1 (add a machine to station 2)  7.6
3, 2, 4, 4, 1 (add a machine to station 4)  7.5

Law01323_ch02_085-180.indd Page 149  23/10/13  10:00 PM user-f-w-198 Law01323_ch02_085-180.indd Page 149  23/10/13  10:00 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



150 modeling complex systems

record’s location, with McCormack and Sargent’s empirical results suggesting that 
the fi rst (second) half of the event list should be searched from the front (back). For 
simulations in which the event list can become very long (such as the time-shared 
computer model of Sec. 2.5 with a very large number of terminals), such a method 
could make a real difference in overall computation time (see Prob. 2.34).

Many other algorithms have been proposed for event-list management, includ-
ing various types of heaps and trees [see Knuth (1998b)], calendar queues [Brown 
(1988)], ladder queues [Tang et al. (2005)], and Henriksen’s algorithm (1977).  Papers 
that give empirical evaluations of various event-list algorithms include Chung et al. 
(1993), Jones (1986), and Rönngren and Ayani (1997).

The choice of the best event-list-processing algorithm may depend on the type of 
simulation, the parameters and probability distributions used, and other factors that 
infl uence how the events are distributed in the event list. For example, in a simulation 
for which the time elapsing between when an event is scheduled (i.e., put on the event 
list) and when it occurs (i.e., taken off the event list) is more or less the same for all 
events, the events will tend to be inserted toward the end of the list in a linked-list data 
structure; in this case, it could be advantageous to search the event list from bottom 
to top, since in most cases the search would end quickly. Most modern simulation-
software packages (see Chaps. 3 and 14) use effi cient event-list-processing algorithms.

APPENDIX 2A 
C CODE FOR simlib

The C code for the simlib functions is given in Figs. 2.47 through 2.66. The header 
fi le simlib.h, which the user must #include, is in Fig. 2.47; this fi le in turn #includes 
simlibdefs.h in Fig. 2.48. Figures 2.49 through 2.66, along with the random-number 
generator lcgrand in Fig. 7.5 in App. 7A, compose the fi le simlib.c. All this code can 
be downloaded from www.mhhe.com/law.

In timest in Fig. 2.57, a subtraction occurs at two points involving the simula-
tion clock sim_time and the time of the last event involving this variable, tlvc[ ]. For 
long simulations, both could become very large relative to their difference, so might 
have to be made of type double to avoid loss of precision in this subtraction.

/* This is simlib.h. */

/* Include files. */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "simlibdefs.h"

/* Declare simlib global variables. */

extern int    *list_rank, *list_size, next_event_type, maxatr, maxlist;
extern float  *transfer, sim_time, prob_distrib[26];

FIGURE 2.47
Header fi le simlib.h.
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extern struct master {
    float  *value;
    struct master *pr;
    struct master *sr;
} **head, **tail;

/* Declare simlib functions. */

extern void  init_simlib(void);
extern void  list_file(int option, int list);
extern void  list_remove(int option, int list);
extern void  timing(void);
extern void  event_schedule(float time_of_event, int type_of_event);
extern int   event_cancel(int event_type);
extern float sampst(float value, int varibl);
extern float timest(float value, int varibl);
extern float filest(int list);
extern void  out_sampst(FILE *unit, int lowvar, int highvar);
extern void  out_timest(FILE *unit, int lowvar, int highvar);
extern void  out_filest(FILE *unit, int lowlist, int highlist);
extern float expon(float mean, int stream);
extern int   random_integer(float prob_distrib[], int stream);
extern float uniform(float a, float b, int stream);
extern float erlang(int m, float mean, int stream);
extern float lcgrand(int stream);
extern void  lcgrandst(long zset, int stream);
extern long  lcgrandgt(int stream);

FIGURE 2.47
(continued)

/* This is simlibdefs.h. */

/* Define limits. */

#define MAX_LIST    25      /* Max number of lists. */
#define MAX_ATTR    10      /* Max number of attributes. */
#define MAX_SVAR    25      /* Max number of sampst variables. */
#define TIM_VAR     25      /* Max number of timest variables. */
#define MAX_TVAR    50      /* Max number of timest variables + lists. */
#define EPSILON      0.001  /* Used in event_cancel. */

/* Define array sizes. */

#define LIST_SIZE   26      /* MAX_LIST + 1. */
#define ATTR_SIZE   11      /* MAX_ATTR + 1. */
#define SVAR_SIZE   26      /* MAX_SVAR + 1. */
#define TVAR_SIZE   51      /* MAX_TVAR + 1. */

/* Define options for list_file and list_remove. */

#define FIRST        1      /* Insert at (remove from) head of list. */
#define LAST         2      /* Insert at (remove from) end of list. */
#define INCREASING   3      /* Insert in increasing order. */
#define DECREASING   4      /* Insert in decreasing order. */

/* Define some other values. */

#define LIST_EVENT  25      /* Event list number. */
#define INFINITY     1.E30  /* Not really infinity, but a very large number. */

/* Pre-define attribute numbers of transfer for event list. */

#define EVENT_TIME   1      /* Attribute 1 in event list is event time. */
#define EVENT_TYPE   2      /* Attribute 2 in event list is event type. */

FIGURE 2.48
Included fi le simlibdefs.h.
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/* This is simlib.c (adapted from SUPERSIMLIB, written by Gregory Glockner). */

/* Include files. */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "simlibdefs.h"

/* Declare simlib global variables. */

int    *list_rank, *list_size, next_event_type, maxatr = 0, maxlist = 0;
float  *transfer, sim_time, prob_distrib[26];
struct master {
    float  *value;
    struct master *pr;
    struct master *sr;
} **head, **tail;

/* Declare simlib functions. */

void  init_simlib(void);
void  list_file(int option, int list);
void  list_remove(int option, int list);
void  timing(void);
void  event_schedule(float time_of_event, int type_of_event);
int   event_cancel(int event_type);
float sampst(float value, int variable);
float timest(float value, int variable);
float filest(int list);
void  out_sampst(FILE *unit, int lowvar, int highvar);
void  out_timest(FILE *unit, int lowvar, int highvar);
void  out_filest(FILE *unit, int lowlist, int highlist);
void  pprint_out(FILE *unit, int i);
float expon(float mean, int stream);
int   random_integer(float prob_distrib[], int stream);
float uniform(float a, float b, int stream);
float erlang(int m, float mean, int stream);
float lcgrand(int stream);
void  lcgrandst(long zset, int stream);
long  lcgrandgt(int stream);

FIGURE 2.49
External simlib defi nitions.

void init_simlib()
{

/* Initialize simlib.c.  List LIST_EVENT is reserved for event list, ordered by
   event time.  init_simlib must be called from main by user. */

    int list, listsize;

    if (maxlist < 1) maxlist = MAX_LIST;
    listsize = maxlist + 1;

    /* Initialize system attributes. */

    sim_time = 0.0;
    if (maxatr < 4) maxatr = MAX_ATTR;

    /* Allocate space for the lists. */

FIGURE 2.50
simlib function init_simlb.
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    list_rank = (int *)            calloc(listsize,   sizeof(int));
    list_size = (int *)            calloc(listsize,   sizeof(int));
    head      = (struct master **) calloc(listsize,   sizeof(struct master *));
    tail      = (struct master **) calloc(listsize,   sizeof(struct master *));
    transfer  = (float *)          calloc(maxatr + 1, sizeof(float));

    /* Initialize list attributes. */

    for(list = 1; list <= maxlist; ++list) {
        head [list]     = NULL;
        tail [list]     = NULL;
        list_size[list] = 0;
        list_rank[list] = 0;
    }

    /* Set event list to be ordered by event time. */

    list_rank[LIST_EVENT] = EVENT_TIME;

    /* Initialize statistical routines. */

    sampst(0.0, 0);
    timest(0.0, 0);
}

FIGURE 2.50
(continued)

FIGURE 2.51
simlib function list_fi le.

void list_file(int option, int list)
{

/* Place transfr into list "list".
   Update timest statistics for the list.
   option = FIRST place at start of list
            LAST  place at end of list
            INCREASING  place in increasing order on attribute list_rank(list)
            DECREASING  place in decreasing order on attribute list_rank(list)
            (ties resolved by FIFO) */

    struct master *row, *ahead, *behind, *ihead, *itail;
    int    item, postest;

    /* If the list value is improper, stop the simulation. */

    if(!((list >= 0) && (list <= MAX_LIST))) {
        printf("\nInvalid list %d for list_file at time %f\n", list, sim_time);
        exit(1);
    }

    /* Increment the list size. */

    list_size[list]++;

    /* If the option value is improper, stop the simulation. */

    if(!((option >= 1) && (option <= DECREASING))) {
        printf(
            "\n%d is an invalid option for list_file on list %d at time %f\n",
            option, list, sim_time);
        exit(1);
    }
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    /* If this is the first record in this list, just make space for it. */

    if(list_size[list] == 1) {

        row        = (struct master *) malloc(sizeof(struct master));
        head[list] = row ;
        tail[list] = row ;
        (*row).pr  = NULL;
        (*row).sr  = NULL;
    }

    else { /* There are other records in the list. */

        /* Check the value of option. */

        if ((option == INCREASING) || (option == DECREASING)) {
            item = list_rank[list];
            if(!((item >= 1) && (item <= maxatr))) {
                printf(
                    “%d is an improper value for rank of list %d at time %f\n”,
                    item, list, sim_time) ;
                exit(1);
            }

            row    = head[list];
            behind = NULL; /* Dummy value for the first iteration. */

            /* Search for the correct location. */

            if (option == INCREASING) {
                postest = (transfer[item] >= (*row).value[item]);
                while (postest) {
                    behind  = row;
                    row     = (*row).sr;
                    postest = (behind != tail[list]);
                    if (postest)
                        postest = (transfer[item] >= (*row).value[item]);
                }
            }

            else {

                postest = (transfer[item] <= (*row).value[item]);
                while (postest) {
                    behind  = row;
                    row     = (*row).sr;
                    postest = (behind != tail[list]);
                    if (postest)
                        postest = (transfer[item] <= (*row).value[item]);
                }
            }

            /* Check to see if position is first or last.  If so, take care of
               it below. */

            if (row == head[list])

                option = FIRST;

            else

                if (behind == tail[list])

                    option = LAST;

FIGURE 2.51
(continued)

Law01323_ch02_085-180.indd Page 154  16/08/13  8:04 PM user-f-w-198 Law01323_ch02_085-180.indd Page 154  16/08/13  8:04 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



chapter two 155

                else { /* Insert between preceding and succeeding records. */

                    ahead        = (*behind).sr;
                    row          = (struct master *)
                                        malloc(sizeof(struct master));
                    (*row).pr    = behind;
                    (*behind).sr = row;
                    (*ahead).pr  = row;
                    (*row).sr    = ahead;
                }
        } /* End if inserting in increasing or decreasing order. */

        if (option == FIRST) {
            row         = (struct master *) malloc(sizeof(struct master));
            ihead       = head[list];
            (*ihead).pr = row;
            (*row).sr   = ihead;
            (*row).pr   = NULL;
            head[list]  = row;
        }
        if (option == LAST) {
            row         = (struct master *) malloc(sizeof(struct master));
            itail       = tail[list];
            (*row).pr   = itail;
            (*itail).sr = row;
            (*row).sr   = NULL;
            tail[list]  = row;
        }
    }

    /* Copy the row values from the transfer array. */

    (*row).value = (float *) calloc(maxatr + 1, sizeof(float));
    for (item = 0; item <= maxatr; ++item)
        (*row).value[item] = transfer[item];

    /* Update the area under the number-in-list curve. */

    timest((float)list_size[list], TIM_VAR + list);
}

FIGURE 2.52
simlib function list_remove.

FIGURE 2.51
(continued)

void list_remove(int option, int list)
{

/* Remove a record from list "list" and copy attributes into transfer.
   Update timest statistics for the list.
   option = FIRST remove first record in the list
            LAST  remove last record in the list */

    struct master *row, *ihead, *itail;

    /* If the list value is improper, stop the simulation. */

    if(!((list >= 0) && (list <= MAX_LIST))) {
        printf("\nInvalid list %d for list_remove at time %f\n",
               list, sim_time);
        exit(1);
    }
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    /* If the list is empty, stop the simulation. */

    if(list_size[list] <= 0) {
        printf("\nUnderflow of list %d at time %f\n", list, sim_time);
        exit(1);
    }

    /* Decrement the list size. */

    list_size[list]--;

    /* If the option value is improper, stop the simulation. */

    if(!(option == FIRST || option == LAST)) {
        printf(
            "\n%d is an invalid option for list_remove on list %d at time %f\n",
            option, list, sim_time);
        exit(1);
    }

    if(list_size[list] == 0) {

        /* There is only 1 record, so remove it. */

        row        = head[list];
        head[list] = NULL;
        tail[list] = NULL;
    }

    else {

        /* There is more than 1 record, so remove according to the desired
           option. */

        switch(option) {

            /* Remove the first record in the list. */

            case FIRST:
                row         = head[list];
                ihead       = (*row).sr;
                (*ihead).pr = NULL;
                head[list]  = ihead;
                break;

            /* Remove the last record in the list. */

            case LAST:
                row         = tail[list];
                itail       = (*row).pr;
                (*itail).sr = NULL;
                tail[list]  = itail;
                break;
        }
    }

    /* Copy the data and free memory. */

    free((char *)transfer);
    transfer = (*row).value;
    free((char *)row);

    /* Update the area under the number-in-list curve. */

    timest((float)list_size[list], TIM_VAR + list);
}

FIGURE 2.52
(continued)
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void timing()
{

/* Remove next event from event list, placing its attributes in transfer.
   Set sim_time (simulation time) to event time, transfer[1].
   Set next_event_type to this event type, transfer[2]. */

    /* Remove the first event from the event list and put it in transfer[]. */

    list_remove(FIRST, LIST_EVENT);

    /* Check for a time reversal. */

    if(transfer[EVENT_TIME] < sim_time) {
        printf(
            "\nAttempt to schedule event type %f for time %f at time %f\n",
            transfer[EVENT_TYPE], transfer[EVENT_TIME], sim_time);
        exit(1);
    }

    /* Advance the simulation clock and set the next event type. */

    sim_time        = transfer[EVENT_TIME];
    next_event_type = transfer[EVENT_TYPE];
}

FIGURE 2.53
simlib function timing.

void event_schedule(float time_of_event, int type_of_event)
{

/* Schedule an event at time event_time of type event_type.  If attributes
   beyond the first two (reserved for the event time and the event type) are
   being used in the event list, it is the user’s responsibility to place their
   values into the transfer array before invoking event_schedule. */

    transfer[EVENT_TIME] = time_of_event;
    transfer[EVENT_TYPE] = type_of_event;
    list_file(INCREASING, LIST_EVENT);
}

FIGURE 2.54
simlib function event_schedule.

int event_cancel(int event_type)
{

/* Remove the first event of type event_type from the event list, leaving its
   attributes in transfer.  If something is cancelled, event_cancel returns 1;
   if no match is found, event_cancel returns 0. */

    struct       master *row, *ahead, *behind;
    static float high, low, value;

    /* If the event list is empty, do nothing and return 0. */

    if(list_size[LIST_EVENT] == 0) return 0;

FIGURE 2.55
simlib function event_cancel.

Law01323_ch02_085-180.indd Page 157  16/08/13  8:04 PM user-f-w-198 Law01323_ch02_085-180.indd Page 157  16/08/13  8:04 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



158 modeling complex systems

    /* Search the event list. */

    row   = head[LIST_EVENT];
    low   = event_type - EPSILON;
    high  = event_type + EPSILON;
    value = (*row).value[EVENT_TYPE] ;

    while (((value <= low) || (value >= high)) && (row != tail[LIST_EVENT])) {
        row   = (*row).sr;
        value = (*row).value[EVENT_TYPE];
    }

    /* Check to see if this is the end of the event list. */

    if (row == tail[LIST_EVENT]) {

        /* Double check to see that this is a match. */

        if ((value > low) && (value < high)) {
            list_remove(LAST, LIST_EVENT);
            return 1;
        }

        else /* no match */
            return 0;
    }

    /* Check to see if this is the head of the list.  If it is at the head, then
       it MUST be a match. */

    if (row == head[LIST_EVENT]) {
        list_remove(FIRST, LIST_EVENT);
        return 1;
    }

    /* Else remove this event somewhere in the middle of the event list. */

    /* Update pointers. */

    ahead        = (*row).sr;
    behind       = (*row).pr;
    (*behind).sr = ahead;
    (*ahead).pr  = behind;

    /* Decrement the size of the event list. */

    list_size[LIST_EVENT]--;

    /* Copy and free memory. */

    free((char *)transfer);       /* Free the old transfer. */
    transfer = (*row).value;      /* Transfer the data. */
    free((char *)row);            /* Free the space vacated by row. */

    /* Update the area under the number-in-event-list curve. */

    timest((float)list_size[LIST_EVENT], TIM_VAR + LIST_EVENT);
    return 1;
}

FIGURE 2.55
(continued)
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float sampst(float value, int variable)
{

/* Initialize, update, or report statistics on discrete-time processes:
   sum/average, max (default -1E30), min (default 1E30), number of observations
   for sampst variable "variable", where "variable":
       = 0 initializes accumulators
       > 0 updates sum, count, min, and max accumulators with new observation
       < 0 reports stats on variable "variable" and returns them in transfer:
           [1] = average of observations
           [2] = number of observations
           [3] = maximum of observations
           [4] = minimum of observations */

    static int   ivar, num_observations[SVAR_SIZE];
    static float max[SVAR_SIZE], min[SVAR_SIZE], sum[SVAR_SIZE];

    /* If the variable value is improper, stop the simulation. */

    if(!(variable >= -MAX_SVAR) && (variable <= MAX_SVAR)) {
        printf("\n%d is an improper value for a sampst variable at time %f\n",
            variable, sim_time);
        exit(1);
    }

    /* Execute the desired option. */

    if(variable > 0) { /* Update. */
        sum[variable] += value;
        if(value > max[variable]) max[variable] = value;
        if(value < min[variable]) min[variable] = value;
        num_observations[variable]++;
        return 0.0;
    }

    if(variable < 0) { /* Report summary statistics in transfer. */
        ivar        = -variable;
        transfer[2] = (float) num_observations[ivar];
        transfer[3] = max[ivar];
        transfer[4] = min[ivar];
        if(num_observations[ivar] == 0)
            transfer[1] = 0.0;
        else
            transfer[1] = sum[ivar] / transfer[2];
        return transfer[1];
    }

    /* Initialize the accumulators. */

    for(ivar=1; ivar <= MAX_SVAR; ++ivar) {
        sum[ivar]              = 0.0;
        max[ivar]              = -INFINITY;
        min[ivar]              =  INFINITY;
        num_observations[ivar] = 0;
    }
}

FIGURE 2.56
simlib function sampst.
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FIGURE 2.57
simlib function timest.

float timest(float value, int variable)
{

/* Initialize, update, or report statistics on continuous-time processes:
   integral/average, max (default -1E30), min (default 1E30)
   for timest variable "variable", where "variable":
       = 0 initializes counters
       > 0 updates area, min, and max accumulators with new level of variable
       < 0 reports stats on variable “variable” and returns them in transfer:
           [1] = time-average of variable updated to the time of this call
           [2] = maximum value variable has attained
           [3] = minimum value variable has attained
   Note that variables TIM_VAR + 1 through TVAR_SIZE are used for automatic
   record keeping on the length of lists 1 through MAX_LIST. */

    int          ivar;
    static float area[TVAR_SIZE], max[TVAR_SIZE], min[TVAR_SIZE],
                 preval[TVAR_SIZE], tlvc[TVAR_SIZE], treset;

    /* If the variable value is improper, stop the simulation. */

    if(!(variable >= -MAX_TVAR) && (variable <= MAX_TVAR)) {
        printf(“\n%d is an improper value for a timest variable at time %f\n”,
            variable, sim_time);
        exit(1);
    }

    /* Execute the desired option. */

    if(variable > 0) { /* Update. */
        area[variable] += (sim_time - tlvc[variable]) * preval[variable];
        if(value > max[variable]) max[variable] = value;
        if(value < min[variable]) min[variable] = value;
        preval[variable] = value;
        tlvc[variable]   = sim_time;
        return 0.0;
    }

    if(variable < 0) { /* Report summary statistics in transfer. */
        ivar         = -variable;
        area[ivar]   += (sim_time - tlvc[ivar]) * preval[ivar];
        tlvc[ivar]   = sim_time;
        transfer[1]  = area[ivar] / (sim_time - treset);
        transfer[2]  = max[ivar];
        transfer[3]  = min[ivar];
        return transfer[1];
    }

    /* Initialize the accumulators. */

    for(ivar = 1; ivar <= MAX_TVAR; ++ivar) {
        area[ivar]   = 0.0;
        max[ivar]    = -INFINITY;
        min[ivar]    =  INFINITY;
        preval[ivar] = 0.0;
        tlvc[ivar]   = sim_time;
    }
    treset = sim_time;
}
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float filest(int list)
{

/* Report statistics on the length of list "list" in transfer:
       [1] = time-average of list length updated to the time of this call
       [2] = maximum length list has attained
       [3] = minimum length list has attained
   This uses timest variable TIM_VAR + list. */

    return timest(0.0, -(TIM_VAR + list));
}

FIGURE 2.58
simlib function fi lest.

FIGURE 2.59
simlib function out_sampst.

void out_sampst(FILE *unit, int lowvar, int highvar)
{

/* Write sampst statistics for variables lowvar through highvar on file
   "unit". */

    int ivar, iatrr;

    if(lowvar>highvar || lowvar > MAX_SVAR || highvar > MAX_SVAR) return;

    fprintf(unit, "\n sampst                         Number");
    fprintf(unit, "\nvariable                          of");
    fprintf(unit, "\n number       Average           values          Maximum");
    fprintf(unit, "          Minimum");
    fprintf(unit, "\n___________________________________");
    fprintf(unit, "_____________________________________");
    for(ivar = lowvar; ivar <= highvar; ++ivar) {
        fprintf(unit, "\n\n%5d", ivar);
        sampst(0.00, -ivar);
        for(iatrr = 1; iatrr <= 4; ++iatrr) pprint_out(unit, iatrr);
    }
    fprintf(unit, "\n___________________________________");
    fprintf(unit, "_____________________________________\n\n\n");
}

FIGURE 2.60
simlib function out_timest.

void out_timest(FILE *unit, int lowvar, int highvar)
{

/* Write timest statistics for variables lowvar through highvar on file
   "unit". */

    int ivar, iatrr;

    if(lowvar > highvar || lowvar > TIM_VAR || highvar > TIM_VAR ) return;

    fprintf(unit, "\n  timest");
    fprintf(unit, "\n variable       Time");
    fprintf(unit, "\n  number       average          Maximum          Minimum");
    fprintf(unit, "\n________________________________________________________");
    for(ivar = lowvar; ivar <= highvar; ++ivar) {
        fprintf(unit, "\n\n%5d", ivar);
        timest(0.00, -ivar);
        for(iatrr = 1; iatrr <= 3; ++iatrr) pprint_out(unit, iatrr);
    }
    fprintf(unit, "\n________________________________________________________");
    fprintf(unit, "\n\n\n");
}
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void out_filest(FILE *unit, int lowlist, int highlist)
{

/* Write timest list-length statistics for lists lowlist through highlist on
   file "unit". */

    int list, iatrr;

    if(lowlist > highlist || lowlist > MAX_LIST || highlist > MAX_LIST) return;

    fprintf(unit, "\n  File         Time");
    fprintf(unit, "\n number       average          Maximum          Minimum");
    fprintf(unit, "\n_______________________________________________________");
    for(list = lowlist; list <= highlist; ++list) {
        fprintf(unit, "\n\n%5d", list);
        filest(list);
        for(iatrr = 1; iatrr <= 3; ++iatrr) pprint_out(unit, iatrr);
    }
    fprintf(unit, "\n_______________________________________________________");
    fprintf(unit, "\n\n\n");
}

FIGURE 2.61
simlib function out_fi lest.

FIGURE 2.62
simlib function pprint_out.

void pprint_out(FILE *unit, int i) /* Write ith entry in transfer to file
                                      "unit". */
{
    if(transfer[i] == -1e30 || transfer[i] == 1e30)
        fprintf(unit," %#15.6G ", 0.00);
    else
        fprintf(unit," %#15.6G ", transfer[i]);
}

FIGURE 2.63
simlib function expon.

float expon(float mean, int stream) /* Exponential variate generation
                                       function. */
{
    return -mean * log(lcgrand(stream));

}

FIGURE 2.64
simlib function random_integer.

int random_integer(float prob_distrib[], int stream) /* Discrete-variate
                                                        generation function. */
{
    int   i;
    float u;

    u = lcgrand(stream);

    for (i = 1; u >= prob_distrib[i]; ++i)
        ;
    return i;
}
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FIGURE 2.65
simlib function uniform.

FIGURE 2.66
simlib function erlang.

float uniform(float a, float b, int stream) /* Uniform variate generation
                                               function. */
{
    return a + lcgrand(stream) * (b - a);
}

float erlang(int m, float mean, int stream)  /* Erlang variate generation
                                                function. */
{
    int   i;
    float mean_exponential, sum;

    mean_exponential = mean / m;
    sum = 0.0;
    for (i = 1; i <= m; ++i)
        sum += expon(mean_exponential, stream);
    return sum;
}

PROBLEMS

The following problems are to be done using simlib wherever possible.

 2.1. For the single-server queue with simlib in Sec. 2.4, replace the dummy list for the 
server with a variable of your own representing the server status (busy or idle), and 
use timest instead of fi lest to get the server utilization.

 2.2. For the time-shared computer model of Sec. 2.5, combine the end-simulation event 
with the end-run event. Redraw the event diagram, and alter and run the program with 
this simplifi ed event structure.

 2.3. For the time-shared computer model of Sec. 2.5, suppose that we want to collect the 
average response time for each terminal individually, as well as overall. Alter the 
 simulation to do this, and run for the case of n 5 10 terminals only. (Hint: You will 
have to add another attribute to represent a job’s terminal of origin, and you will need 
to defi ne additional sampst variables as well.)

 2.4. For the multiteller bank model of Sec. 2.6, suppose that we want to know the maxi-
mum number of customers who are ever waiting in the queues. Do the following parts 
in order, i.e., with each part building on the previous ones.
(a) Explain why this cannot be obtained by adding up the maxima of the individual 

queues.
(b) Modify the program to collect this statistic, and write it out. Run for each of the 

cases of n 5 4, 5, 6, and 7 tellers.
(c) Add to this an additional output measure, being the utilization of the servers. 

Since there are multiple servers, the utilization is defi ned here as the time-average 
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number of servers busy, divided by the number of servers. Note that this will be a 
number between 0 and 1.

(d) Now suppose that the bank’s lobby is large enough to hold only 25 customers in 
the queues (total). If a customer arrives to fi nd that there are already a total of 
25 customers in the queues, he or she just goes away and the business is lost; this 
is called balking and is clearly unfortunate. Change the program to refl ect balking, 
where the capacity of 25 should be read in as an input parameter. In addition to all 
the other output measures, observe the number of customers who balk during the 
course of the simulation.

 2.5. In the manufacturing-system model of Sec. 2.7, correct the minor error described in 
the report generator regarding the collection of the total job delay in queue by job type. 
To do this, add an attribute to each job representing the cumulative delay in queue so 
far. When the job leaves the system, tally this value in sampst. Rerun the simulation 
for this alternative approach using the “current confi guration” of the number of ma-
chines at each station.

 2.6. For the manufacturing-system model of Sec. 2.7, estimate the expected overall average 
job time in system, being the weighted average of the expected times in system (delays 
in queue plus processing times) for the three job types, using the probabilities of oc-
currence of the job types as the weights. (Hint: You won’t need a computer to do this.)

 2.7. For the original confi guration of the manufacturing system of Sec. 2.7, run the model 
for 100 eight-hour days, but use only the data from the last 90 days to estimate the 
quantities of interest. In effect, the state of the system at time 10 days represents the 
initial conditions for the simulation. The idea of “warming up” the model before be-
ginning data collection is a common simulation practice, discussed in Sec. 9.5.1. (You 
may want to look at the code for simlib routine timest in Fig. 2.57, paying special at-
tention to the variable treset, to understand how the continuous-time statistics will be 
computed.)

 2.8. For the manufacturing-system model of Sec. 2.7, suggest a different defi nition of the 
attributes that would simplify the model’s coding.

 2.9. Do Prob. 1.15, except use simlib. Use stream 1 for interarrival times, stream 2 for ser-
vice times at server 1, stream 3 for service times at server 2, and stream 4 for the travel 
times.

2.10. Do Prob. 1.22, except use simlib. Use stream 1 for the machine-up times and stream 2 
for the repair times.

2.11. Do Prob. 1.24, except use simlib. Use stream 1 for interarrival times and stream 2 for 
service times. Note how much easier this model is to simulate with the list-processing 
tools.

2.12. Do Prob. 1.26, except use simlib. Use stream 1 for interarrival times, stream 2 for 
 determining the customer type, stream 3 for service times of type 1 customers, and 
stream 4 for service times of type 2 customers.

2.13. Do Prob. 1.27, except use simlib. Use streams 1 and 2 for interarrival times and service 
times, respectively, for regular customers, and streams 3 and 4 for interarrival times 
and service times, respectively, of express customers.
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2.14. Do Prob. 1.28, except use simlib. Use stream 1 for interarrival times for regular cars 
and stream 2 for service times for all cars.

2.15. Do Prob. 1.30, except use simlib. Use stream 1 for interarrival times, stream 2 for in-
spection times, stream 3 to decide whether a bus needs repair, and stream 4 for repair 
times.

2.16. For the inventory example of Sec. 1.5, suppose that the delivery lag is distributed uni-
formly between 1 and 3 months, so there could be between 0 and 3 outstanding orders 
at a time. Thus, the company bases its ordering decision at the beginning of each 
month on the sum of the (net) inventory level [denoted by I(t) in Sec. 1.5] and the 
 inventory on order; this sum could be positive, zero, or negative. For each of the nine 
inventory policies, run the model for 120 months and estimate the expected average 
total cost per month and the expected proportion of time there is a backlog. Note that 
holding and shortage costs are still based on the net inventory level. Use stream 1 for 
interdemand times, stream 2 for demand sizes, and stream 3 for delivery lags.

2.17. Problem 1.18 described a modifi cation of the inventory system of Sec. 1.5 in which 
the items were perishable. Do this problem, using simlib, and in addition consider the 
case of LIFO (as well as FIFO) processing of the items in inventory. Use the same 
stream assignments as in Prob. 2.16, and in addition use stream 4 for the shelf lives.

2.18. For the time-shared computer model of Sec. 2.5, suppose that instead of processing 
jobs in the queue in a round-robin manner, the CPU chooses the job from the queue 
that has made the fewest number of previous passes through the CPU. In case of ties, 
the rule is FIFO. (This is equivalent to using the time of arrival to the queue to break ties.) 
Run the model with n 5 60 terminals for 1000 job completions.

2.19. Ships arrive at a harbor with interarrival times that are IID exponential random vari-
ables with a mean of 1.25 days. The harbor has a dock with two berths and two cranes 
for unloading the ships; ships arriving when both berths are occupied join a FIFO 
queue. The time for one crane to unload a ship is distributed uniformly between 0.5 
and 1.5 days. If only one ship is in the harbor, both cranes unload the ship and the 
(remaining) unloading time is cut in half. When two ships are in the harbor, one crane 
works on each ship. If both cranes are unloading one ship when a second ship arrives, 
one of the cranes immediately begins serving the second ship and the remaining 
 service time of the fi rst ship is doubled. Assuming that no ships are in the harbor at 
time 0, run the simulation for 90 days and compute the minimum, maximum, and 
 average time that ships are in the harbor (which includes their time in berth). Also 
estimate the expected utilization of each berth and of the cranes. Use stream 1 for the 
interarrival times and stream 2 for the unloading times. [This problem is a paraphras-
ing of an example in Russell (1976, p. 134).]

2.20. Jobs arrive at a single-CPU computer facility with interarrival times that are IID 
 exponential random variables with mean 1 minute. Each job specifi es upon its arrival 
the maximum amount of processing time it requires, and the maximum times for suc-
cessive jobs are IID exponential random variables with mean 1.1 minutes. However, 
if m is the specifi ed maximum processing time for a particular job, the actual process-
ing time is distributed uniformly between 0.55m and 1.05m. The CPU will never 
 process a job for more than its specifi ed maximum; a job whose required processing 
time exceeds its specifi ed maximum leaves the facility without completing service.

Law01323_ch02_085-180.indd Page 165  16/08/13  8:05 PM user-f-w-198 Law01323_ch02_085-180.indd Page 165  16/08/13  8:05 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



166 modeling complex systems

Simulate the computer facility until 1000 jobs have left the CPU if (a) jobs in the 
queue are processed in a FIFO manner, and (b) jobs in the queue are ranked in 
 increasing order of their specifi ed maximum processing time. For each case, compute 
the average and maximum delay in queue of jobs, the proportion of jobs that are 
 delayed in queue more than 5 minutes, and the maximum number of jobs ever in 
queue. Use stream 1 for the interarrival times, stream 2 for the maximum processing 
times, and stream 3 for the actual processing times. Which operating policy would you 
recommend?

2.21. In a quarry, trucks deliver ore from three shovels to a single crusher. Trucks are 
 assigned to specifi c shovels, so that a truck will always return to its assigned shovel 
after dumping a load at the crusher. Two different truck sizes are in use, 20 and 
50 tons. The size of the truck affects its loading time at the shovel, travel time to the 
crusher, dumping time at the crusher, and return-trip time from the crusher back to its 
shovel, as follows (all times are in minutes):

 20-ton truck 50-ton truck

Load Exponentially distributed Exponentially distributed 
  with mean 5   with mean 10
Travel Constant 2.5 Constant 3
Dump Exponentially distributed Exponentially distributed 
  with mean 2   with mean 4
Return Constant 1.5 Constant 2

 To each shovel are assigned two 20-ton trucks and one 50-ton truck. The shovel 
queues are all FIFO, and the crusher queue is ranked in decreasing order of truck size, 
the rule’s being FIFO in case of ties. Assume that at time 0 all trucks are at their re-
spective shovels, with the 50-ton trucks just beginning to be loaded. Run the simula-
tion model for 8 hours and estimate the expected time-average number in queue for 
each shovel and for the crusher. Also estimate the expected utilizations of all four 
pieces of equipment. Use streams 1 and 2 for the loading times of the 20-ton and 50-ton 
trucks, respectively, and streams 3 and 4 for the dumping times of the 20-ton and 
50-ton trucks, respectively. [This problem is taken from Pritsker (1995, pp. 153–158).]

2.22. A batch-job computer facility with a single CPU opens its doors at 7 a.m. and closes its 
doors at midnight, but operates until all jobs present at midnight have been processed. 
Assume that jobs arrive at the facility with interarrival times that are exponentially dis-
tributed with mean 1.91 minutes. Jobs request either express (class 4), normal (class 3), 
deferred (class 2), or convenience (class 1) service; and the classes occur with respec-
tive probabilities 0.05, 0.50, 0.30, and 0.15. When the CPU is idle, it will process the 
highest-class (priority) job present, the rule’s being FIFO within a class. The times re-
quired for the CPU to process class 4, 3, 2, and 1 jobs are 3-Erlang random variables 
(see Sec. 2.7) with respective means 0.25, 1.00, 1.50, and 3.00 minutes. Simulate the 
computer facility for each of the following cases:
(a) A job being processed by the CPU is not preempted by an arriving job of a higher 

class.
(b) If a job of class i is being processed and a job of class j (where j . i) arrives, the 

arriving job preempts the job being processed. The preempted job joins the queue 
and takes the highest priority in its class, and only its remaining service time 
needs to be completed at some future time.
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 Estimate for each class the expected time-average number of jobs in queue and the 
expected average delay in queue. Also estimate the expected proportion of time that 
the CPU is busy and the expected proportion of CPU busy time spent on each class. 
Note that it is convenient to have one list for each class’s queue and also an input pa-
rameter that is set to 0 for case (a) and 1 for case (b). Use stream 1 for the interarrival 
times, stream 2 for the job-class determination, and streams 3, 4, 5, and 6 for the pro-
cessing times for classes 4, 3, 2, and 1, respectively.

2.23. A port in Africa loads tankers with crude oil for overwater shipment, and the port has 
facilities for loading as many as three tankers simultaneously. The tankers, which ar-
rive at the port every 11 6 7 hours, are of three different types. (All times given as a 
“6” range in this problem are distributed uniformly over the range.) The relative fre-
quency of the various types and their loading-time requirements are:

 Relative Loading time, 
Type frequency hours

1 0.25 18 6 2
2 0.25 24 6 4
3 0.50 36 6 4

 There is one tug at the port. Tankers of all types require the services of a tug to move 
from the harbor into a berth and later to move out of a berth into the harbor. When the 
tug is available, any berthing or deberthing activity takes about an hour. It takes the tug 
0.25 hour to travel from the harbor to the berths, or vice versa, when not pulling a tanker. 
When the tug fi nishes a berthing activity, it will deberth the fi rst tanker in the deberthing 
queue if this queue is not empty. If the deberthing queue is empty but the harbor queue 
is not, the tug will travel to the harbor and begin berthing the fi rst tanker in the harbor 
queue. (If both queues are empty, the tug will remain idle at the berths.) When the tug 
fi nishes a deberthing activity, it will berth the fi rst tanker in the harbor queue if this 
queue is not empty and a berth is available. Otherwise, the tug will travel to the berths, 
and if the deberthing queue is not empty, will begin deberthing the fi rst tanker in the 
queue. If the deberthing queue is empty, the tug will remain idle at the berths.

  The situation is further complicated by the fact that the area experiences frequent 
storms that last 4 6 2 hours. The time between the end of one storm and the onset of the 
next is an exponential random variable with mean 48 hours. The tug will not start a new 
activity when a storm is in progress but will always fi nish an activity already in progress. 
(The berths will operate during a storm.) If the tug is traveling from the berths to the 
 harbor without a tanker when a storm begins, it will turn around and head for the berths.

  Run the simulation model for a 1-year period (8760 hours) and estimate:
(a) The expected proportion of time the tug is idle, is traveling without a tanker, and 

is engaged in either a berthing or deberthing activity
(b) The expected proportion of time each berth is unoccupied, is occupied but not 

loading, and is loading
(c) The expected time-average number of tankers in the deberthing queue and in the 

harbor queue
(d) The expected average in-port residence time of each type of tanker

 Use stream 1 for interarrivals, stream 2 to determine the type of a tanker, stream 3 for 
loading times, stream 4 for the duration of a storm, and stream 5 for the time between 
the end of one storm and the start of the next.
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  A shipper considering bidding on a contract to transport oil from the port to the 
United Kingdom has determined that fi ve tankers of a particular type would have to 
be committed to this task to meet contract specifi cations. These tankers would require 
21 6 3 hours to load oil at the port. After loading and deberthing, they would travel to 
the United Kingdom, offl oad the oil, return to the port for reloading, etc. The round-
trip travel time, including offl oading, is estimated to be 240 6 24 hours. Rerun the 
simulation and estimate, in addition, the expected average in-port residence time of 
the proposed additional tankers. Assume that at time 0 the fi ve additional tankers are 
in the harbor queue. Use the same stream assignments as before, and in addition use 
stream 6 for the oil-loading times at the port and stream 7 for the round-trip travel 
times for these new tankers. [This problem is an embellishment of one in Schriber 
(1974, p. 329).]

2.24. In Prob. 2.23, suppose that the tug has a two-way radio giving it the position and sta-
tus of each tanker in the port. As a result, the tug changes its operating policies, as fol-
lows. If the tug is traveling from the harbor to the berths without a tanker and is less 
than halfway there when a new tanker arrives, it will turn around and go pick up the 
new tanker. If the tug is traveling from the berths to the harbor without a tanker and is 
less than halfway there when a tanker completes its loading, it will turn around and go 
pick up the loaded tanker. Run the simulation with the same parameters and stream as-
signments as before, under this new operating policy.

2.25. In Prob. 2.24, suppose in addition that if the tug is traveling from the harbor to the 
berths without a tanker and the deberthing queue is empty when a new tanker arrives, 
it will turn around and go pick up the new tanker, regardless of its position. Run the 
simulation with the same parameters and stream assignments as before, under this 
operating policy.

2.26. Two-piece suits are processed by a dry cleaner as follows. Suits arrive with exponen-
tial interarrival times having mean 10 minutes, and are all initially served by server 1, 
perhaps after a wait in a FIFO queue; see Fig. 2.67. Upon completion of service at 
server 1, one piece of the suit (the jacket) goes to server 2, and the other part (the 
pants) to server 3. During service at server 2, the jacket has a probability of 0.05 of 
being damaged, and while at server 3 the probability of a pair of pants being damaged 
is 0.10. Upon leaving server 2, the jackets go into a queue for server 4; upon leaving 
server 3, the pants go into a different queue for server 4. Server 4 matches and re-
assembles suit parts, initiating this when he is idle and two parts from the same suit are 
available. If both parts of the reassembled suit are undamaged, the suit is returned to 
the customer. If either (or both) of the parts is (are) damaged, the suit goes to customer 
relations (server 5). Assume that all service times are exponential, with the following 
means (in minutes) and use the indicated stream assignments:

Server number Mean service time, in minutes Stream

1  6 1
2  4 2
3  5 3
4  5 (undamaged) 4
4  8 (damaged) 5
5 12 6
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 In addition, use stream 7 for interarrival times, and streams 8 and 9 for determining 
whether the pieces are damaged at servers 2 and 3, respectively. The system is initially 
empty and idle, and runs for exactly 12 hours. Observe the average and maximum 
time in the system for each type of outcome (damaged or not), separately, the average 
and maximum length of each queue, and the utilization of each server. What would 
happen if the arrival rate were to double (i.e., the interarrival-time mean were 5 minutes 

1

2 3

4

5

Jackets

Undamaged Damaged

Pants

FIGURE 2.67
A dry-cleaning operation.
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instead of 10 minutes)? In this case, if you could place another person anywhere in the 
system to help out with one of the 5 tasks, where should it be?

2.27. A queueing system has two servers (A and B) in series, and two types of customers 
(1 and 2). Customers arriving to the system have their types determined immediately 
upon their arrival. An arriving customer is classifi ed as type 1 with probability 0.6. 
However, an arriving customer may balk, i.e., may not actually join the system, if the 
queue for server A is too long. Specifi cally, assume that if an arriving customer fi nds 
m (m $ 0) other customers already in the queue for A, he will join the system with 
probability ly(m 1 1), regardless of the type (1 or 2) of customer he may be. Thus, 
for example, an arrival fi nding nobody else in the queue for A (i.e., m 5 0) will join 
the system for sure [probability 5 1y(0 1 1) 5 1], whereas an arrival fi nding 5 others 
in the queue for A will join the system with probability 1

6. All customers are served 
by A. (If A is busy when a customer arrives, the customer joins a FIFO queue.) Upon 
completing service at A, type 1 customers leave the system, while type 2 customers are 
served by B. (If B is busy, type 2 customers wait in a FIFO queue.) Compute the av-
erage total time each type of customer spends in the system, as well as the number of 
balks. Also compute the time-average and maximum length of each queue, and both 
server utilizations. Assume that all interarrival and service times are exponentially 
distributed, with the following parameters:

• Mean interarrival time (for any customer type) 5 1 minute
• Mean service time at server A (regardless of customer type) 5 0.8 minute
• Mean service time at server B 5 1.2 minutes

 Initially the system is empty and idle, and is to run until 1000 customers (of either 
type) have left the system. Use stream 1 for determining the customer type, stream 2 
for deciding whether a customer balks, stream 3 for interarrivals, stream 4 for service 
times at A (of both customer types), and stream 5 for service times at B.

2.28. An antiquated computer operates in a batch multiprocessing mode, meaning that it 
starts many (up to a fi xed maximum of k 5 4) jobs at a time, runs them simultane-
ously, but cannot start any new jobs until all the jobs in a batch are done. Within a 
batch, each job has its own completion time, and leaves the CPU when it fi nishes. 
There are three priority classes, with jobs of class 1 being the highest priority and class 
3 jobs being the lowest priority. When the CPU fi nishes the last job in a batch, it fi rst 
looks for jobs in the class 1 queue and takes as many as possible from it, up to a max-
imum of k. If there were fewer than k jobs in the class 1 queue, as many jobs as possi-
ble from the class 2 queue are taken to bring the total of class 1 and class 2 jobs to no 
more than the maximum batch size, k. If still more room is left in the batch, the CPU 
moves on to the class 3 queue. If the total number of jobs waiting in all the queues is 
less than k, the CPU takes them all and begins running this partially full batch; it 
 cannot begin any jobs that subsequently arrive until it fi nishes all of its current batch. 
If no jobs at all are waiting in the queues, the CPU becomes idle, and the next arriving 
job will start the CPU running with a batch of size 1. Note that when a batch begins 
running, there may be jobs of several different classes running together in the same 
batch.

  Within a class queue, the order of jobs taken is to be either FIFO or shortest job 
fi rst (SJF); the simulation is to be written to handle either queue discipline by chang-
ing only an input parameter. (Thus, a job’s service requirement should be generated 

Law01323_ch02_085-180.indd Page 170  16/08/13  8:37 PM user-f-w-198 Law01323_ch02_085-180.indd Page 170  16/08/13  8:37 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



chapter two 171

when it arrives, and stored alongside its time of arrival in the queue. For FIFO, this 
would not really be necessary, but it simplifi es the general programming.) The service 
requirement of a class i job is distributed uniformly between constants a(i) and b(i) 
minutes. Each class has its own separate arrival process, i.e., the interarrival time be-
tween two successive class i jobs is exponentially distributed with mean r(i) minutes. 
Thus, at any given point in the simulation, there should be three separate arrivals 
scheduled, one for each class. If a job arrives to fi nd the CPU busy, it joins the queue 
for its class in the appropriate place, depending on whether the FIFO or SJF option is 
in force. A job arriving to fi nd the CPU idle begins service immediately; this would be 
a batch of size 1. The parameters are as follows:

i r(i) a(i) b(i)

1 0.2 0.05 0.11
2 1.6 0.94 1.83
3 5.4 4.00 8.00

 Initially the system is empty and idle, and the simulation is to run for exactly 720 min-
utes. For each queue, compute the average, minimum, and maximum delay, as well as 
the time-average and maximum length. Also, compute the utilization of the CPU, de-
fi ned here as the proportion of time it is busy regardless of the number of jobs running. 
Finally, compute the time-average number of jobs running in the CPU (where 0 jobs 
are considered running when the CPU is idle). Use streams 1, 2, and 3 for the interar-
rival times of jobs of class 1, 2, and 3, respectively, and streams 4, 5, and 6 for their re-
spective service requirements. Suppose that a hardware upgrade could increase k to 6. 
Would this be worth it?

2.29. Consider a queueing system with a fi xed number n 5 5 of parallel servers fed by a 
single queue. Customers arrive with interarrival times that are exponentially distrib-
uted with mean 5 (all times are in minutes). An arriving customer fi nding an idle 
server will go directly into service, choosing the leftmost idle server if there are sev-
eral, while an arrival fi nding all servers busy joins the end of the queue. When a 
 customer (initially) enters service, her service requirement is distributed uniformly 
between a 5 2 and b 5 2.8, but upon completion of her initial service, she may be 
“dissatisfi ed” with her service, which occurs with probability p 5 0.2. If the service 
was satisfactory, the customer simply leaves the system, but if her service was not sat-
isfactory, she will require further service. The determination as to whether a service 
was satisfactory is to be made when the service is completed. If an unsatisfactory ser-
vice is completed and there are no other customers waiting in the queue, the dissatis-
fi ed customer immediately begins another service time at her same server. On the 
other hand, if there is a queue when an unsatisfactory service is completed, the dissat-
isfi ed customer must join the queue (according to one of two options, described 
below), and the server takes the fi rst person from the queue to serve next. Each time a 
customer reenters service, her service time and probability of being dissatisfi ed are 
lower; specifi cally, a customer who has already had i (unsatisfactory) services has a 
next service time that is distributed uniformly between ay(i 1 1) and by(i 1 1), and 
her probability of being dissatisfi ed with this next service is py(i 1 1). Theoretically, 
there is no upper limit on the number of times a given customer will have to be served 
to be fi nally satisfi ed.
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  There are two possible rules concerning what to do with a dissatisfi ed customer 
when other people are waiting in queue; the program is to be written so that respecifying 
a single input parameter will change the rule from (i) to (ii):
(i) A customer who has just fi nished an unsatisfactory service joins the end of the 

queue.
(ii) A customer who has just fi nished an unsatisfactory service rejoins the queue so 

that the next person taken from the (front of the) queue will be the customer who 
has already had the largest number of services; the rule is FIFO in case of ties. 
This rule is in the interest of both equity and effi ciency, since customers with a 
long history of unsatisfactory service tend to require shorter service and also tend 
to be more likely to be satisfi ed with their next service.

 Initially the system is empty and idle, and the simulation is to run for exactly 480 min-
utes. Compute the average and maximum total time in system [including all the 
delay(s) in queue and service time(s) of a customer], and the number of satisfi ed cus-
tomers who leave the system during the simulation. Also compute the average and 
maximum length of the queue, and the time-average and maximum number of servers 
that were busy. Use stream 1 for interarrivals, stream 2 for all service times, and 
stream 3 to determine whether each service was satisfactory.

2.30. The student-center cafeteria at Big State University is trying to improve its service 
during the lunch rush from 11:30 a.m. to 1:00 p.m. Customers arrive together in groups 
of size 1, 2, 3, and 4, with respective probabilities 0.5, 0.3, 0.1, and 0.1. Interarrival times 
between groups are exponentially distributed with mean 30 seconds. Initially, the sys-
tem is empty and idle, and is to run for the 90-minute period. Each arriving customer, 
whether alone or part of a group, takes one of three routes through the cafeteria 
(groups in general split up after they arrive):

• Hot-food service, then drinks, then cashier
• Specialty-sandwich bar, then drinks, then cashier
• Drinks (only), then cashier

 The probabilities of these routes are respectively 0.80, 0.15, and 0.05; see Fig 2.68. At 
the hot-food counter and the specialty-sandwich bar, customers are served one at a 
time (although there might actually be one or two workers present, as discussed 
below). The drinks stand is self-service, and assume that nobody ever has to queue up 
here; this is equivalent to thinking of the drinks stand as having infi nitely many 
 servers. There are either two or three cashiers (see below), each having his own queue, 
and there is no jockeying; customers arriving to the cashiers simply choose the short-
est queue. All queues in the model are FIFO.

  In Fig. 2.68, ST stands for service time at a station, and ACT stands for the 
 accumulated (future) cashier time due to having visited a station; the notation 
~U(a, b) means that the corresponding quantity is distributed uniformly between a 
and b seconds. For example, a route 1 customer goes fi rst to the hot-food station, 
joins the queue there if necessary, receives service there that is uniformly distrib-
uted between 50 and 120 seconds, “stores away” part of a (future) cashier time that 
is uniformly distributed between 20 and 40 seconds, then spends an amount of time 
uniformly distributed between 5 seconds and 20 seconds getting a drink, and 
 accumulates an additional amount of (future) cashier time distributed uniformly 
between 5 seconds and 10 seconds. Thus, his service requirement at a cashier will 
be the sum of the U(20, 40) and U(5, 10) random variates he “picked up” at the 
hot-food and drinks stations.
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  Report the following measures of system performance:

• The average and maximum delays in queue for hot food, specialty sandwiches, and 
cashiers (regardless of which cashier)

• The time-average and maximum number in queue for hot food and specialty sandwiches 
(separately), and the time-average and maximum total number in all cashier queues

• The average and maximum total delay in all the queues for each of the three types 
of customers (separately)

• The overall average total delay for all customers, found by weighting their individ-
ual average total delays by their respective probabilities of occurrence

• The time-average and maximum total number of customers in the entire system (for 
reporting to the fi re marshall)

 There are several questions about the system’s operation. For security reasons, there 
must be at least 2 cashiers, and the maximum number of cashiers is 3. Also, there must 
be at least one person working at each of the hot-food and specialty-sandwich stations. 

Hot
food

Specialty
sandwiches

Drinks

0.05

0.15

0.80

ST ~ U(50, 120)
ACT ~ U(20, 40)

ST ~ U(60, 180)
ACT ~ U(5, 15)

ST ~ U(5, 20)
ACT ~ U(5, 10)

Cashiers

FIGURE 2.68
The BSU cafeteria.
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Thus, the minimum number of employees is 4; run this as the “base-case” model. 
Then, consider adding employees, in several ways:
(a) Five employees, with the additional person used in one of the following ways:

(i) As a third cashier
(ii) To help at the hot-food station. In this case, customers are still served one at 

a time, but their service time is cut in half, being distributed uniformly be-
tween 25 seconds and 60 seconds.

(iii) To help at the specialty-sandwich bar, meaning that service is still one at a 
time, but distributed uniformly between 30 seconds and 90 seconds

(b) Six employees, in one of the following confi gurations:
(i) Two cashiers, and two each at the hot-food and specialty-sandwich stations
(ii) Three cashiers, two at hot food, and one at specialty sandwiches
(iii) Three cashiers, one at hot food, and two at specialty sandwiches

(c) Seven employees, with three cashiers, and two each at the hot-food and specialty-
sandwich stations

 Run the simulation for all seven expansion possibilities, and make a recommendation 
as to the best employee deployment at each level of the number of employees. In all 
cases, use stream 1 for the interarrival times between groups, stream 2 for the group 
sizes, stream 3 for an individual’s route choice, streams 4, 5, and 6 for the STs at the 
hot-food, specialty-sandwich, and drinks stations, respectively, and streams 7, 8, and 
9 for the ACTs at these respective stations.

2.31. Consolidated Corkscrews (CC) is a multinational manufacturer of precision carbon-
steel corkscrews for heavy-duty, high-speed use. Each corkscrew is made on a metal 
lathe, and in order to meet rising consumer demand for their product, CC is planning 
a new plant with six lathes. They are not sure, however, how this new plant should be 
constructed, or how the maintenance department should be equipped. Each lathe has 
its own operator, who is also in charge of repairing the lathe when it breaks down. 
Reliability data on lathe operation indicate that the “up” time of a lathe is exponen-
tially distributed with mean 75 minutes. When a lathe goes down, its operator imme-
diately calls the tool crib to request a tool kit for repairs. The plant has a fi xed number, 
m, of tool kits, so there may or may not be a kit in the crib when an operator calls for 
one. If a tool kit is not available, the operator requesting one is placed in a FIFO 
queue and must wait his or her turn for a kit; when one later becomes available, it is 
then placed on a conveyor belt and arrives ti minutes later to lathe i, where ti might 
depend on the lathe number, i, requesting the kit. If a kit is available, it is immedi-
ately placed on a conveyor belt and arrives at the broken lathe ti minutes later; in this 
case the operator’s queue delay is counted as 0. When an operator of a broken lathe 
receives a tool kit, he or she begins repair, which takes an amount of time distributed 
as a 3-Erlang random variable with mean 15 minutes. When the repair is complete, 
the lathe is brought back up and the tool kit is sent back to the tool crib, where it ar-
rives ti minutes later, if it is sent back from lathe i. Initially, assume that all lathes are 
up and have just been “freshly repaired,” and that all m tool kits are in the crib. CC 
wants to know about the projected operation of the plant over a continuous 24-hour 
day by looking at:

• The proportion of time that each of the six lathes is down
• The time-average number of lathes that are down
• The time-average number of tool kits sitting idle in the crib
• The average delay in queue of operators requesting a tool kit
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 There are two major questions to be addressed:
(a) How should the plant be laid out? Two layouts are under consideration:

(i) In the linear design (see Fig. 2.69), the lathes are placed in a straight line with 
the tool crib at the left end, and a single conveyor belt for the tool kits can 
reach all lathes. In this case, ti 5 2i minutes, for i 5 1, 2, . . . , 6.

(ii) In the circular design, the lathes are placed around the tool crib (see Fig. 2.70), 
and each lathe has its own conveyor belt to the crib; here, ti 5 3 for all lathe 
numbers i. This is a more expensive design, but results in shorter travel times 
for the kits.

(b) How many tool kits should there be? As tool kits are quite expensive, CC does not 
want to purchase more than necessary.

 Carry out the necessary simulations and advise CC on questions (a) and (b). In all 
cases, use stream 1 for the lathe-up times, and stream 2 for repair times.

2.32. The engines on jet aircraft must be periodically inspected and, if necessary, repaired. 
An inspection/repair facility at a large airport handles seven different types of jets, as 
described in the table below. The times between successive arrivals of planes of type i 
(where i 5 1, 2, . . . , 7) are exponentially distributed with mean a(i), as given in the 
table; all times are in days. There are n parallel service stations, each of which se-
quentially handles the inspection and repair of all the engines on a plane, but can deal 
with only one engine at a time. For example, a type 2 plane has three engines, so when 
it enters service, each engine must undergo a complete inspection and repair process 
(as described below) before the next engine on this plane can begin service, and all 
three engines must be inspected and (if necessary) repaired before the plane leaves the 
service station. Each service station is capable of dealing with any type of plane. As 
usual, a plane arriving to fi nd an idle service station goes directly into service, while 
an arriving plane fi nding all service stations occupied must join a single queue.

1 2 3 4 5 6
Tool
crib

FIGURE 2.69
The linear design.

FIGURE 2.70
The circular design.

6 2

5 3

1
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Plane  Number of
type (i) engines a(i) A(i) B(i) p(i) r(i) c(i)

1 4   8.1  0.7  2.1  0.30  2.1  2.1
2 3  2.9 0.9 1.8 0.26 1.8 1.7
3 2  3.6 0.8 1.6 0.18 1.6 1.0
4* 4  8.4 1.9 2.8 0.12 3.1 3.9
5 4 10.9 0.7 2.2 0.36 2.2 1.4
6 2  6.7 0.9 1.7 0.14 1.7 1.1
7* 3  3.0 1.6 2.0 0.21 2.8 3.7

 Two of the seven types of planes are classifi ed as widebody (denoted by an asterisk * 
in the above table), while the other fi ve are classifi ed as regular. Two disciplines for 
the queue are of interest:
(i) Simple FIFO with all plane types mixed together in the same queue
(ii) Nonpreemptive priority given to widebody jets, with the rule being FIFO within 

the widebody and regular classifi cations
 For each engine on a plane (independently), the following process takes place 

(i denotes the plane type):

• The engine is initially inspected, taking an amount of time distributed uniformly 
between A(i) and B(i).

• A decision is made as to whether repair is needed; the probability that repair is 
needed is p(i). If no repair is needed, inspection of the jet’s next engine begins; or if 
this was the last engine, the jet leaves the facility.

• If repair is needed, it is carried out, taking an amount of time distributed as a 2-Erlang 
random variable with mean r(i).

• After repair, another inspection is done, taking an amount of time distributed 
 uniformly between A(i)y2 and B(i)y2 (i.e., half as long as the initial inspection, 
since tear-down is already done). The probability that the engine needs further 
repair is p(i)y2.

• If the initial repair was successful, the engine is done. If the engine still fails in-
spection, it requires further repair, taking an amount of time distributed as 2-Erlang 
with mean r(i)y2, after which it is inspected again, taking an amount of time dis-
tributed uniformly between A(i)y2 and B(i)y2; it fails this inspection with probabil-
ity p(i)y2, and would need yet more repair, which would take a 2-Erlang amount of 
time with mean r(i)y2. This procedure continues until the engine fi nally passes in-
spection. The mean repair time stays at r(i)y2, the probability of failure stays at 
p(i)y2, and the inspection times stay between A(i)y2 and B(i)y2.

 A cost of c(i) (measured in tens of thousands of dollars) is incurred for every (full) day 
a type i plane is down, i.e., is in queue or in service. The general idea is to study how 
the total (summed across all plane types) average daily downtime cost depends on the 
number of service stations, n. Initially the system is empty and idle, and the simulation 
is to run for 365 round-the-clock days. Observe the average delay in queue for each 
plane type and the overall average delay in queue for all plane types, the time-average 
number of planes in queue, the time-average number of planes down for each plane 
type separately, and the total average daily downtime cost for all planes added 
 together. Try various values of n to get a feel for the system’s behavior. Recommend 
a choice for n, as well as which of the queue disciplines (i) or (ii) above appears to 
lead to the most cost-effective operation. Use streams 1 through 7 for the interarrival 
times of plane types i 5 1 through i 5 7, respectively, streams 8 through 14 for their 
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respective inspection times (fi rst or subsequent), streams 15 through 21 to determine 
whether they need (additional) repair, and streams 22 through 28 for their repair times 
(fi rst or subsequent).

  As an alternative to the above layout, consider separating entirely the service of the 
widebody and regular jets. That is, take n2 of the n stations and send all the widebody 
jets there (with a single queue of widebodies feeding all n2 stations), and the remaining 
n1 5 n 2 n2 stations are for regular jets only; see Fig. 2.71. Do you think that this al-
ternative layout would be better? Why? Use the same parameters and stream assign-
ments as above.

2.33. Write a C function “delete” to delete the (logically) fi rst record from list “list” with a 
value “value” (a fl oat-valued representation of an integer, for example, 5.0 to represent 
5) for attribute “attribute”. Place the attributes of the deleted record in the transfer 
array. To delete a desired record, a statement of the form “delete(list, value, attribute)” 
should be executed. If there is an error condition (e.g., there is no matching record in 
the list), return a value of 0; otherwise return a value of 1. Also, update the statistics 
for list “list” by invoking timest (see the code for function remove in App. 2A).

2.34. Write a C function “insert” to insert a new event record into the event list, using the 
median-pointer algorithm discussed in Sec. 2.8. If two event records have the same 
event time, give preference to the event with the lowest-numbered event type.

2.35. For the bank model in Sec. 2.6, suppose that after a customer has waited in queue a 
certain amount of time, the customer may leave without being served; this is called 
reneging. Assume that the amount of time a customer will wait in queue before con-
sidering reneging is distributed uniformly between 5 and 10 minutes; if this amount of 

1 2 n1 2

(n1 � n2 � n)

Regular only Widebody only

n21

FIGURE 2.71
Alternative layout for the aircraft-repair facility.
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time does elapse while the customer is in queue, the customer will actually leave with 
the following probabilities:

Position in queue when time elapses 1 2 3 $ 4

Probability of reneging 0.00 0.25 0.50 1.00

 Using the function “delete” from Prob. 2.33, run the simulation model with fi ve tellers 
and estimate (in addition to what was estimated before) the expected proportion of 
customers who renege and the expected average delay in queue of the reneging cus-
tomers. Use the same stream assignments as in Sec. 2.6, and in addition use stream 3 
for the time a customer will wait in queue before considering reneging, and stream 4 
for determining if he or she actually reneges if this time elapses.

2.36 A fi ve-story offi ce building is served by a single elevator. People arrive to the ground 
fl oor (fl oor 1) with independent exponential interarrival times having mean 1 minute. 
A person will go to each of the upper fl oors with probability 0.25. It takes the elevator 
15 seconds to travel one fl oor. Assume, however, that there is no loading or unloading 
time for the elevator at a particular fl oor. A person will stay on a particular fl oor for an 
amount of time that is distributed uniformly between 15 and 120 minutes. When a per-
son leaves fl oor i (where i 5 2, 3, 4, 5), he or she will go to fl oor 1 with probability 
0.7, and will go to each of the other three fl oors with probability 0.1. The elevator can 
carry six people, and starts on fl oor 1. If there is not room to get all people waiting at 
a particular fl oor on the arriving elevator, the excess remain in queue. A person com-
ing down to fl oor 1 departs from the building immediately. The following control logic 
also applies to the elevator:

• When the elevator is going up, it will continue in that direction if a current passen-
ger wants to go to a higher fl oor or if a person on a higher fl oor wants to get on the 
elevator.

• When the elevator is going down, it will continue in that direction if it has at least 
one passenger or if there is a waiting passenger at a lower fl oor.

• If the elevator is at fl oor i (where i 5 2, 3, 4) and going up (down), then it will not 
immediately pick up a person who wants to go down (up) at that fl oor.

• When the elevator is idle, its home base is fl oor 1.
• The elevator decides at each fl oor what fl oor it will go to next. It will not change 

directions between fl oors.

 Use the following random-number stream assignments:

1, interarrival times of people to the building
2, next-fl oor determination (generate upon arrival at origin fl oor)
3, length of stay on a particular fl oor (generate upon arrival at fl oor)

 Run a simulation for 20 hours and gather statistics on:
(a) Average delay in queue in each direction (if appropriate), for each fl oor
(b) Average of individual delays in queue over all fl oors and all people
(c) Proportion of time that the elevator is moving with people, is moving empty, and 

is idle (on fl oor 1)
(d) Average and maximum number in the elevator
(e) Proportion of people who cannot get on the elevator since it is full, for each fl oor

 Rerun the simulation if the home base for the elevator is fl oor 3. Which home base 
gives the smallest average delay [output statistic (b)]?
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2.37. Coal trains arrive to an unloading facility with independent exponential interarrival 
times with mean 10 hours. If a train arrives and fi nds the system idle, the train is 
 unloaded immediately. Unloading times for the train are independent and distributed 
uniformly between 3.5 and 4.5 hours. If a train arrives to a busy system, it joins a 
FIFO queue.

  The situation is complicated by what the railroad calls “hogging out.” In particu-
lar, a train crew can work for only 12 hours, and a train cannot be unloaded without a 
crew present. When a train arrives, the remaining crew time (out of 12 hours) is inde-
pendent and distributed uniformly between 6 and 11 hours. When a crew’s 12 hours 
 expire, it leaves immediately and a replacement crew is called. The amount of time 
between when a replacement crew is called and when it actually arrives is independent 
and distributed uniformly between 2.5 and 3.5 hours.

  If a train is being unloaded when its crew hogs out, unloading is suspended until a 
replacement crew arrives. If a train is in queue when its crew hogs out, the train cannot 
leave the queue until its replacement crew arrives. Thus, the unloading equipment can 
be idle with one or more trains in queue.

  Run the simulation for 720 hours (30 days) and gather statistics on:
(a) Average and maximum time a train spends in the system
(b) Proportion of time unloading equipment is busy, idle, and hogged out
(c) Average and maximum number of trains in queue
(d) Proportion of trains that hog out 0, 1, and 2 times

 Note that if a train is in queue when its crew hogs out, the record for this train must be 
accessed. (This train may be anywhere in the queue.) Use the C function “delete” from 
Prob. 2.33.

2.38. Consider a car-rental system shown in Fig. 2.72, with all distances given in miles. 
People arrive at location i (where i 5 1, 2, 3) with independent exponential interar-
rival times at respective rates of 14, 10, and 24 per hour. Each location has a FIFO queue 
with unlimited capacity. There is one bus with a capacity of 20 people and a speed of 
30 miles per hour. The bus is initially at location 3 (car rental), and leaves immediately 
in a counterclockwise direction. All people arriving at a terminal want to go to the 
car rental. All people arriving at the car rental want to go to terminals 1 and 2 with 

1

2

3 Car rental

Bus

Air terminal

Air terminal

3

3

0.5

0.5

1

1

1

FIGURE 2.72
A car rental system.
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respective probabilities 0.583 and 0.417. When a bus arrives at a location, the follow-
ing rules apply:

• People are fi rst unloaded in a FIFO manner. The time to unload one person is dis-
tributed uniformly between 16 and 24 seconds.

• People are then loaded on the bus up to its capacity, with a loading time per person 
that is distributed uniformly between 15 and 25 seconds.

• The bus always spends at least 5 minutes at each location. If no loading or unloading 
is in process after 5 minutes, the bus will leave immediately.

 Run a simulation for 80 hours and gather statistics on:
(a) Average and maximum number in each queue
(b) Average and maximum delay in each queue
(c) Average and maximum number on the bus
(d) Average, maximum, and minimum time the bus is stopped at each location
(e) Average, maximum, and minimum time for the bus to make a loop (departure 

from the car rental to the next such departure)
( f ) Average, maximum, and minimum time a person is in the system by arrival 

location

 Use the following random-number stream assignments:
 i, interarrival times at location i (where i 5 1, 2, 3)
 4, unloading times
 5, loading times
 6, determining destination of an arrival at the car rental
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C H A P T E R  3

Simulation Software

Recommended sections for a fi rst reading: 3.1 through 3.4

3.1 
INTRODUCTION

In studying the simulation examples in Chaps. 1 and 2, the reader probably noticed 
several features needed in programming most discrete-event simulation models, 
including:

• Generating random numbers, that is, observations from a U(0,1) probability 
distribution

• Generating random variates from a specifi ed probability distribution (e.g., 
exponential)

• Advancing simulated time
• Determining the next event from the event list and passing control to the appro-

priate block of code
• Adding records to, or deleting records from, a list
• Collecting output statistics and reporting the results
• Detecting error conditions

As a matter of fact, it is the commonality of these and other features to most simu-
lation programs that led to the development of special-purpose simulation pack-
ages. Furthermore, we believe that the improvement and greater ease of use of these 
packages have been major factors in the increased popularity of simulation in recent 
years.

We discuss in Sec. 3.2 the relative merits of using a simulation package rather 
than a programming language such as C, C++, or Java for building simulation 
 models. In Sec. 3.3 we present a classifi cation of simulation software, including 
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a  discussion of general-purpose and application-oriented simulation packages. 
 Desirable features for simulation packages, including animation, are described 
in Sec. 3.4. Section 3.5 gives brief descriptions of Arena, ExtendSim, and Simio, 
which are popular general-purpose simulation packages. A simulation model of a 
small factory is also given for each package. In Sec. 3.6 we describe object-oriented 
simulation software. Finally, in Sec. 3.7 we delineate a number of different 
 application-oriented simulation packages.

The publication OR/MS Today has a survey of simulation software on a fairly 
regular basis.

3.2 
COMPARISON OF SIMULATION PACKAGES 
WITH PROGRAMMING LANGUAGES

One of the most important decisions a modeler or analyst must make in performing a 
simulation study concerns the choice of software. If the selected software is not fl exible 
enough or is too diffi cult to use, then the simulation project may produce erroneous 
results or may not even be completed. The following are some advantages of using a 
simulation package rather than a general-purpose programming language:

• Simulation packages automatically provide most of the features needed to build a 
simulation model (see Secs. 3.1 and 3.4), resulting in a signifi cant decrease in 
“programming” time and a reduction in overall project cost.

• They provide a natural framework for simulation modeling. Their basic modeling 
constructs are more closely akin to simulation than are those in a general-purpose 
programming language like C.

• Simulation models are generally easier to modify and maintain when written in a 
simulation package.

• They provide better error detection because many potential types of errors are 
checked for automatically. Since fewer modeling constructs need to be included 
in a model, the chance of making an error will probably be smaller. (Conversely, 
errors in a new version of a simulation package itself may be diffi cult for a user to 
fi nd, and the software may be used incorrectly because documentation is some-
times lacking.)

On the other hand, some simulation models (particularly for defense-related 
applications) are still written in a general-purpose programming language. Some 
advantages of such a choice are as follows:

• Most modelers already know a programming language, but this is often not the 
case with a simulation package.

• A simulation model effi ciently written in C, C++, or Java may require less exe-
cution time than a model developed in a simulation package. This is so because a 
simulation package is designed to address a wide variety of systems with one set 
of modeling constructs, whereas a C program can be more closely tailored to a 
particular application. This consideration has, however, become less important 
with the availability of inexpensive, high-speed PCs.
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• Programming languages may allow greater programming fl exibility than certain 
simulation packages.

• The programming languages C++ and Java are object-oriented (see Sec. 3.6), 
which is of considerable importance to many analysts and programmers, such as 
those in the defense industry. On the other hand, most simulation packages are not 
truly object-oriented.

• Software cost is generally lower, but total project cost may not be.

Although there are advantages to using both types of software, we believe, in 
general, that a modeler would be prudent to give serious consideration to using a 
simulation package. If such a decision has indeed been made, we feel that the crite-
ria discussed in Sec. 3.4 will be useful in deciding which particular simulation pack-
age to choose.

3.3 
CLASSIFICATION OF SIMULATION SOFTWARE

In this section we discuss various aspects of simulation packages.

3.3.1 General-Purpose vs. Application-Oriented Simulation Packages

There are two main types of simulation packages for discrete-event simulation, 
namely, general-purpose simulation software and application-oriented simulation 
software. A general-purpose simulation package can be used for any application, 
but might have special features for certain ones (e.g., for manufacturing or process 
reengineering). On the other hand, an application-oriented simulation package is 
designed to be used for a certain class of applications such as manufacturing, health 
care, or communications networks. A list of application-oriented simulation pack-
ages is given in Sec. 3.7.

3.3.2 Modeling Approaches

In the programs in Chaps. 1 and 2, we used the event-scheduling approach to 
 discrete-event simulation modeling. A system is modeled by identifying its charac-
teristic events and then writing a set of event routines that give a detailed descrip-
tion of the state changes taking place at the time of each event. The simulation 
evolves over time by executing the events in increasing order of their time of 
 occurrence. Here a basic property of an event routine is that no simulated time 
passes during its execution.

On the other hand, most contemporary simulation packages use the process ap-
proach to simulation modeling. A process is a time-ordered sequence of interrelated 
events separated by intervals of time, which describes the entire experience of an 
“entity” as it fl ows through a “system.” The process corresponding to an entity ar-
riving to and being served at a single server is shown in Fig. 3.1. A system or simu-
lation model may have several different types of processes. Corresponding to each 
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process in the model, there is a process “routine” that describes the entire history of 
its “process entity” as it moves through the corresponding process. A process rou-
tine explicitly contains the passage of simulated time and generally has multiple 
entry points.

To illustrate the nature of the process approach more succinctly, Fig. 3.2 gives 
a fl owchart for a prototype customer-process routine in the case of a single-
server queueing system. (This process routine describes the entire experience of a 
customer progressing through the system.) Unlike an event routine, this process 
routine has multiple entry points at blocks 1, 5, and 9. Entry into this routine at 
block 1 corresponds to the arrival event for a customer entity that is the most 
 imminent event in the event list. At block 1 an arrival event record is placed in the 
event list for the next customer entity to arrive. (This next customer entity will 
arrive at a time equal to the time the current customer entity arrives plus an inter-
arrival time.) To determine whether the customer entity currently arriving can 
begin service, a check is made (at block 2) to see whether the server is idle. If the 
server is busy, this customer entity is placed at the end of the queue (block 3) and 
is made to wait (at block 4) until selected for service at some undetermined time 
in the future. (This is called a conditional wait.) Control is then returned to the 
“timing routine” to determine what customer entity’s event is the most imminent 
now. (If we think of a fl owchart like the one in Fig. 3.2 as existing for each cus-
tomer entity in the system, control will next be passed to the appropriate entry 
point for the fl owchart corresponding to the most imminent event for some other 
customer.) When this customer entity (the one made to wait at block 4) is acti-
vated at some point in the future (when it is fi rst in queue and another customer 
completes service and makes the server idle), it is removed from the queue at 
block 5 and begins service immediately, thereby making the server busy (block 6). 
A customer entity arriving to fi nd the server idle also begins service immediately 
(at block 6); in either case, we are now at block 7. There the departure time for the 
customer beginning service is determined, and a corresponding event record is 
placed in the event list. This customer entity is then made to wait (at block 8) until 
its service has been completed. (This is an unconditional wait, since its activation 

FIGURE 3.1
Process describing the fl ow of an entity through a system.
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time is known.) Control is returned to the timing routine to determine what cus-
tomer entity will be processed next. When the customer made to wait at block 8 is 
activated at the end of its service, this makes the server idle at block 9 (allowing 
the fi rst customer in the queue to become active immediately), and then this cus-
tomer is removed from the system at block 10.

FIGURE 3.2
Prototype customer-process routine for a single-server queueing system.

Routine
customer

Place this
customer entity

in the queue

Wait until
selected for

service

Remove this
customer entity
from the queue

Is
the server

idle?

Wait until service
is completed

Termination of
this customer entity

Make the server idle

Make the server busy

Schedule a departure
event for this

customer entity

Return

Passage of
simulated time

Passage of
simulated time

No

Yes

Schedule an arrival
event for the next
customer entity

1

2

3 4

5

6

7

8

9

10

Law01323_ch03_181-213.indd Page 185  21/08/13  4:52 PM user-f-w-198 Law01323_ch03_181-213.indd Page 185  21/08/13  4:52 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



186 simulation software

A simulation using the process approach also evolves over time by executing 
the events in order of their time of occurrence. Internally, the process and event-
scheduling approaches to simulation are very similar (e.g., both approaches use a 
simulation clock, an event list, a timing routine, etc.). However, the process ap-
proach is more natural in some sense, since one process routine describes the entire 
experience of the corresponding process entity.

3.3.3 Common Modeling Elements

Simulation packages typically include entities, attributes, resources, and queues as 
part of their modeling framework. An entity (see Table 3.1 for examples) is created, 
travels through some part of the simulated system, and then is usually destroyed. 
Entities are distinguished from each other by their attributes, which are pieces of 
information stored with the entity. As an entity moves through the simulated system, 
it requests the use of resources. If a requested resource is not available, then the 
entity joins a queue. The entities in a particular queue may be served in a FIFO 
(fi rst-in, fi rst-out) manner, served in a LIFO (last-in, fi rst-out) manner, or ranked on 
some attribute in increasing or decreasing order.

3.4 
DESIRABLE SOFTWARE FEATURES

There are numerous features to consider when selecting simulation software. We 
categorize these features as being in one of the following groups:

• General capabilities (including modeling fl exibility and ease of use)
• Hardware and software requirements
• Animation and dynamic graphics
• Statistical capabilities
• Customer support and documentation
• Output reports and graphics

We now discuss each group of features in turn.

TABLE 3.1

Entities, attributes, resources, and queues for some common simulation applications

Type of system Entities Attributes Resources Queues

Manufacturing Part Part number, due date Machines,  Queues or
    workers  buffers

Communications Message Destination, message  Nodes, links Buffers
   length

Airport Airplane Flight number, weight Runways, gates Queues

Insurance agency Application, claim Name, policy number,  Agents, clerks Queues
   amount
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3.4.1 General Capabilities

In our opinion, the most important feature for a simulation-software product to have 
is modeling fl exibility or, in other words, the ability to model a system whose operat-
ing procedures can have any amount of complexity. Note that no two systems are 
exactly alike. Thus, a simulation package that relies on a fi xed number of modeling 
constructs with no capability to do some kind of programming in any manner is 
bound to be inadequate for certain systems encountered in practice. Ideally, it 
should be possible to model any system using only the constructs provided in the 
software—it should not be necessary to use routines written in a programming lan-
guage such as C. The following are some specifi c capabilities that make a simula-
tion product fl exible:

• Ability to defi ne and change attributes for entities and also global variables, and 
to use both in decision logic (e.g., if-then-else constructs)

• Ability to use mathematical expressions and mathematical functions (logarithms, 
exponentiation, etc.)

• Ability to create new modeling constructs and to modify existing ones, and to 
store them in libraries for use in current and future models

The second most important feature for a simulation product is ease of use 
(and ease of learning), and many contemporary simulation packages have a 
graphical user interface to facilitate this. The software product should have mod-
eling constructs (e.g., icons or blocks) that are neither too “primitive” nor too 
“macro.” In the former case, a large number of constructs will be required to 
model even a relatively simple situation; in the latter case, each construct’s dia-
log box will contain an excessive number of options if it is to allow for adequate 
fl exibility. In general, the use of tabs in dialog boxes can help manage a large 
number of options.

Hierarchical modeling is useful in modeling complex systems. Hierarchy allows 
a user to combine several basic modeling constructs into a new higher-level con-
struct. These new constructs might then be combined into an even higher-level 
 construct, etc. This latter construct can be added to the library of available  constructs 
and can then be reused in this model or future models (see Sec. 3.5.2 for an example). 
This ability to reuse pieces of model logic increases one’s modeling effi ciency. 
 Hierarchy is an important concept in a number of simulation packages. It is also a 
useful way to manage “screen clutter” for a graphically oriented model that consists 
of many icons or blocks.

The software should have good debugging aids such as an interactive debugger. 
A powerful debugger allows the user to do things such as:

• Follow a single entity through the model to see if it is processed correctly
• See the state of the model every time a particular event occurs (e.g., a machine 

breakdown)
• Set the value of certain attributes or variables to “force” an entity down a logical 

path that occurs with small probability
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Fast model execution speed is important for certain applications such as large 
military models and models in which a large number of entities must be processed 
(e.g., for a high-speed communications network). We programmed a simple manu-
facturing system in six simulation products and found that, for this model, one prod-
uct was as much as 11 times faster than another.

It is desirable to be able to develop user-friendly model “front ends” when the 
simulation model is to be used by someone other than the model developer. This 
capability allows the developer to create an interface by which the nonexpert user 
can easily enter model parameters such as the mean service time or how long to run 
the simulation.

Most simulation software vendors offer a run-time version of their software, 
which, roughly speaking, allows the user to change model data but not logic 
by  employing a user-friendly “front end.” Applications of a run-time version 
include:

• Allowing a person in one division of an organization to run a model that was 
 developed by a person in another division who owns a developmental version of 
the simulation software

• Sales tool for equipment suppliers or system integrators
• Training

Note that a run-time license generally has a considerably lower cost than a normal 
developmental license or is free.

A feature that is of considerable interest is the ability to import data from (and 
export data to) other applications (e.g., an Excel spreadsheet or a database).

Traditionally, simulation products have provided performance measures 
(throughput, mean time in system, etc.) for the system of interest. Now some prod-
ucts also include a cost module, which allows costs to be assigned to such things as 
equipment, labor, raw materials, work in process, fi nished goods, etc.

In some discrete-event simulations (e.g., steelmaking), it may be necessary to 
have certain capabilities available from continuous simulation. We call such a simu-
lation a combined discrete-continuous simulation (see Sec. 13.4).

Occasionally, one might have a complex set of logic written in a programming 
language that needs to be integrated into a simulation model. Thus, it is desirable for 
a simulation package to be able to invoke external routines.

It is useful for the simulation package to be easily initialized in a nonempty and 
idle state. For example, in a simulation of a manufacturing system, it might be desir-
able to initialize the model with all machines busy and all buffers half full, in order 
to reduce the time required for the model to reach “steady state.”

Another useful feature is that the state of a simulation can be saved at the end 
of a run and used to restart easily the simulation at a later time.

Finally, cost is usually an important consideration in the purchase of simulation 
software. Currently, the cost of simulation software for a PC ranges from $1000 to 
$100,000 or even more. However, there are other costs that must be considered, 
such as maintenance fees, upgrade fees, and the cost for any additional hardware 
and software that might be required (see Sec. 3.4.2).
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3.4.2 Hardware and Software Requirements

In selecting simulation software, one must consider what computer platforms the 
software is available for. Almost all software is available for Windows-based PCs, 
and some products are also available for Apple computers. If a software package is 
available for several platforms, then it should be compatible across platforms. The 
amount of RAM required to run the software should be considered as well as what 
operating systems are supported. It is highly desirable if independent replications of 
a simulation model can be made simultaneously on multiple processor cores or on 
networked computers.

3.4.3 Animation and Dynamic Graphics

The availability of built-in animation is one of the reasons for the increased use of 
simulation modeling. In an animation, key elements of the system are represented 
on the screen by icons that dynamically change position, color, and shape as the 
simulation model evolves through time. (See the Color Plates at the back of the 
book.) For example, in a manufacturing system, an icon representing a forklift 
truck will change position when there is a corresponding change in the model, and 
an icon representing a machine might change color when the machine changes state 
(e.g., idle to busy) in the model.

The following are some of the uses of animation:

• Communicating the essence of a simulation model (or simulation itself) to a man-
ager or to other people who may not be aware of (or care about) the technical 
details of the model

• Debugging the simulation computer program
• Showing that a simulation model is not valid
• Suggesting improved operational procedures for a system (some things may not 

be apparent from looking at just the simulation’s numerical results)
• Training operational personnel
• Promoting communication among the project team

There are two fundamental types of animation: concurrent and post- 
processed (also called playback). In concurrent animation the animation is being 
displayed at the same time that the simulation is running. Note, however, that the 
animation is normally turned off when making production runs, because the ani-
mation slows down the execution of the simulation. In post-processed animation, 
state changes in the simulation are saved to a disk fi le and used to drive the 
graphics after the simulation is over. Some simulation software products have 
both types of animation.

We now discuss desirable features for animation. First, the simulation soft-
ware should provide default animation as part of the model-building process. 
Since animation is primarily a communications device, it should be possible to 
create high-resolution icons and to save them for later reuse. The software should 
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come with a library of standard icons, or it should be possible to import icons 
from an external source (e.g., Google Warehouse). The software should provide 
smooth movement of icons; icons should not “fl ash” or “jump.” There should be 
a control to speed up or slow down the animation. It should be possible to zoom 
in or out and to pan to see different parts of a system too large to fi t on one 
screen. Some software products have named animation views, so that one can 
construct a menu of views corresponding to different parts of the simulated 
 system. It is desirable if the animation uses vector-based graphics (pictures are 
drawn with lines, arcs, and fi lls) rather than pixel-based graphics (pictures are 
drawn by turning individual pixels on or off ). The former type of graphics allows 
rotation of an object (e.g., a helicopter rotor) as well as a vehicle to maintain its 
proper orientation as it goes around a corner.

Some simulation products with concurrent animation allow the user to stop the 
simulation “on the fl y” while observing the animation, make changes to certain 
model parameters (e.g., the number of machines in a workstation), and then  instantly 
restart the simulation. However, this can be statistically dangerous if the state of the 
system and the statistical counters are not reset.

Many simulation packages provide three-dimensional animation (the vantage 
point from which to view the animation can be rotated around all three axes), which 
might be important for management presentations and for situations in which verti-
cal clearances are important. In these products it may also be possible to provide the 
viewer of the animation with a perspective of “riding through the system on the 
back of an entity.”

It should be possible to import CAD drawings and clip art into an animation. 
It is often desirable to display dynamic graphics and statistics on the screen as 

the simulation executes. Examples of dynamic graphics are clocks, dials, level 
 meters (perhaps representing a queue), and dynamically updated histograms and 
time plots (see Sec. 3.4.6). An example of the latter would be to update a plot of the 
number in some queue as the simulation moves through time.

3.4.4 Statistical Capabilities

If a simulation product does not have good statistical-analysis features, then it is 
impossible to obtain correct results from a simulation study. First, the software must 
have a good random-number generator (see Chap. 7), that is, a mechanism for gen-
erating independent observations from a uniform distribution on the interval [0, 1]. 
Note that not all random-number generators found on computers or in software 
products have acceptable statistical properties. The generator should have at least 
100 different streams (preferably far more) that can be assigned to different sources 
of randomness (e.g., interarrival times or service times) in a simulation model—this 
will allow different system designs to be compared in a more statistically effi cient 
manner (see Sec. 11.2). The simulation software should produce the same results on 
different executions if the default seeds are used for the various streams—the seeds 
should not depend on the internal clock of the computer. On the other hand, the user 
should be able to set the seed for each stream, if desired.
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In general, each source of randomness in the system of interest should be rep-
resented in the simulation model by a probability distribution (see Chap. 6), not just 
the perceived mean value. If it is possible to fi nd a standard theoretical distribution 
that is a good model for a particular source of randomness, then this distribution 
should be used in the model. At a minimum, the following continuous distributions 
should be available: exponential, gamma, Weibull, lognormal, normal, uniform, 
beta, and triangular. The last distribution is typically used as a model for a source 
of randomness when no system data are available. Note also that very few input 
random variables in real simulations have a normal distribution. The following 
 discrete distributions should also be available: binomial, geometric, negative binomial, 
Poisson, and discrete uniform.

If a theoretical distribution cannot be found that is a good representation for a 
source of randomness, then an empirical (or user-defi ned ) distribution based on the 
data should be used (see Sec. 6.2.4). In this case, random numbers are used to 
sample from a distribution function constructed from the observed system data.

There should be (a single) command available for making independent replica-
tions (or runs) of the simulation model. This means:

• Each run uses separate sets of different random numbers.
• Each run uses the same initial conditions.
• Each run resets the statistical counters.

Note that simulation results from different runs are independent and also proba-
bilistic copies of each other. This allows (simple) classical statistical procedures to 
be applied to the results from different runs (see Chap. 9).

There should be a statistically sound method available for constructing a confi -
dence interval for a mean (e.g., the mean time in system for a part in a factory). The 
method should be easy to understand and should provide good statistical results. In 
this regard, we feel that the method of replication (see Secs. 9.4.1 and 9.5.2) is def-
initely the superior approach.

If one is trying to determine the long-run or “steady-state” behavior of a sys-
tem, then it is generally desirable to specify a warmup period for the simulation, that 
is, a point in simulated time when the statistical counters (but not the state of the 
system) are reset. Ideally, the simulation software should also be able to determine 
a value for the warmup period based on making pilot runs. There is currently at 
least one simulation product that uses Welch’s graphical approach (see Sec. 9.5.1) 
to specify a warmup period.

It should be possible to construct a confi dence interval for the difference be-
tween the means of two simulated systems (e.g., the current system and a proposed 
system) by using the method of replication (see Sec. 10.2).

The simulation software should allow the user to specify what performance 
measures to collect output data on, rather than produce reams of default output data 
that are of no interest to the user.

At least one simulation product allows the user to perform statistical experi-
mental designs (see Chap. 12) with the software, such as full factorial designs or 
fractional factorial designs. When we perform a simulation study, we would like to 
know what input factors (decision variables) have the greatest impact on the 
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 performance measures of interest. Experimental designs tell us what simulation 
 experiments (runs) to make so that the effect of each factor can be determined. 
Some designs also allow us to determine interactions among the factors.

A topic that is of interest to some people planning to buy simulation software is 
“optimization” (see Sec. 12.5). Suppose that there are a number of decision vari-
ables (input factors) of interest, each with its own range of acceptable values. (There 
may also be linear constraints on the decision variables.) In addition, there is an 
objective function to be maximized (or minimized) that is a function of one or more 
simulation output random variables (e.g., throughput in a manufacturing system) 
and of certain decision variables. Then the goal of an “optimizer” is to make runs of 
the simulation model (each run uses certain settings of the decision variables) in an 
intelligent manner and to determine eventually a combination of the decision vari-
ables that produces an optimal or near-optimal solution. These optimization mod-
ules use heuristics such as genetic algorithms, simulated annealing, neural networks, 
scatter search, and tabu search.

3.4.5 Customer Support and Documentation

The simulation software vendor should provide public training on the software on a 
regular basis, and it should also be possible to have customized training presented 
at the client’s site. Good technical support is extremely important for questions on 
how to use the software and in case a bug in the software is discovered. Technical 
support, which is usually in the form of telephone help, should be such that a re-
sponse is received in at most one day.

Good documentation is a crucial requirement for using any software product. It 
should be possible, in our opinion, to learn a simulation package without taking a 
formal training course. Generally, there will be a user’s guide or reference manual. 
There should be numerous detailed examples available. Most products now have 
context-dependent online help, which we consider very important. (It is not suffi -
cient merely to have a copy of the documentation available in the software.) Several 
products have a library of “mini examples” to illustrate the various modeling 
constructs.

There should be a detailed description of how each modeling construct works, 
particularly if its operating procedures are complex. For example, if a simulation-
software product for communications networks offers a module for a particular type 
of local-area network, then its logic should be carefully delineated and any simpli-
fying assumptions made relative to the standard stated.

It is highly desirable to have a university-quality textbook available for the sim-
ulation package.

Most simulation products offer a free demo and, in some cases, a working ver-
sion of the software can be downloaded from the vendor’s website, which will allow 
small models to be developed and run.

It is useful if the vendor publishes an electronic newsletter and has a yearly 
users’conference. The vendor should have regular updates of the software (perhaps, 
once a year).
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3.4.6 Output Reports and Graphics

Standard reports should be provided for the estimated performance measures. It 
should also be possible to customize reports, perhaps for management presenta-
tions. Since a simulation product should be fl exible enough so that it can compute 
estimates of user-defi ned performance measures, it should also be possible to write 
these estimates into a custom report. For each performance measure (e.g., time in 
system for a factory), the average observed value, the minimum observed value, and 
the maximum observed value are usually given. If a standard deviation is also given 
(based on one simulation run), then the user should be sure that it is based on a sta-
tistically acceptable method (such as batch means with appropriate batch sizes, as 
discussed in Sec. 9.5.3), or else it should be viewed as highly suspect. [Variance and 
standard-deviation estimates require independent data, which are rarely produced 
by one run of a simulation model (see Sec. 4.4).] It should be possible to obtain re-
ports at intermediate points during a simulation run as well as at the end.

The simulation product should provide a variety of (static) graphics. First, it 
should be possible to make a histogram (see Fig. 14.29) for a set of observed data. 
For continuous (discrete) data, a histogram is a graphical estimate of the underlying 
probability density (mass) function that produced the data. Time plots are also very im-
portant. In a time plot (see, for example, Fig. 14.27) one or more key system variables 
(e.g., the numbers in certain queues) are plotted over the length of the sim ulation, 
providing a long-term indication of the dynamic behavior of the sim ulated system. 
(An animation provides a short-term indication of the dynamic behavior of a system.) 
Some simulation products allow the simulation results to be presented in bar charts or 
pie charts. Finally, a correlation plot (see Fig. 6.29) is a useful way to measure the 
dependence in the output data produced from one simulation run.

It should be possible to export individual model output observations (e.g., times 
in system) to other software packages such as spreadsheets, databases, statistics 
packages, and graphical packages for further analysis and display.

3.5 
GENERAL-PURPOSE SIMULATION PACKAGES

In Secs. 3.5.1 through 3.5.3 we give brief descriptions of Arena, ExtendSim, and 
Simio, respectively, which are (at this writing) popular general-purpose simulation 
packages. In each case we also show how to build a model of a small factory. 
 Section 3.5.4 lists some additional general-purpose simulation packages.

3.5.1 Arena

Arena [see Rockwell (2013) and Kelton et al. (2010)] is a general-purpose simula-
tion package marketed by Rockwell Automation (Wexford, Pennsylvania) that is 
commonly used for applications such as manufacturing, supply chains, defense, 
health care, and contact centers. There are two different versions of Arena, namely, 
the Standard Edition and the Professional Edition.
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Modeling constructs, which are called “modules” in Arena, are functionally 
arranged into a number of “templates.” (A module contains logic, a user interface, 
and, in some cases, options for animation.) The “Basic Process” template contains 
modules that are used in virtually every model for modeling arrivals, departures, 
services, and decision logic of entities. The “Advanced Process”  template contains 
modules that are used to perform more advanced process logic and to access exter-
nal  data fi les in Excel, Access, and SQL databases. The “Advanced Transfer” 
 template contains modules for modeling various types of conveyors, forklift trucks, 
automated guided vehicles, and other material-handling  equipment. The “Flow 
 Process” template is used for modeling tanks, pipes, valves, and batch-processing 
operations. Also the lower-level “Blocks” and “Elements” templates are used in 
modeling some complex real-world systems; these two templates constitute what 
was previously called the SIMAN simulation language.

A model is constructed in Arena by dragging modules into the model window, 
connecting them to indicate the fl ow of entities through the simulated system, and 
then detailing the modules by using dialog boxes or Arena’s built-in spreadsheet. A 
model can have an unlimited number of levels of hierarchy.

“Visual Designer” is used to create concurrent three-dimensional (3-D) anima-
tions and “live-data dashboards,” which display dynamic graphics (e.g., histograms, 
pie charts, and time plots). (Two-dimensional animation is also available.) It also 
allows one to “watch the logic execute” and to perform sophisticated graphical 
model debugging. AVI fi les can be generated directly from Arena for sharing anima-
tions with other people, and each Arena license includes one additional runtime-
only license (see Sec. 3.4.1).

There are an unlimited number of random-number streams (see Chap. 7) avail-
able in Arena. Furthermore, the user has access to 12 standard theoretical probabil-
ity distributions and also to empirical distributions. Arena has a built-in capability 
for modeling nonstationary Poisson processes (see Sec. 6.12.2), which is a model 
for entity arrivals with a time-varying rate.

There is an easy mechanism for making independent replications of a  particular 
simulated system and for obtaining point estimates and confi dence intervals for per-
formance measures of interest. It is also possible to construct a confi dence interval for 
the difference between the means of two systems. A  number of plots are available, 
such as histograms, time plots, bar charts, and  correlation plots. The  “OptQuest for 
Arena” (see Sec. 12.5.2) optimization  module is available as an option.

Activity-based costing is incorporated into Arena, providing value-added and 
non-value-added cost and time reports. Simulation results are stored in a database 
and are presented using Crystal Reports, which is embedded in Arena.

Microsoft Visual Basic for Applications (VBA) and a complete ActiveX object 
model are available in Arena. This capability allows more sophisticated control and 
logic including the creation of user-friendly “front ends” for entering model parame-
ters, the production of customized reports, etc. This technology is also used for Arena’s 
interfaces with many external applications including the Visio drawing package.

Arena Professional Edition includes the ability to create customized modules 
and to store them in a new template. Arena also has an option that permits a model 
to run in real time (or any multiple thereof) and to dynamically interact with other 
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processes; this supports applications such as the High Level Architecture (see 
Sec. 1.6.2) and testing of hardware/software control systems.

We now develop an Arena model for the simple manufacturing system of 
 Example 9.25, which consists of a machine and an inspector. However, we assume 
here that the machine never breaks down. Figure 3.3 shows the fi ve required logic 
modules and the necessary connections to defi ne the entity fl ow.

The “Create” module, whose dialog box is shown in Fig. 3.4, is used to  generate 
arrivals of parts. We label the module “Generate Parts” and specify that interarrival 
times are exponentially distributed [denoted “Random (Expo)”] with a mean of 1  minute. 
The Create module is connected to the “Process” module (see Fig. 3.5), which is 

FIGURE 3.3
Arena model for the manufacturing system.

FIGURE 3.4
Dialog box for the Arena Create module “Generate Parts.”
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FIGURE 3.5
Dialog box for the Arena Process module “Machine Part.”

used to represent the processing of a part at the machine. This module is labeled 
“Machine Part,” has a single resource named “Machine” with one unit, and has pro-
cessing times that are uniformly distributed between 0.65 and 0.70 minute.

The next Process module (see Fig. 3.6) is used to represent the inspector. We 
specify that inspection times are uniformly distributed between 0.75 and 0.80  minute. 
After inspection, a “Decide” module (see Fig. 3.7) specifi es that a part can have 
one of two outcomes: “True” (occurs 90 percent of the time) or “False.” If the part 
is good (True), then it is sent to the “Depart” module (not shown) labeled “Good 
Part Finished,” where it is destroyed. Otherwise (False), it is sent back to the 
 Machine Part module to be remachined.

Finally, we need to use Run . Setup (see Fig. 3.8) to specify the experimental 
parameters. We state that one run of length 100,000 minutes is desired.

The results from running the simulation are given in Fig. 3.9, from which we 
see that the average time in system of a part is 4.64 minutes. Additional output 
 statistics can be obtained from the options on the left-hand side of the screen.
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FIGURE 3.6
Dialog box for the Arena Process module “Inspect Part.”

FIGURE 3.7
Dialog box for the Arena Decide module “Passed Inspection?”
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3.5.2 ExtendSim

ExtendSim [see Imagine (2013)] is the family name for four general-purpose 
 simulation packages marketed by Imagine That, Inc. (San Jose, California). Each 
 ExtendSim product has components aimed at specifi c market segments, but all 
products share a core set of features. A model is constructed by selecting blocks 
from libraries (Item, Value, Plotter, etc.), placing the blocks at appropriate locations 
in the model window, connecting the blocks to indicate the fl ow of entities (or 
 values) through the system, and then detailing the blocks using dialog boxes.

FIGURE 3.8
Dialog box for the Arena Run Setup confi guration options.
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FIGURE 3.9
Simulation results for the Arena model of the manufacturing system.
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ExtendSim can model a wide variety of system confi gurations using the blocks 
supplied with the product. If needed, the internal ModL language can be used to 
customize existing blocks and to create entirely new blocks. These “new” blocks can 
be placed in a new library for reuse in the current model or future models. The code 
corresponding to a particular block can be viewed by right-clicking on the block and 
selecting “Open Structure”; this feature is useful for understanding the actual opera-
tion of the block. ModL can also access applications and procedures created with 
external programming languages such as  Visual Basic and C++.

A model can have an unlimited number of levels of hierarchy (see below) and 
also use inheritance (see Sec. 3.6). A “Navigator” allows one to move from one 
 hierarchical level to another. All ExtendSim products provide a basic 2-D anima-
tion, and the ExtendSim Suite product also provides 3-D animation.

Each simulation model in ExtendSim has an associated “Notebook,” which can 
contain pictures, text, dialog items, and model results. Thus, a Notebook can be 
used as a “front end” for a model or as a vehicle for displaying important model 
results as the simulation is actually running. The parameters for each model can also 
be stored in, and accessed from, the model’s internal relational database; this is use-
ful for data consolidation and management.

There are an essentially unlimited number of random-number streams available 
in ExtendSim. Furthermore, the user has access to 34 standard theoretical probability 
distributions and also to empirical distributions. ExtendSim has an easy mechanism 
for making independent replications of a simulation model and for obtaining point 
 estimates and confi dence intervals for performance measures of interest. A number of 
plots are available such as histograms, time plots, bar charts, and Gantt charts.

There is an activity-based costing capability in ExtendSim that allows one to 
assign fi xed and variable costs to an entity as it moves through a simulated system. 
For example, in a manufacturing system a part might be assigned a fi xed cost for the 
required raw materials and a variable cost that depends on how long the part spends 
waiting in queue.

ExtendSim’s “Item” library contains blocks for performing discrete-event 
 simulation (entity arrival, service, departure, etc.), as well as for material handling 
(see Sec. 14.3 for further discussion of material handling) and routing. (An entity is 
called an “Item” in ExtendSim.) The optional “Rate” library provides blocks for 
modeling high-speed, high-volume manufacturing systems (e.g., canning lines) 
within a discrete-event environment. The blocks in the “Value” library are used to 
perform continuous simulation (see Sec. 13.3) and to provide modeling support 
(mathematical calculations, simulation-based optimization, data sharing with other 
applications, etc.) for discrete-event simulation.

ExtendSim’s “Scenario Manager” allows the modeler to investigate how the 
simulation model’s responses change from one scenario (a set of values for the 
model’s input parameters or factors) to another. The scenarios of interest can either 
be entered manually or are specifi ed automatically by the Scenario Manager in the 
case of a factorial design (see Sec. 12.2). Additionally, the modeler specifi es the 
number of independent replications (each using different random numbers) of each 
scenario that is desired. The Scenario Manager runs the scenarios iteratively, re-
cords the responses for each replication, and the responses are then summarized 
across the replications for each scenario. The model factors and their corresponding 
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responses can be exported to ExtendSim’s database, the JMP and Minitab statistical 
packages, or Excel for further analysis. ExtendSim also has a built-in optimization 
module (see Sec. 12.5.2).

We now show how to build an ExtendSim model for the manufacturing system 
discussed in Sec. 3.5.1. In particular, Fig. 3.10 shows the required blocks and con-
nections for the model; the connections correspond to the fl ow of entities (parts for 
this model). All the blocks in this model are from the ExtendSim Item library. We 
have placed a descriptive label below each block, which we will refer to in the dis-
cussion of the model below.

The “Executive” block, which is not graphically connected to any other block, 
manages the event list for an ExtendSim model. The fi rst block actually in the model 
is a “Create” block labeled “Generate Parts” (see its dialog box in Fig. 3.11), which 
is used to generate parts having exponential interarrival times with a mean of 
1 minute. This is followed by a “Queue” block labeled “Machine Queue” (Fig. 3.12), 
which stores the parts while they are waiting for processing. This queue has infi nite 
capacity by default and merges the parts from the Create block with those parts that 
need to be reworked after inspection.

Following the Machine Queue block is an “Activity” block labeled “Machine 
Part.” In the dialog box for this latter block (Fig. 3.13), we specify that one part can 
be processed at a time. We also select “Uniform, Real” as the processing-time dis-
tribution and then set its minimum and maximum values to 0.65 and 0.70 minute, 
respectively. This Activity block is connected to a second Queue block labeled 
 “Inspect Queue,” where parts wait for the inspection process. The output of this 
Queue block is connected to a second Activity block labeled “Inspect Part,” where 
inspection times are uniformly distributed between 0.75 and 0.80 minute.

The Activity block corresponding to the inspector is connected to the “Select 
Item Out” block labeled “Random Output,” which is used to determine whether a 
part is good or bad. In its dialog box (Fig. 3.14), we specify that parts will leave 
randomly through the block’s outputs. In the table we enter the probabilities 
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FIGURE 3.10
ExtendSim model for the manufacturing system.
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FIGURE 3.11
Dialog box for the ExtendSim Create block “Generate Parts.”

FIGURE 3.12
Dialog box for the ExtendSim Queue block “Machine Queue.”
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FIGURE 3.13
Dialog box for the ExtendSim Activity block “Machine Part.”

FIGURE 3.14
Dialog box for the ExtendSim Select Item Out block “Random Output.”
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0.9 and 0.1, indicating that 90 percent of the parts will be sent through the top out-
put as “Good” and 10 percent of the parts will be sent through the lower output as 
“Bad.” We also choose to have the probabilities displayed on the output connec-
tions of this block.

The next block in the model is an “Information” block labeled “Part Statistics,” 
which computes output statistics for completed parts. In its dialog box (Fig. 3.15), 
we see that 100,078 (good) parts were completed and that the average time in  system 
(cycle time) was 4.46 minutes. The last block in the model is an “Exit” block la-
beled “Destroy Parts” (see Fig. 3.10), where the completed parts are removed from 
the model.

The time units for the model (minutes), the simulation run length (100,000), 
and the desired number of runs (1) are specifi ed in the “Simulation Setup” option 
that is accessed from the “Run” pull-down menu (not shown) at the top of the 
screen. The Notebook for the model (Fig. 3.16), which is accessed from the 

FIGURE 3.15
Dialog box for the ExtendSim Information block “Part Statistics.”
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“Window” pull-down menu, brings together important input parameters and re-
sults for the model.

In Fig. 3.17 we give a version of the ExtendSim model that uses hierarchy (see 
Sec. 3.4.1). If we double-click on the hierarchical block named “Process” (at the 
fi rst level of hierarchy), then we go down to the second level of hierarchy where we 
see the original Machine Queue and Machine Part blocks, as shown in Fig. 3.18.

FIGURE 3.16
ExtendSim Notebook for the manufacturing system.

r

Good i

L Destroy Parts
Part Statistics

Inspect
Process Bad

Generate Parts
Q

Executive

FIGURE 3.17
Hierarchical ExtendSim model for the manufacturing system.
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3.5.3 Simio

Simio [Simio (2013) and Kelton et al. (2011)] is an object-oriented (see Sec. 3.6) 
suite of simulation and scheduling products marketed by Simio LLC (Sewickley,  
Pennsylvania). Simio is a simulation-modeling framework based on intelligent 
 objects, which allows one to build models using either the default Standard Library 
(for discrete-event simulation) or by graphically creating entirely new objects. (An 
object in Simio has properties, states, and logic.) The Standard library, which  contains 
15 object defi nitions, can be modifi ed and extended using process logic (see below), 
and new objects can be stored in libraries for use in other simulation projects.

An object in a library might be a customer, machine, doctor, or anything else 
that you might fi nd in a system. A model is constructed in Simio by dragging objects 
into the “Facility” window, connecting them by links to indicate the fl ow of entities 
through the simulated system, and then detailing the objects by using a property 
 editor. The model logic and animation are built in a single step, typically in a 
 two-dimensional view for ease of modeling. However, one can switch to a three-
dimensional (3-D) perspective view with just a single keystroke.

Building an object in Simio is identical to building a model, since there is no dif-
ference between the two constructs. Whenever you build a model, it is by defi nition an 
object that can be used in another model. For example, if you combine two machines 
and a robot into a model of a workstation, then the workstation model is itself an object 
that can then be used in other models. Every model that is built in Simio is automati-
cally a building block that can be used in constructing hierarchical models.

When you instantiate an object into a model, you may specify “properties” (static 
input parameters) of the object that govern the behavior of this specifi c instance of the 
object. For example, a property of a machine might be its processing time. The devel-
oper of an object decides on the number of properties and their meanings. Properties 
in Simio can be numerical values, Boolean variables, text strings, etc.

In addition to properties, objects have “states” that change values as a result of 
the execution of the object’s logic. A state for a machine might be its status (e.g., 
idle or busy). Properties and states together constitute the attributes of an object.

An object in Simio may be defi ned from one of fi ve base classes, which pro-
vides the underlying behavior for the object. The fi rst class is the “fi xed object,” 

FIGURE 3.18
Components of the Process hierarchical block.
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which has a fi xed location in the model and is used to represent something in a sys-
tem that does not move from one location to another, such as a machine in a factory 
or an operating room in a hospital.

An “entity” is an object that can move through 3-D space over a network of links 
and nodes. Examples of entities are parts in a manufacturing system, and patients, 
nurses, and doctors in a hospital. Note that in traditional simulation packages entities 
are passive and are acted upon by the model processes (see Sec. 3.3.2). However, in 
Simio the entities are intelligent objects that can control their own behavior.

“Link” and “node” objects are used to build networks over which entities may 
fl ow. A link defi nes a pathway for entities to move from one object to another, 
whereas a node defi nes the beginning or ending point of a link. Links and nodes can 
be combined together into complex networks. A link could be an escalator with a 
fi xed travel time or it could represent a conveyor.

The fi nal class of objects is a “transporter,” which is a subclass of the entity class. A 
transporter is an entity that has the added capabilities to pick up, carry, and drop off one 
or more other entities. A transporter could be used to model a bus, a forklift truck, or any 
other object that has the ability to carry other entities from one location to another.

A key feature of Simio is the ability to create a wide range of object behaviors 
from the base classes. The Simio modeling framework is application-domain 
 neutral, i.e., these base classes are not specifi c to a particular application area such 
as manufacturing or health care. However, it is easy to build application-oriented 
libraries composed of intelligent objects from the base classes. Simio’s design 
 philosophy dictates that domain-specifi c logic belongs in the objects built by users, 
and it is not programmed into the core system.

The process approach (see Sec. 3.3.2) is commonly used for extending an object’s 
logic or for building new objects. A process is defi ned in Simio using a fl owchart, 
where each step in the fl owchart defi nes some action to perform. There are over 50 dif-
ferent process steps available in Simio to perform specifi c actions such as delay by 
time, wait to seize a resource, etc. Process logic can be inserted into a specifi c instance 
of an object to modify or extend its behaviors. For example, an object representing a 
machine might use process logic to seize and hold a repairman during a breakdown.

There are an essentially unlimited number of random-number streams available 
in Simio. Furthermore, the user has access to 19 standard theoretical probability 
distributions and to empirical distributions. There is an easy mechanism for making 
independent replications of a simulation model and for obtaining point estimates 
and confi dence intervals for performance measures of interest. A number of plots 
are available such as time plots, histograms, bar charts, and pie charts.

Simio provides a 3-D interactive environment for building and running simula-
tion models, which is useful for accurately modeling spatial relationships and for 
communicating model behavior to the simulation project’s stakeholders. However, 
Simio also provides a set of sophisticated features for performing and analyzing 
simulation experiments. In particular, a model may have an associated “experiment” 
that specifi es a set of scenarios to execute. Each scenario may have one or more input 
controls and will have one or more output responses. The input controls are factors 
that are changed from one scenario to the next (e.g., the number of machines in a 
workstation), and the output responses are the measures of performance (e.g., average 
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time in system of a part) that are used to evaluate the effi cacy of the different scenar-
ios. Furthermore, each scenario can be replicated a specifi ed number of times and 
these replications can be simultaneously executed across multiple processor cores or 
across different computers on a network, which will greatly reduce the time required 
for experimentation. Simio’s built-in analysis tools include a procedure for automati-
cally selecting the best scenario from a set of candidate scenarios [see Sec. 10.4.3 and 
Kim and Nelson (2001)] and SMORE plots [see Nelson (2008)]. A SMORE plot si-
multaneously displays a point estimate and confi dence interval for the expected value 
of a response, as well as a superimposed box plot (see Sec. 6.4.3). The “OptQuest for 
Simio” (see Sec. 12.5.2) optimization module is available as an option.

Although Simio is primarily oriented toward performing discrete-event simula-
tion using an object-oriented approach, Simio also supports modeling continuous-
fl ow systems, performing agent-based simulation (because of its object orientation), 
and performing discrete-event simulation using the process approach. Moreover, 
Simio can also be used in an operational setting as a risk-based planning and sched-
uling tool to improve the day-to-day functioning of an organization.

We now develop a Simio model of the simple manufacturing system discussed 
in Sec. 3.5.1. The Simio model for this system is shown in Figure 3.19 and is 
 composed of a “Source” object named “Part_Arrivals” that creates the jobs arriving 
to the system, a “Server” object named “Machine_Part” that models the machining 
operation, a Server object named “Inspect_Part” that models the inspection process, 
and a “Sink” object named “Part_Departures,” where entities leave the system. In 
this example, we use a zero-time link called a “Connector” to defi ne the travel paths 
between the Source, Servers, and Sink objects.

FIGURE 3.19
Simio model for the manufacturing system.
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The small circular “selection handles” surrounding the Part_Arrivals object in-
dicate that the object was selected for editing (by clicking on it with the mouse). The 
properties of a selected object are edited using the “Property Editor,” which is on the 
lower-right side of the screen. The Part_Arrivals object is used to generate arrivals 
to the system based on an “Arrival Mode.” The default “Interarrival Time” mode 
used in this example specifi es that the distribution of interarrival times is expo-
nential with a mean of 1 minute. [Alternatively, the “Time Varying Arrival Rate” 
mode generates arrivals in accordance with a nonstationary Poisson process (see 
Sec. 6.12.2) and the “Arrival Table” mode schedules arrivals using data stored in a 
table or an external source such as a spreadsheet.]

Figure 3.20 displays the properties for the Machine_Part object. The properties are 
organized into categories that can be expanded and collapsed with the 1/2 signs to the 
left of the category name. These properties specify that “Processing Time” is uniformly 
distributed on the interval [0.65, 0.70] minute. Note that this expression can be typed 
in directly or specifi ed using an “Expression Editor,” which can be accessed using a 
pull-down arrow on the right side of the fi eld (not shown). If failures of Machine_Part 

FIGURE 3.20
Properties of the Machine_Part object.
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were desired, then they would be specifi ed under the “Reliability Logic” category. The 
“Financials” category can be used to specify usage rates for activity-based costing.

We do not show the Property Editor for the Inspect_Part object, where the in-
spection times are specifi ed to be uniformly distributed on the interval [0.75, 0.80] 
minute. The two connectors leaving Inspect_Part (see Fig. 3.19) have link weights 
of 0.9 and 0.1, respectively, and use a routing rule on its exit node that is based on 
“By Link Weight.”

Figure 3.21 shows the specifi cation of and partial results from a simple experiment 
for our model, which says to make 30 replications of the simulation and to observe the 
average time in system of a part for a run length of 100,000 minutes. Note that the aver-
age time in system over the 30 replications was 4.55 minutes.

These same results are shown in Figure 3.22 in the form of a SMORE plot. This 
plot shows a point estimate (“dot”) and a 95 percent confi dence interval (“small” 
shaded rectangle over the dot) for the expected average time in system. Super-
imposed over this is a box plot showing the minimum, 25th percentile, median, 75th 
percentile, and maximum of the 30 observed values of average time in system. 
 Finally, the two outer shaded rectangles are 95 percent confi dence intervals for the 
25th and 75th percentiles.

A standard report that is automatically produced by a simulation model can 
potentially contain a large amount of output statistics, which can make it diffi cult to 
fi nd the information that is really of interest. To help alleviate this problem, Simio 
presents the simulation results in the form of a “Pivot Grid” (similar to a pivot table 

FIGURE 3.21
Design view for specifying an experiment.
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FIGURE 3.23
Simulation results displayed in a Pivot Grid.

FIGURE 3.22
SMORE plot for average time in system.

in Excel), which can easily be customized to display the statistics of interest in an 
appropriate format. A Pivot Grid for the simulation results produced by the 30 rep-
lications is shown in Figure 3.23. Note that the machine and inspector had a utiliza-
tion of 0.75 and 0.86, respectfully.
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3.5.4 Other General-Purpose Simulation Packages

There are several other well-known, general-purpose simulation packages,  including 
AnyLogic [AnyLogic (2013)], SIMUL8 [SIMUL8 (2013)], and SLX [Wolverine 
(2013)].

3.6 
OBJECT-ORIENTED SIMULATION

In the last 20 years there has been a lot of interest in object-oriented simulation 
[see, e.g., Joines and Roberts (1998) and Levasseur (1996)]. This is probably an 
outgrowth of the strong interest in object-oriented programming in general. 
 Actually, both object-oriented simulation and programming originated from 
the  object-oriented simulation language SIMULA, which was introduced in 
the 1960s.

In object-oriented simulation a simulated system is considered to consist of 
objects (e.g., an entity or a server) that interact with each other as the simulation 
evolves through time. There may be several instances of certain object types (e.g., 
entities) present concurrently during the execution of a simulation. Objects contain 
data and have methods (see Example 3.1). Data describe the state of an object at a 
particular point in time, while methods describe the actions that the object is capa-
ble of performing. The data for a particular object instance can only be changed by 
its own methods. Other object instances (of the same or of different types) can only 
view its data. This is called encapsulation.

Examples of true object-oriented simulation packages are AnyLogic, FlexSim, 
and Simio. Three major features of such a simulation package are inheritance, 
polymorphism, and encapsulation (defi ned above). Inheritance means that if one 
defi nes a new object type (sometimes called a child ) in terms of an existing object 
type (the parent), then the child type “inherits” all the characteristics of the parent 
type. Optionally, certain characteristics of the child can be changed or new ones 
added. Polymorphism is when different object types with the same ancestry can 
have methods with the same name, but when invoked may cause different behavior 
in the various objects. [See Levasseur (1996) for examples of inheritance and 
polymorphism.]

E X A M P L E  3 . 1 .  In a manufacturing system, the fabrication area and the assembly 
area might be considered as objects (fi rst level of hierarchy). In turn, the fabrication 
area might consist of machine, worker, and forklift-truck objects (second level of 
hierarchy). Data for a forklift might include its speed and the maximum weight that 
it can lift. A method for a forklift might be the dispatching rule that it uses to choose 
the next job.

Some vendors claim that their simulation software is object-oriented, but in 
some cases the software may not include inheritance, polymorphism, or encapsul-
ation. Furthermore, certain of the above three features are sometimes assigned 
 different meanings.
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The following are possible advantages of object-oriented simulation:

• It promotes code reusability because existing objects can be reused or easily 
modifi ed.

• It helps manage complexity by breaking the system into different objects.
• It makes model changes easier when a parent object can be modifi ed and its chil-

dren objects realize the modifi cations.
• It facilitates large projects with several programmers.

Possible disadvantages of the object-oriented approach are:

• Some object-oriented simulation packages may have a steep learning curve.
• One must do many projects and reuse objects to achieve its full benefi ts.

3.7 
EXAMPLES OF APPLICATION-ORIENTED 
SIMULATION PACKAGES

In this section we list some of the application-oriented simulation packages that are 
currently available.

Manufacturing. AutoMod [Applied Materials (2013)], Enterprise Dynamics 
[INCONTROL (2013)], FlexSim [FlexSim (2013)], Plant Simulation [Siemens 
(2013)], ProModel [ProModel (2013)], and WITNESS [Lanner (2013)] (see 
Sec. 14.3 for further discussion).

Communications networks. OPNET Modeler [Riverbed (2013)] and QualNet 
[SCALABLE (2013)].

Health care. FlexSim Healthcare [FlexSim (2013)] and MedModel [ProModel 
(2013)].

Process reengineering and services. Process Simulator [ProModel (2013)], 
ProcessModel [ProcessModel (2013)], and ServiceModel [ProModel (2013)].

Animation (stand-alone). Proof Animation [Wolverine (2013)].
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C H A P T E R  4

Review of 
Basic Probability and Statistics

Recommended sections for a fi rst reading: 4.1 through 4.7

4.1 
INTRODUCTION

The completion of a successful simulation study involves much more than con-
structing a fl owchart of the system under study, translating the fl owchart into a com-
puter “program,” and then making one or a few replications of each proposed 
system confi guration. The use of probability and statistics is such an integral part of 
a simulation study that every simulation modeling team should include at least one 
person who is thoroughly trained in such techniques. In particular, probability and 
statistics are needed to understand how to model a probabilistic system (see 
Sec. 4.7), validate the simulation model (Chap. 5), choose the input probability dis-
tributions (Chap. 6), generate random samples from these distributions (Chaps. 7 
and 8), perform statistical analyses of the simulation output data (Chaps. 9 and 10), 
and design the simulation experiments (Chaps. 11 and 12).

In this chapter we establish statistical notation used throughout the book and 
review some basic probability and statistics particularly relevant to simulation. We 
also point out the potential dangers of applying classical statistical techniques based 
on independent observations to simulation output data, which are rarely, if ever, 
independent.

4.2 
RANDOM VARIABLES AND THEIR PROPERTIES

An experiment is a process whose outcome is not known with certainty. The set of 
all possible outcomes of an experiment is called the sample space and is denoted by 
S. The outcomes themselves are called the sample points in the sample space.
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E X A M P L E  4 . 1 .  If the experiment consists of fl ipping a coin, then

 S 5 {H, T}

where the symbol { } means the “set consisting of,” and “H” and “T” mean that the out-
come is a head and a tail, respectively.

E X A M P L E  4 . 2 .  If the experiment consists of tossing a die, then

 S 5 {1, 2, . . . , 6}

where the outcome i means that i appeared on the die, i 5 1, 2, . . . , 6.

A random variable is a function (or rule) that assigns a real number (any num-
ber greater than 2` and less than `) to each point in the sample space S.

E X A M P L E  4 . 3 .  Consider the experiment of rolling a pair of dice. Then

 S 5 {(1, 1), (1, 2), . . . , (6, 6)}

where (i, j) means that i and j appeared on the fi rst and second die, respectively. If X is 
the random variable corresponding to the sum of the two dice, then X assigns the value 
7 to the outcome (4, 3).

E X A M P L E  4 . 4 .  Consider the experiment of fl ipping two coins. If X is the random 
variable corresponding to the number of heads that occur, then X assigns the value 1 to 
either the outcome (H, T) or the outcome (T, H).

In general, we denote random variables by capital letters such as X, Y, Z and the 
values that random variables take on by lowercase letters such as x, y, z.

The distribution function (sometimes called the cumulative distribution function) 
F(x) of the random variable X is defi ned for each real number x as follows:

 F(x) 5 P(X # x)  for 2` , x , `

where P(X # x) means the probability associated with the event {X # x}. [See Ross 
(2003, chap. 1) for a discussion of events and probabilities.] Thus, F(x) is the prob-
ability that, when the experiment is done, the random variable X will have taken on 
a value no larger than the number x.

A distribution function F(x) has the following properties:

1. 0 # F(x) # 1 for all x.
2. F(x) is nondecreasing [i.e., if x1 , x2, then F(x1) # F(x2)].
3. lim

xSq
 F(x) 5 1 and lim

xS 2q
 F(x) 5 0 (since X takes on only fi nite values).

A random variable X is said to be discrete if it can take on at most a countable 
number of values, say, x1, x2,  .  .  .  . (“Countable” means that the set of possible 
values can be put in a one-to-one correspondence with the set of positive integers. 
An example of an uncountable set is all real numbers between 0 and 1.) Thus, a 
random variable that takes on only a fi nite number of values x1, x2, . . . , xn is dis-
crete. The probability that the discrete random variable X takes on the value xi is 
given by

 p(xi) 5 P(X 5 xi)  for i 5 1, 2, . . .
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216 review of basic probability and statistics

and we must have

 ^
`

i51

p(xi) 5 1

where the summation means add together p(x1), p(x2),  .  .  .  . All probability state-
ments about X can be computed (at least in principle) from p(x), which is called the 
probability mass function for the discrete random variable X. If I 5 [a, b], where a 
and b are real numbers such that a # b, then

 P(X [ I) 5 ^
a#xi#b

p(xi)

where the symbol [ means “contained in” and the summation means add together 
p(xi) for all xi such that a # xi # b. The distribution function F(x) for the discrete 
random variable X is given by

 F(x) 5
x̂i#x

p(xi)  for all 2` , x , `

E X A M P L E  4 . 5 .  For the inventory example of Sec. 1.5, the size of the demand for the 
product is a discrete random variable X that takes on the values 1, 2, 3, 4 with respective 
probabilities 1

6, 
1
3, 

1
3, 

1
6. The probability mass function and the distribution function for X 

are given in Figs. 4.1 and 4.2. Furthermore,

 P(2 # X # 3) 5 p(2) 1 p(3) 5 1
3 1 1

3 5 2
3

E X A M P L E  4 . 6 .  A manufacturing system produces parts that then must be inspected 
for quality. Suppose that 90 percent of the inspected parts are good (denoted by 1) and 
10 percent are bad and must be scrapped (denoted by 0). If X denotes the outcome of 
inspecting a part, then X is a discrete random variable with p(0) 5 0.1 and p(1) 5 0.9. 
(See the discussion of the Bernoulli random variable in Sec. 6.2.3.)

We now consider random variables that can take on an uncountably infi nite 
number of different values (e.g., all nonnegative real numbers). A random variable 
X is said to be continuous if there exists a nonnegative function f (x) such that for 

1

5
6

2
3

1
2

1
3

1
6

p(x)

10
0

2 3 4 x

FIGURE 4.1
p(x) for the demand-size ran-
dom variable X.
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any set of real numbers B (e.g., B could be all real numbers between 1 and 2),

 P(X [ B) 5 #
B
 f(x) dx  and   #

`

2`
 f(x) dx 5 1

[Thus, the total area under f (x) is 1. Also, if X is a nonnegative random variable, 
as is often the case in simulation applications, the second range of integration is 
from 0 to `.] All probability statements about X can (in principle) be computed 
from f(x), which is called the probability density function for the continuous random 
variable X.

For a discrete random variable X, p(x) is the actual probability associated with 
the value x. However, f(x) is not the probability that a continuous random variable 
X equals x. For any real number x,

 P(X 5 x) 5 P(X [ [x, x]) 5 #
x

x
 f(y) dy 5 0

Since the probability associated with each value x is zero, we now give an interpre-
tation to f (x). If x is any number and Dx . 0, then

 P(X [ [x, x 1 ¢x]) 5 #
x1¢x

x
 f(y) dy

which is the area under f (x) between x and x 1 Dx, as shown in Fig. 4.3. It follows 
that a continuous random variable X is more likely to fall in an interval above which 
f (x) is “large” than in an interval of the same width above which f (x) is “small.”

The distribution function F(x) for a continuous random variable X is given by

 F(x) 5 P(X [ (2`, x]) 5 #
x

2`
 f(y) dy  for all 2` , x , `

Thus (under some mild technical assumptions), f(x) 5 F9(x) [the derivative 
of F(x)]. Furthermore, if I 5 [a, b] for any real numbers a and b such that a , b,

10
0

2 3 4 x

1
6

1
3

1
2

2
3

5
6

1
F(x)

FIGURE 4.2
F(x) for the demand-size random variable X.

Law01323_ch04_214-245.indd Page 217  8/28/13  12:32 PM f-w-536 Law01323_ch04_214-245.indd Page 217  8/28/13  12:32 PM f-w-536 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles

masud
Highlight

masud
Highlight

masud
Highlight



218 review of basic probability and statistics

then

 P(X [ I) 5 #
b

a
 f(y) dy 5 F(b) 2 F(a)

where the last equality is an application of the fundamental theorem of calculus, 
since F9(x) 5 f (x).

E X A M P L E  4 . 7 .  A uniform random variable on the interval [0, 1] has the following 
probability density function:

 f(x) 5 e1
0
  

if 0 # x # 1
otherwise

Furthermore, if 0 # x # 1, then

 F(x) 5 #
x

0
 f(y) dy 5 #

x

0
 1 dy 5 x

[What is F(x) if x , 0 or if x . 1?] Plots of f (x) and F(x) are given in Figs. 4.4 and 4.5, 
respectively.

x x � �x x� x� � �x x

f (x)

P(X � [x, x � �x])

P(X � [x�, x� � �x])

FIGURE 4.3
Interpretation of the probability density function f (x).

FIGURE 4.4
f (x) for a uniform random variable on [0, 1].

1

f (x)

0 1 x
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Finally, if 0 # x , x 1 Dx # 1, then

  P(X [ [x, x 1 ¢x]) 5 #
x1¢x

x
 f(y) dy

  5 F(x 1 ¢x) 2 F(x)

  5 (x 1 ¢x) 2 x

  5 ¢x

 It follows that a uniform random variable on [0, 1] is equally likely to fall in any 
interval of length Dx between 0 and 1, which justifi es the name “uniform.” The uniform 
random variable on [0, 1] is fundamental to simulation, since it is the basis for generat-
ing any random quantity on a computer (see Chaps. 7 and 8).

E X A M P L E  4 . 8 .  In Chap. 1 the exponential random variable was used for interarrival 
and service times in the queueing example and for interdemand times in the inventory 
example. The probability density function and distribution function for an exponential 
random variable with mean b are given in Figs. 4.6 and 4.7.

So far in this chapter we have considered only one random variable at a time, 
but in a simulation one must usually deal with n (a positive integer) random  variables 
X1, X2,  .  .  .  , Xn simultaneously. For example, in the queueing model of Sec. 1.4, 
we were interested in the (input) service-time random variables S1, S2, . . . , Sn and 
the (output) delay random variables D1, D2, . . . , Dn. In the discussion that follows, 

0 1

1

F(x)

x

FIGURE 4.5
F(x) for a uniform random 
variable on [0, 1].

0 x

1
�

f (x)

FIGURE 4.6
f (x) for an exponential ran-
dom variable with mean b.
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we assume for expository convenience that n 5 2 and that the two random vari-
ables in question are X and Y.

If X and Y are discrete random variables, then let

 p(x, y) 5 P(X 5 x, Y 5 y)  for all x, y

where p(x, y) is called the joint probability mass function of X and Y. In this case, X 
and Y are independent if

 p(x, y) 5 pX(x)pY 
(y)  for all x, y

where

 pX(x) 5
âll y

p(x, y)

 pY 
(y) 5

âll x

p(x, y)

are the (marginal) probability mass functions of X and Y.

E X A M P L E  4 . 9 .  Suppose that X and Y are jointly discrete random variables with

 p(x, y) 5 • xy
27

for x 5 1, 2 and y 5 2, 3, 4

0 otherwise
Then

  pX(x) 5 ^
4

y52

 
xy

27
5

x

3
  for x 5 1, 2

  pY 
(y) 5 ^

2

x51

 
xy

27
5

y

9
  for y 5 2, 3, 4

Since p(x, y) 5 xyy27 5 pX(x)pY (y) for all x, y, the random variables X and Y are 
independent.

E X A M P L E  4 . 1 0 .  Suppose that 2 cards are dealt from a deck of 52 without replace-
ment. Let the random variables X and Y be the number of aces and kings that occur, both 
of which have possible values of 0, 1, 2. It can be shown that

 pX(1) 5 pY 
(1) 5 2 a 4

52
b a48

51
b

0

1

F(x)

x

FIGURE 4.7
F(x) for an exponential ran-
dom variable with mean b.
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and

 p(1, 1) 5 2 a 4

52
b a 4

51
b

Since

 p(1, 1) 5 2 a 4

52
b a 4

51
b ? 4 a 4

52
b2

 a48

51
b2

it follows that X and Y are not independent (see Prob. 4.5).

The random variables X and Y are jointly continuous if there exists a nonnega-
tive function f (x, y), called the joint probability density function of X and Y, such 
that for all sets of real numbers A and B,

 P(X [ A, Y [ B) 5 #
B

 #
A
 f(x, y) dx dy

In this case, X and Y are independent if

 f(x, y) 5 fX(x)fY 
(y)  for all x, y

where

 fX(x) 5 #
`

2`
 f(x, y) dy

 fY 
(y) 5 #

`

2`
 f(x, y) dx

are the (marginal) probability density functions of X and Y, respectively.

E X A M P L E  4 . 1 1 .  Suppose that X and Y are jointly continuous random variables with

 f(x, y) 5 e24xy for x $ 0, y $ 0, and x 1 y # 1
0 otherwise

Then

  fX(x) 5 #
12x

0
 24xy dy 5 12xy2 ` 12x

0

5 12x(1 2 x)2  for 0 # x # 1

  fY 
(y) 5 #

12y

0
 24xy dx 5 12yx2 ` 12y

0

5 12y(1 2 y)2  for 0 # y # 1

Since

 f a1

2
, 

1

2
b 5 6 ? a3

2
b2

5 fX a1

2
b  fY a1

2
b

X and Y are not independent.

Intuitively, the random variables X and Y (whether discrete or continuous) are 
independent if knowing the value that one random variable takes on tells us nothing 
about the distribution of the other. Also, if X and Y are not independent, we say that 
they are dependent.
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222 review of basic probability and statistics

We now consider once again the case of n random variables X1, X2, . . . , Xn, and 
we discuss some characteristics of the single random variable Xi and some measures 
of the dependence that may exist between two random variables Xi and Xj.

The mean or expected value of the random variable Xi (where i 5 1, 2, . . . , n) 
will be denoted by mi or E(Xi) and is defi ned by

 mi 5 µ ^
`

j51

 xj pXi
(xj) if Xi is discrete

#
`

2`
  x fXi

(x) dx if Xi is continuous

The mean is one measure of central tendency in the sense that it is the center of 
gravity [see, for example, Billingsley et al. (1986, pp. 42–43)].

E X A M P L E  4 . 1 2 .  For the demand-size random variable in Example 4.5, the mean is 
given by

 m 5 1 a1

6
b 1 2 a1

3
b 1 3 a1

3
b 1 4 a1

6
b 5

5

2

E X A M P L E  4 . 1 3 .  For the uniform random variable in Example 4.7, the mean is given 
by

 m 5 #
1

0
 x f(x) dx 5 #

1

0
 x dx 5

1

2

Let c or ci denote a constant (real number). Then the following are important 
properties of means:

1. E(cX) 5 cE(X).
2. E(On

i51 ci 
Xi) 5 On

i51 ci 
E(Xi) even if the Xi’s are dependent.

The median x0.5 of the random variable Xi, which is an alternative measure of 
central tendency, is defi ned to be the smallest value of x such that FXi

(x) $ 0.5. If Xi 
is a continuous random variable, then FXi

(x0.5) 5 0.5, as shown in Fig. 4.8. The 
 median may be a better measure of central tendency than the mean when Xi can take 
on very large or very small values, since extreme values can greatly affect the mean 
even if they are very unlikely to occur; such is not the case with the median.

E X A M P L E  4 . 1 4 .  Consider a discrete random variable X that takes on each of the val-
ues, 1, 2, 3, 4, and 5 with probability 0.2. Clearly, the mean and median of X are 3. Con-
sider now a random variable Y that takes on each of the values 1, 2, 3, 4, and 100 with 
probability 0.2. The mean and median of Y are 22 and 3, respectively. Note that the 
median is insensitive to this change in the distribution.

The mode m of a continuous (discrete) random variable Xi, which is another 
alternative measure of central tendency, is defi ned to be that value of x that maxi-
mizes fXi

(x)[pXi
(x)] (see Fig. 4.8). Note that the mode may not be unique for some 

distributions.
The variance of the random variable Xi will be denoted by s2

i or Var(Xi) and is 
defi ned by
 s2

i 5 E[(Xi 2 mi)
2] 5 E(X2

i ) 2 m2
i

Law01323_ch04_214-245.indd Page 222  10/29/13  8:52 PM f-494 Law01323_ch04_214-245.indd Page 222  10/29/13  8:52 PM f-494 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles

masud
Highlight

masud
Highlight

masud
Highlight

masud
Highlight

masud
Highlight

masud
Highlight

masud
Highlight

masud
Highlight



chapter four 223

The variance is a measure of the dispersion of a random variable about its mean, as 
seen in Fig. 4.9. The larger the variance, the more likely the random variable is to 
take on values far from its mean.

E X A M P L E  4 . 1 5 .  For the demand-size random variable in Example 4.5, the variance 
is computed as follows:

  E(X2) 5 12
 a1

6
b 1 22

 a1

3
b 1 32

 a1

3
b 1 42

 a1

6
b 5

43

6

  Var(X) 5 E(X2) 2 m2 5
43

6
2 a5

2
b2

5
11

12

fXi
(x)

x0.5
x

Shaded area � 0.5

m

FIGURE 4.8
The median x0.5 and mode m for a continuous random variable.

FIGURE 4.9
Density functions for continuous random variables with large and small 
variances.

� �

�2

small
�2

large
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224 review of basic probability and statistics

E X A M P L E  4 . 1 6 .  For the uniform random variable on [0, 1] in Example 4.7, the vari-
ance is computed as follows:

  E(X2) 5 #
1

0
 x2 f(x) dx 5 #

1

0
 x2 dx 5

1

3

  Var(X) 5 E(X2) 2 m2 5
1

3
2 a1

2
b2

5
1

12

The variance has the following properties:

1. Var(X) $ 0.
2. Var(cX) 5 c2 Var(X).
3. Var(On

i51 Xi) 5 On
i51Var(Xi) if the Xi’s are independent (or uncorrelated, as dis-

cussed below).

The standard deviation of the random variable Xi is defi ned to be si 5 2s2
i . 

The standard deviation can be given the most defi nitive interpretation when Xi has a 
normal distribution (see Sec. 6.2.2). In particular, suppose that Xi has a normal dis-
tribution with mean mi and standard deviation si. In this case, for example, the prob-
ability that Xi is between mi 2 1.96si and mi 1 1.96si is 0.95.

We now consider measures of dependence between two random variables. The 
covariance between the random variables Xi and Xj (where i 5 1, 2, . . . , n; j 5 
1, 2, . . . , n), which is a measure of their (linear) dependence, will be denoted by Cij 
or Cov(Xi, Xj) and is defi ned by

 Cij 5 E[(Xi 2 mi) (Xj 2 mj)] 5 E(XiXj) 2 mimj (4.1)

Note that covariances are symmetric, that is, Cij 5 Cji, and that if i 5 j, then Cij 5 
Cii 5 s2

i.

E X A M P L E  4 . 1 7 .  For the jointly continuous random variables X and Y in Exam-
ple 4.11, the covariance is computed as

  E(XY ) 5 #
1

0
#

12x

0
 xy f(x, y) dy dx

  5 #
1

0
 x2

 a #12x

0
 24y2 dyb dx

  5 #
1

0
 8x2(1 2 x)3 dx

  5
2

15

  E(X) 5 #
1

0
 xfX(x) dx 5 #

1

0
 12x2(1 2 x)2 dx 5

2

5

  E(Y ) 5 #
1

0
 yfY 

(y) dy 5 #
1

0
 12y2(1 2 y)2 dy 5

2

5
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chapter four 225

Therefore,

  Cov(X, Y) 5 E(XY) 2 E(X)E(Y)

  5
2

15
2 a2

5
b a2

5
b

  5 2
2

75

If Cij 5 0, the random variables Xi and Xj are said to be uncorrelated. It is easy to 
show that if Xi and Xj are independent random variables, then Cij 5 0 (see 
Prob. 4.8). In general, though, the converse is not true (see Prob. 4.9). However, if 
Xi and Xj are jointly normally distributed random variables with Cij 5 0, then they 
are also independent (see Prob. 4.10).

We now give two defi nitions that will shed some light on the signifi cance of 
the covariance Cij. If Cij . 0, then Xi and Xj are said to be positively correlated. In 
this case, Xi . mi and Xj . mj tend to occur together, and Xi , mi and Xj , mj 
also tend to occur together [see Eq. (4.1)]. Thus, for positively correlated random 
variables, if one is large, the other is likely to be large also. If Cij , 0, then Xi and 
Xj are said to be negatively correlated. In this case, Xi . mi and Xj , mj tend to 
occur together, and Xi , mi and Xj . mj also tend to occur together. Thus, for neg-
atively correlated random variables, if one is large, the other is likely to be small. 
We give examples of positively and negatively correlated random variables in the 
next section.

If X1, X2,  .  .  .  , Xn are simulation output data (for example, Xi might be the 
delay Di for the queueing example of Sec. 1.4), we shall often need to know not 
only the mean mi and variance s2

i for i 5 1, 2, . . . , n, but also a measure of the 
 dependence between Xi and Xj for i ? j. However, the diffi culty with using Cij as 
a measure of dependence between Xi and Xj is that it is not dimensionless, which 
makes its interpretation troublesome. (If Xi and Xj are in units of minutes, say, 
then Cij is in units of minutes squared.) As a result, we use the correlation rij, 
defi ned by

 rij 5
Cij

2s2
is

2
j

  
i 5 1, 2, . . . , n
j 5 1, 2, . . . , n

 (4.2)

as our primary measure of the (linear) dependence (see Prob. 4.11) between Xi and 
Xj. [We shall also denote the correlation between Xi and Xj by Cor(Xi, Xj).] Since the 
denominator in Eq. (4.2) is positive, it is clear that rij has the same sign as Cij. Fur-
thermore, it can be shown that 21 # rij # 1 for all i and j (see Prob. 4.12). If rij is 
close to 11, then Xi and Xj are highly positively correlated. On the other hand, if rij 
is close to 21, then Xi and Xj are highly negatively correlated.

E X A M P L E  4 . 1 8 .  For the random variables in Example 4.11, it can be shown that 
Var(X) 5 Var(Y) 5 1

25. Therefore,

 Cor(X, Y) 5
Cov(X, Y)

1Var(X) Var(Y)
5

2 2
75

1
25

5 2
2

3
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226 review of basic probability and statistics

4.3 
SIMULATION OUTPUT DATA 
AND STOCHASTIC PROCESSES

Since most simulation models use random variables as input, the simulation output 
data are themselves random, and care must be taken in drawing conclusions about 
the model’s true characteristics, e.g., the (expected) average delay in the queueing 
example of Sec. 1.4. In this and the next three sections we lay the groundwork for a 
careful treatment of output data analysis in Chaps. 9 and 10.

A stochastic process is a collection of “similar” random variables ordered over 
time, which are all defi ned on a common sample space. The set of all possible val-
ues that these random variables can take on is called the state space. If the collec-
tion is X1, X2, . . . , then we have a discrete-time stochastic process. If the collection 
is {X(t), t $ 0}, then we have a continuous-time stochastic process.

E X A M P L E  4 . 1 9 .  Consider a single-server queueing system, e.g., the M/M/1 queue, 
with IID interarrival times A1, A2, . . . , IID service times S1, S2, . . . , and customers served 
in a FIFO manner. Relative to the experiment of generating the random variates A1, 
A2, . . . and S1, S2, . . . , one can defi ne the discrete-time stochastic process of delays in 
queue D1, D2, . . . as follows (see Prob. 4.14):

  D1 5 0

  Di11 5 max{Di 1 Si 2 Ai11, 0}  for i 5 1, 2, . . .

Thus, the simulation maps the input random variables (i.e., the Ai’s and the Si’s) into the 
output stochastic process D1, D2, . . . of interest. Here, the state space is the set of non-
negative real numbers. Note that Di and Di11 are positively correlated. (Why?)

E X A M P L E  4 . 2 0 .  For the queueing system of Example 4.19, let Q(t) be the number of 
customers in the queue at time t. Then {Q(t), t $ 0} is a continuous-time stochastic 
process with state space {0, 1, 2, . . .}.

E X A M P L E  4 . 2 1 .  For the inventory system of Sec. 1.5, let Ci be the total cost (i.e., the 
sum of the ordering, holding, and shortage costs) in month i. Then C1, C2,  .  .  . is a 
 discrete-time stochastic process with state space the nonnegative real numbers.

To draw inferences about an underlying stochastic process from a set of simula-
tion output data, one must sometimes make assumptions about the stochastic 
 process that may not be strictly true in practice. (Without such assumptions, how-
ever, statistical analysis of the output data may not be possible.) An example of this 
is to assume that a stochastic process is covariance-stationary, a property that we 
now defi ne. A discrete-time stochastic process X1, X2, . . . is said to be covariance-
stationary if

  mi 5 m    for i 5 1, 2, . . . and 2` , m , `

  s2
i 5 s2   for i 5 1, 2, . . . and s2 , `

and Ci,i1j 5 Cov(Xi, Xi1j) is independent of i for j 5 1, 2, . . . .
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chapter four 227

Thus, for a covariance-stationary process, the mean and variance are stationary 
over time (the common mean and variance are denoted by m and s2, respectively), 
and the covariance between two observations Xi and Xi1j depends only on the sepa-
ration j (sometimes called the lag) and not on the actual time values i and i 1 j. (It 
is also possible to defi ne a covariance-stationary continuous-time stochastic process 
{X(t), t $ 0} in an analogous way.)

For a covariance-stationary process, we denote the covariance and correlation 
between Xi and Xi1j by Cj and rj, respectively, where

 rj 5
Ci,i1 j

2s2
is

2
i1 j

5
Cj

s2 5
Cj

C0

  for j 5 0, 1, 2, . . .

E X A M P L E  4 . 2 2 .  Consider the output process D1, D2, . . . for a covariance-stationary 
(see App. 4A for a discussion of this technical detail) M/M/1 queue with r 5 lyv , 1 
(recall that l is the arrival rate and v is the service rate). From results in Daley (1968), 
one can compute rj, which we plot in Fig. 4.10 for r 5 0.5 and 0.9. (Do not confuse rj 

and r.) Note that the correlations rj are positive and monotonically decrease to zero as 
j increases. In particular, r1 5 0.99 for r 5 0.9 and r1 5 0.78 for r 5 0.5. Furthermore, 
the convergence of rj to zero is considerably slower for r 5 0.9; in fact, r50 is (amaz-
ingly) 0.69. (In general, our experience indicates that output processes for queueing 
systems are positively correlated.)

E X A M P L E  4 . 2 3 .  Consider an (s, S) inventory system with zero delivery lag and 
backlogging. (For this inventory system, which is a simpler version of the one consid-
ered in Sec. 1.5, it is possible to compute the desired correlations analytically.) Let 
Ii, Ji, and Qi denote, respectively, the amount of inventory on hand before ordering, the 

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

�j

� � 0.9

� � 0.5

10987654321 j

FIGURE 4.10
Correlation function rj of the process D1, D2, . . . for the M/M/1 queue.
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0.4
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0.6
0.7
0.8
0.9
1.0

�j

FIGURE 4.11
Correlation function rj of the 
process C1, C2, . . . for an (s, S) 
inventory system.

amount of inventory on hand after ordering, and the demand, each in month i. Assume 
that Qi has a Poisson distribution (see Sec. 6.2.3 for further discussion) with mean 25; 
that is,

 p(x) 5 P(Qi 5 x) 5
e225(25)x

x!
  for x 5 0, 1, 2, . . .

If Ii , s, we order S 2 Ii items (Ji 5 S) and incur a cost K 1 i(S 2 Ii), where K 5 32 and 
i 5 3. If Ii $ s, no order is placed (Ji 5 Ii) and no ordering cost is incurred. After Ji has 
been determined, the demand Qi occurs. If Ji 2 Qi $ 0, a holding cost h(Ji 2 Qi) is 
incurred, where h 5 1. If Ji 2 Qi , 0, a shortage cost p(Qi 2 Ji) is incurred, where 
p 5 5. In either case, Ii11 5 Ji 2 Qi. Let Ci be the total cost in month i, and assume that 
s 5 17, S 5 57, and I1 5 S. From results in Wagner (1969, p. A19), one can compute rj 
for the output process C1, C2, . . . , which we plot in Fig. 4.11. (See App. 4A for discus-
sion of a technical detail.) Note that r2 is positive, since for this particular system one 
tends to order every other month, incurring a large cost each time. On the other hand, r1 
is negative, because if one orders in a particular month (large cost), then it is likely that 
no order will be placed the next month (small cost).

If X1, X2, . . . is a stochastic process beginning at time 0 in a simulation, then it 
is quite likely not to be covariance-stationary (see App. 4A). However, for some 
simulations Xk11, Xk12, . . . will be approximately covariance-stationary if k is large 
enough, where k is the length of the warmup period (see Sec. 9.5.1).
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chapter four 229

4.4 
ESTIMATION OF MEANS, 
VARIANCES, AND CORRELATIONS

Suppose that X1, X2, . . . , Xn are IID random variables (observations) with fi nite 
population mean m and fi nite population variance s2 and that our primary objec-
tive is to estimate m; the estimation of s2 is of secondary interest. Then the sample 
mean

 X(n) 5

^
n

i51

Xi

n
 (4.3)

is an unbiased (point) estimator of m; that is, E[X(n)] 5 m (see Prob. 4.16). [Intui-
tively, X(n) being an unbiased estimator of m means that if we perform a very large 
number of independent experiments, each resulting in an X(n), the average of the 
X(n)’s will be m.] Similarly, the sample variance

 S2(n) 5

^
n

i51

[Xi 2 X(n) ]2

n 2 1
 (4.4)

is an unbiased estimator of s2, since E[S2(n)] 5 s2 (see Prob. 4.16). Note that the 
estimators X(n) and S2(n) are sometimes denoted by m̂ and ŝ2, respectively.

The diffi culty with using X(n) as an estimator of m without any additional in-
formation is that we have no way of assessing how close X(n) is to m. Because X(n) 
is a random variable with variance Var[X(n)], on one experiment X(n) may be close 
to m while on another X(n) may differ from m by a large amount. (See Fig. 4.12, 
where the Xi’s are assumed to be continuous random variables.) The usual way to 
assess the precision of X(n) as an estimator of m is to construct a confi dence  interval 

�
First observation

of X̄(n)
Second observation

of X̄(n)

Density function for X̄(n)

FIGURE 4.12
Two observations of the random variable X(n).
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230 review of basic probability and statistics

for m, which we discuss in the next section. However, the fi rst step in constructing a 
confi dence interval is to estimate Var[X(n)]. Since

  Var[X(n) ] 5 Var a1
n ^

n

i51

Xib

  5
1

n2 Var a^
n

i51

Xib

  5
1

n2 ^
n

i51

Var(Xi)  (because the Xi’s are independent)

  5
1

n2 ns2 5
s2

n
 (4.5)

it is clear that, in general, the bigger the sample size n, the closer X(n) should be to 
m (see Fig. 4.13). Furthermore, an unbiased estimator of Var[X(n)] is obtained by 
replacing s2 in Eq. (4.5) by S2(n), resulting in

 Var
^

[X(n)] 5
S2(n)

n
5

^
n

i51

[Xi 2 X(n)]2

n(n 2 1)

Observe that the expression for Var
^

[X(n)] has both an n and an n 2 1 in the de-
nominator when it is rewritten in terms of the Xi’s and X(n).

Finally, note that if the Xi’s are independent, they are uncorrelated, and thus 
rj 5 0 for j 5 1, 2, . . . , n 2 1.

It has been our experience that simulation output data are almost always cor-
related. Thus, the above discussion about IID observations is not directly applicable 
to analyzing simulation output data. To understand the dangers of treating simula-
tion output data as if they were independent, we shall use the covariance-stationary 
model discussed in the last section. In particular, assume that the random variables 

� �

n largen small

Density function
for X̄(n)

Density function
for X̄(n)

FIGURE 4.13
Distributions of X(n) for small and large n.
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chapter four 231

X1, X2, . . . , Xn are from a covariance-stationary stochastic process. Then it is still 
true that the sample mean X(n) is an unbiased estimator of m; however, the sample 
variance S2(n) is no longer an unbiased estimator of s2. In fact, it can be shown [see 
Anderson (1994, p. 448)] that

 E[S2(n)] 5 s2
£

1 2 2 

^
n21

j51

(1 2 jyn)rj

n 2 1

§
 (4.6)

Thus, if rj . 0 (positive correlation), as is very often the case in practice, S2(n) will 
have a negative bias: E[S2(n)] , s2. This is important because several simulation-
software products use S2(n) to estimate the variance of a set of simulation output 
data, which can lead to serious errors in analysis.

Let us now consider the problem of estimating the variance of the sample mean 
Var[X(n)] (which will be used to construct a confi dence interval for m in the next 
section) when X1, X2, . . . , Xn are from a covariance-stationary process. It can be 
shown (see Prob. 4.17) that

 Var[X(n)] 5 s2 

c1 1 2 ^
n21

j51

(1 2 jyn)rj d
n

 (4.7)

Thus, if one estimates Var[X(n)] from S2(n)yn (the correct expression in the IID 
case), which has often been done historically, there are two sources of error: the bias 
in S2(n) as an estimator of s2 and the negligence of the correlation terms in Eq. (4.7). 
As a matter of fact, if we combine Eq. (4.6) and Eq. (4.7), we get

 E c S2(n)
n
d 5

[nya(n)] 2 1

n 2 1
 Var[X(n)] (4.8)

where a(n) denotes the quantity in square brackets in Eq. (4.7). If rj . 0, then 
a(n) . 1 and E[S2(n)yn] , Var[X(n)].

E X A M P L E  4 . 2 4 .  Suppose that we have the data D1, D2, . . . , D10 from the process of 
delays D1, D2, . . . for a covariance-stationary M/M/1 queue with r 5 0.9. Then, substi-
tuting the true correlations rj (where j 5 1, 2, . . . , 9) into Eqs. (4.6) and (4.8), we get

 E[S2(10)] 5 0.0328s2

and E c S2(10)

10
d 5 0.0034 Var[D(10)]

where

 s2 5 Var(Di),  D(10) 5

^
10

i51

Di

10
,  and  S2(10) 5

^
10

i51

[Di 2 D(10)]2

9

Thus, on average S2(10)y10 is a gross underestimate of Var[D(10)], and we are likely 
to be overly optimistic about the closeness of D(10) to m 5 E(Di).
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232 review of basic probability and statistics

Sometimes one is interested in estimating the rj’s (or Cj’s) from the data 
X1,  X2,  .  .  .  , Xn. {For example, estimates of the rj’s might be substituted into 
Eq. (4.7) to obtain a better estimate of Var[X(n)]; see Sec. 9.5.3 for an application.} 
If this is the case, rj (for j 5 1, 2, . . . , n 2 1) can be estimated as follows:

 r̂j 5
Ĉj

S2(n)
,  Ĉj 5

^
n2 j

i51

[Xi 2 X(n)][Xi1 j 2 X(n)]

n 2 j
 (4.9)

(Other estimators of rj are also used. For example, one could replace the n 2 j 
in the denominator of Ĉj by n.) The diffi culty with the estimator r̂j (or any other 
estimator of rj) is that it is biased, it has a large variance unless n is very large, and 
it is correlated with other correlation estimators, that is, Cov(r̂j, r̂k) ? 0. {In par-
ticular, r̂n21 will be a poor estimator of rn21 since it is based on the single product 
[X1 2 X(n)][Xn 2 X(n)].} Thus, in general, “good” estimates of the rj’s will be 
diffi cult to obtain unless n is very large and j is small relative to n.

E X A M P L E  4 . 2 5 .  Suppose we have the data D1, D2, . . . , D100 from the process consid-
ered in Example 4.24. In Fig. 4.14 we plot r̂j [as computed from Eq. (4.9)] and rj for 
j 5 1, 2, . . . , 10. Note the poor quality of the correlation estimates.

Note that correlation estimates will not necessarily be zero when the Xi’s are 
independent, since the estimator r̂j is a random variable.

We have seen that simulation output data are correlated, and thus formulas from 
classical statistics based on IID observations cannot be used directly for estimating 
variances. However, we shall see in Chap. 9 that it is often possible to group simulation 
output data into new “observations” to which the formulas based on IID observations 
can be applied. Thus, the formulas in this and the next two sections based on IID 
 observations are indirectly applicable to analyzing simulation output data.

�̂j

�j

109876543210
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FIGURE 4.14
rj and r̂j of the process D1, D2, . . . for the M/M/1 queue with r 5 0.9.
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4.5 
CONFIDENCE INTERVALS AND HYPOTHESIS 
TESTS FOR THE MEAN

Let X1, X2, . . . , Xn be IID random variables with fi nite mean m and fi nite variance 
s2. (Also assume that s2 . 0, so that the Xi’s are not degenerate random variables.) 
In this section we discuss how to construct a confi dence interval for m and also the 
complementary problem of testing the hypothesis that m 5 m0.

We begin with a statement of the most important result in probability theory, the 
classical central limit theorem. Let Zn be the random variable [X(n) 2 m]y2s2yn, 
and let Fn(z) be the distribution function of Zn for a sample size of n; that is, Fn(z) 5 
P(Zn # z). [Note that m and s2yn are the mean and variance of X(n), respectively.] 
Then the central limit theorem is as follows [see Chung (1974, p. 169) for a proof].

T H E O R E M  4 . 1 .  Fn(z) S £(z) as n S `, where F(z), the distribution function of a 
normal random variable with m 5 0 and s2 5 1 (henceforth called a standard normal 
random variable; see Sec. 6.2.2), is given by

 £(z) 5
1

12p
 #

z

2`
e2y2y2 dy  for 2` , z , `

The theorem says, in effect, that if n is “suffi ciently large,” the random variable Zn 
will be approximately distributed as a standard normal random variable, regardless 
of the underlying distribution of the Xi’s. It can also be shown for large n that the 
sample mean X(n) is approximately distributed as a normal random variable with 
mean m and variance s2yn.

The diffi culty with using the above results in practice is that the variance s2 is 
generally unknown. However, since the sample variance S2(n) converges to s2 as n 
gets large, it can be shown that Theorem 4.1 remains true if we replace s2 by S2(n) 
in the expression for Zn. With this change the theorem says that if n is suffi ciently 
large, the random variable tn 5 [X(n) 2 m]y2S2(n)yn is approximately distributed 
as a standard normal random variable. It follows for large n that

 P a2z12ay2 #
X(n) 2 m

2S2(n)yn
# z12ay2b

 5 P cX(n) 2 z12ay2 B
S2(n)

n
# m # X(n) 1 z12ay2 B

S2(n)
n
d

 < 1 2 a  (4.10)

where the symbol ¯ means “approximately equal” and z12ay2 (for 0 , a , 1) is 
the upper 1 2 ay2 critical point for a standard normal random variable (see 
Fig. 4.15 and the last line of Table T.1 of the Appendix at the back of the book). 
Therefore, if n is suffi ciently large, an approximate 100(1 2 a) percent confi dence 
interval for m is given by

 X(n) 6 z12ay2B
S2(n)

n
 (4.11)
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234 review of basic probability and statistics

For a given set of data X1, X2,  .  .  .  , Xn, the lower confi dence-interval endpoint 

l(n, a) 5 X(n) 2 z12ay22S2(n)yn and the upper confi dence-interval endpoint 
u(n, a) 5 X(n) 1 z12ay22S2(n)yn are just numbers (actually, specifi c realizations 
of random variables) and the confi dence interval [l(n, a), u(n, a)] either contains m 
or does not contain m. Thus, there is nothing probabilistic about the single confi -
dence interval [l(n, a), u(n, a)] after the data have been obtained and the interval’s 
endpoints have been given numerical values. The correct interpretation to give to 
the confi dence interval (4.11) is as follows [see (4.10)]: If one constructs a very 
large number of independent 100(1 2 a) percent confi dence intervals, each based 
on n observations, where n is suffi ciently large, the proportion of these confi dence 
intervals that contain (cover) m should be 1 2 a. We call this proportion the cover-
age for the confi dence interval.

E X A M P L E  4 . 2 6 .  To further amplify the correct interpretation to be given to a con-
fi dence interval, we generated 15 independent samples of size n 5 10 from a normal 
distribution with mean 5 and variance 1. For each data set we constructed a 90 per-
cent confi dence interval for m, which we know has a true value of 5. In Fig. 4.16 we 
plot the 15 confi dence intervals vertically (the dot at the center of the confi dence 
interval is the sample mean), and we see that all intervals other than 7 and 13 cover 
the mean value at height 5. In general, if we were to construct a very large number of 
such 90 percent confi dence intervals, we would fi nd that 90 percent of them will, in 
fact, contain (cover) m.

The diffi culty in using (4.11) to construct a confi dence interval for m is in know-
ing what “n suffi ciently large” means. It turns out that the more skewed (i.e., non-
symmetric) the underlying distribution of the Xi’s, the larger the value of n needed 
for the distribution of tn to be closely approximated by F(z). (See the discussion 
later in this section.) If n is chosen too small, the actual coverage of a desired 
100(1 2 a) percent confi dence interval will generally be less than 1 2 a. This is 
why the confi dence interval given by (4.11) is stated to be only approximate.

In light of the above discussion, we now develop an alternative confi dence- 
interval expression. If the Xi’s are normal random variables, the random variable 

tn 5 [X(n) 2 m]y2S2(n)yn has a t distribution with n 2 1 degrees of freedom (df) 

f (x)

Shaded area � 1 � �

xz1��/2�z1��/2 0

FIGURE 4.15
Density function for the standard normal distribution.
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[see, for example, Hogg and Craig (1995, pp. 181–182)], and an exact (for any 
n $ 2) 100(1 2 a) percent confi dence interval for m is given by

 X(n) 6 tn21, 12ay2B
S2(n)

n
 (4.12)

where tn21,12ay2 is the upper 1 2 ay2 critical point for the t distribution with n 2 1 df. 
These critical points are given in Table T.1 of the Appendix at the back of the book. 
Plots of the density functions for the t distribution with 4 df and for the standard nor-
mal distribution are given in Fig. 4.17. Note that the t distribution is less peaked and 

10
4.4

4.6

4.8

5

5.2

5.4

5.6

2 3 4 5 6 7 8 9 10 11 12 13 14 15

FIGURE 4.16
Confi dence intervals each based on a sample of n 5 10 observations from a normal 
distribution with mean 5 and variance 1.

f(x)
Standard normal distribution

t distribution with 4 df

x0

FIGURE 4.17
Density functions for the t distribution with 4 df and for the standard 
normal distribution.
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236 review of basic probability and statistics

has longer tails than the normal distribution, so, for any fi nite n, tn21,12ay2 . z12ay2. 
We call (4.12) the t confi dence interval.

The quantity that we add to and subtract from X(n) in (4.12) to construct the 
confi dence interval is called the half-length of the confi dence interval. It is a mea-
sure of how precisely we know m. It can be shown that if we increase the sample 
size from n to 4n in (4.12), then the half-length is decreased by a factor of 
 approximately 2 (see Prob. 4.20).

In practice, the distribution of the Xi’s will rarely be normal, and the confi dence 
interval given by (4.12) will also be approximate in terms of coverage. Since 
tn21,12ay2 . z12ay2, the confi dence interval given by (4.12) will be larger than 
the one given by (4.11) and will generally have coverage closer to the desired level 
1 2 a. For this reason, we recommend using (4.12) to construct a confi dence inter-
val for m. Note that tn21,12ay2 S z12ay2 as n S `; in particular, t40,0.95 differs from 
z0.95  by less than 3 percent. However, in most of our applications of (4.12) in 
Chaps. 9, 10, and 12, n will be small enough for the difference between (4.11) and 
(4.12) to be appreciable.

E X A M P L E  4 . 2 7 .  Suppose that the 10 observations 1.20, 1.50, 1.68, 1.89, 0.95, 1.49, 
1.58, 1.55, 0.50, and 1.09 are from a normal distribution with unknown mean m and that 
our objective is to construct a 90 percent confi dence interval for m. From these data we get

 X(10) 5 1.34  and  S2(10) 5 0.17

which results in the following confi dence interval for m:

 X(10) 6 t9,0.95 B
S2(10)

10
5 1.34 6 1.83 B

0.17

10
5 1.34 6 0.24

Note that (4.12) was used to construct the confi dence interval and that t9,0.95 was taken 
from Table T.1. Therefore, subject to the interpretation stated above, we claim with 
90 percent confi dence that m is in the interval [1.10, 1.58].

We now discuss how the coverage of the confi dence interval given by (4.12) is 
affected by the distribution of the Xi’s. In Table 4.1 we give estimated coverages for 
90 percent confi dence intervals based on 500 independent experiments for each of 
the sample sizes n 5 5, 10, 20, and 40 and each of the distributions normal, expo-
nential, chi square with 1 df (a standard normal random variable squared; see the 
discussion of the gamma distribution in Sec. 6.2.2), lognormal (eY, where Y is a 

TABLE 4.1

Estimated coverages based on 500 experiments

Distribution Skewness v n 5 5 n 5 10 n 5 20 n 5 40

Normal  0.00  0.910 0.902 0.898 0.900
Exponential 2.00 0.854 0.878 0.870 0.890
Chi square 2.83 0.810 0.830 0.848 0.890
Lognormal 6.18 0.758 0.768 0.842 0.852
Hyperexponential 6.43 0.584 0.586 0.682 0.774
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standard normal random variable; see Sec. 6.2.2), and hyperexponential whose dis-
tribution function is given by

 F(x) 5 0.9F1(x) 1 0.1 F2(x)

where F1(x) and F2(x) are the distribution functions of exponential random variables 
with means 0.5 and 5.5, respectively. For example, the table entry for the  exponential 
distribution and n 5 10 was obtained as follows. Ten observations were generated from 
an exponential distribution with a known mean m, a 90 percent confi dence interval was 
constructed using (4.12), and it was determined whether the interval con tained m. (This 
constituted one experiment.) Then the whole procedure was repeated 500 times, and 
0.878 is the proportion of the 500 confi dence intervals that contained m. Note that the 
coverage for the normal distribution and n 5 10 is 0.902 rather than the expected 0.900, 
since the table is based on 500 rather than an infi nite number of experiments.

Observe from the table that for a particular distribution, coverage generally gets 
closer to 0.90 as n gets larger, which follows from the central limit theorem (see 
Prob. 4.22). (The results for the exponential distribution would also probably follow 
this behavior if the number of experiments were larger.) Notice also that for a particular 
n, coverage decreases as the skewness of the distribution gets larger, where skewness 
is defi ned by

 n 5
E[ (X 2 m)3]

(s2)3y2   2` , n , `

The skewness, which is a measure of symmetry, is equal to 0 for a symmetric distri-
bution such as the normal. We conclude from the table that the larger the skewness 
of the distribution in question, the larger the sample size needed to obtain satisfac-
tory (close to 0.90) coverage.

*We saw in Table 4.1 that there is still signifi cant degradation in coverage prob-
ability for sample sizes as large as 40 if the data come from a highly skewed distribu-
tion such as the lognormal, which is not at all uncommon in practice. As a result we 
now discuss an improved confi dence developed by Willink (2005), which computes 
an estimate of the skewness n and uses this to obtain a confi dence interval with cov-
erage closer to the nominal value 1 2 a than that for the standard t confi dence given 
by (4.12). Let

  m̂3 5

n ^
n

i51

[Xi 2 X(n)]3

(n 2 1)(n 2 2)
 ,  a 5

m̂3

61n[S2(n)]3y2 ,

and

 G(r) 5
[1 1 6a(r 2 a)]1y3 2 1

2a

where m̂3y[S2(n) ]3y2 is an estimator for the skewness n. Then an approximate 
100(1 2 a) percent confi dence interval for m is given by

[X(n) 2 G(tn21,12ay2)2S2(n)yn, X(n) 2 G(2tn21,12ay2)2S2(n)yn] (4.13)

*The discussion of the Willink confi dence interval may be skipped on a fi rst reading.
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238 review of basic probability and statistics

E X A M P L E  4 . 2 8 .  For the data of Example 4.27, we now construct a 90 percent confi -
dence interval for m using the Willink confi dence interval given by (4.13). We get

 m̂3 5 20.062, a 5 20.048, G(r) 5
[1 2 0.288(r 1 0.048)]1y3 2 1

20.096

and the following 90 percent confi dence interval for m:

 [1.34 2 0.31, 1.34 1 0.20]  or  [1.04, 1.54]

In order to get an idea how much improvement in coverage probability might 
be obtained by using the Willink confi dence interval given by (4.13) instead of the t 
confi dence interval given by (4.12), we regenerated using different random numbers 
the observations for the entry in Table 4.1 corresponding to the lognormal distribu-
tion and n 5 10. Based again on 500 experiments, the estimated coverages for the 
Willink and t confi dence intervals were 0.872 and 0.796, respectively. Thus, the 
Willink confi dence interval produces a coverage probability “close” to the nominal 
level 0.90 even for the highly skewed lognormal distribution and a sample size of 
only 10. On the other hand, the average half-length for the Willink confi dence inter-
val was 76 percent larger than the average half-length for the t confi dence interval 
in this case. The decision whether to use the t or Willink confi dence interval should 
depend on the relative importance one places on coverage close to the nominal level 
1 2 a and a small half-length.

Assume that X1, X2, . . . , Xn are normally distributed (or are approximately so) 
and that we would like to test the null hypothesis H0: m 5 m0 against the alternative 
hypothesis H1: m ? m0, where m0 is a fi xed, hypothesized value for m. Intuitively, we 
would expect that if 0X(n) 2 m0 0  is large [recall that X(n) is the point estimator for 
m], H0 is not likely to be true. However, to develop a test with known statistical prop-
erties, we need a statistic (a function of the Xi’s) whose distribution is known when 
H0 is true. It follows from the above discussion that if H0 is true, the statistic 
tn 5 [X(n) 2 m0]y2S2(n)yn will have a t distribution with n 2 1 df. Therefore, 
consistent with our intuitive discussion above, the form of our (two-tailed) hypoth-
esis test for H0 is

 c If 0 tn 0 . tn21,12ay2, reject H0

If 0 tn 0 # tn21,12ay2, fail to reject H0
 (4.14)

The portion of the real line that corresponds to rejection of H0, namely, the set of all 
x such that 0x 0 . tn21,12ay2, is called the rejection (or critical) region for the test, and 
the probability that the statistic falls in the rejection region given that H0 is true, 
which is clearly equal to a, is called the level (or size) of the test. Typically, an ex-
perimenter will choose the level equal to 0.05 or 0.10. We call the hypothesis test 
given by (4.14) the t test.

When one performs a hypothesis test, two types of errors can be made. If one 
rejects H0 when in fact it is true, this is called a Type I error. The probability of Type I 
error is equal to the level a and is thus under the experimenter’s control. If one fails 
to reject H0 when it is false, this is called a Type II error. For a fi xed level a and 
sample size n, the probability of a Type II error, which we denote by b, depends on 
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what is actually true (other than H0: m 5 m0), and is usually unknown. We call 
d 5 1 2 b the power of the test, and it is equal to the probability of rejecting H0 
when it is false. There are four different situations that can occur when one tests the 
null hypothesis H0 against the alternative hypothesis H1, and these are delineated in 
Table 4.2 along with their probabilities of occurrence.

Clearly, a test with high power is desirable. If a is fi xed, the power can only be 
increased by increasing n. Since the power of a test may be low and unknown to us, this 
is why we say “fail to reject H0” (instead of “accept H0”) when the statistic tn does not 
lie in the rejection region. (When H0 is not rejected, we generally do not know with any 
certainty whether H0 is true or whether H0 is false, since our test may not be powerful 
enough to detect any difference between H0 and what is actually true.)

E X A M P L E  4 . 2 9 .  For the data of Example 4.27, suppose that we would like to test the 
null hypothesis H0: m 5 1 against the alternative hypothesis H1: m ? 1 at level a 5 0.1. 
Since

 t10 5
X(10) 2 1

2S2(10)y10
5

0.34

20.17y10
5 2.65 . 1.83 5 t9,0.95

we reject H0.

E X A M P L E  4 . 3 0 .  For the null hypothesis H0: m 5 1 in Example 4.29, we can estimate 
the power of the test when, in fact, the Xi’s have a normal distribution with m 5 1.5 and 
standard deviation s 5 1. (This is H1.) We randomly generated 1000 independent 
observations of the statistic t10 5 [X(10) 2 1]y2S2(102y10 under the assumption 
that H1 is true. For 433 out of the 1000 observations, 0 t10 0 . 1.83 and, therefore, the es-
timated power is d̂ 5 0.433.  Thus, if H1 is true, we will only reject the null hypothesis 
H0 approximately 43 percent of the time for a test at level a 5 0.10. To see what effect 
the sample size n has on the power of the test, we generated 1000 observations of t25 
(n 5 25) when H1 is true and also 1000 observations of t100 (n 5 100) when H1 is true 
(all Xi’s were normal). The estimated powers were d̂ 5 0.796 and d̂ 5 0.999, respec-
tively. It is not surprising that the power is apparently an increasing function of n, since 
we would expect to have a better estimate of the true value of m when n is large. [Note 
that in the case of normal sampling and a known standard deviation, as in this example, 
the power of the test can actually be computed numerically, obviating the need for simu-
lation as done here; see, for example, Devore (2008, pp. 302–303).]

It should be mentioned that there is an intimate relationship between the confi -
dence interval given by (4.12) and the hypothesis test given by (4.14). In particular, 
rejection of the null hypothesis H0: m 5 m0 is equivalent to m0 not being contained 

TABLE 4.2

Hypothesis-testing situations and their 
corresponding probabilities of occurrence

       H0
Outcome

True False

Reject a d 5 1 2 b

Fail to reject 1 2 a b
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in the confi dence interval for m, assuming the same value of a for both the hypoth-
esis test and the confi dence interval (see Prob. 4.28). However, the confi dence in-
terval also gives you a range of possible values for m, and in this sense it is the 
preferred methodology.

4.6 
THE STRONG LAW OF LARGE NUMBERS

The second most important result in probability theory (after the central limit theo-
rem) is arguably the strong law of large numbers. Let X1, X2, . . . , Xn be IID random 
variables with fi nite mean m. Then the strong law of large numbers is as follows [see 
Chung (1974, p. 126) for a proof].

T H E O R E M  4 . 2 .  X(n) S m w.p. 1 as n S `.

The theorem says, in effect, that if one performs an infi nite number of experiments, 
each resulting in an X(n), and n is suffi ciently large, then X(n) will be arbitrarily 
close to m for almost all the experiments.

E X A M P L E  4 . 3 1 .  Suppose that X1, X2, . . . are IID normal random variables with m 5 1 
and s2 5 0.01. Figure 4.18 plots the values of X(n) for various n that resulted from 
sampling from this distribution. Note that X(n) differed from m by less than 1 percent 
for n $ 28.

X̄(n)

n403020100
0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.02

 � � 1.00

FIGURE 4.18
X(n) for various values of n when the Xi’s are normal random variables with m 5 1 
and s2 5 0.01.
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4.7 
THE DANGER OF REPLACING A PROBABILITY 
DISTRIBUTION BY ITS MEAN

Simulation analysts have sometimes replaced an input probability distribution by its 
mean in their simulation models. This practice may be caused by a lack of under-
standing on the part of the analyst or by lack of information on the actual form of 
the distribution (e.g., only an estimate of the mean of the distribution is available). 
The following example illustrates the danger of this practice.

E X A M P L E  4 . 3 2 .  Consider a manufacturing system consisting of a single machine 
tool. Suppose that “raw” parts arrive to the machine with exponential interarrival times 
having a mean of 1 minute and that processing times at the machine are exponentially 
distributed with a mean of 0.99 minute. Thus, this system is an M/M/1 queue with utili-
zation factor r 5 0.99. Furthermore, it can be shown that the average delay in queue of 
a part in the long run is 98.01 minutes [see App. 1B or Gross et al. (2009)]. On the other 
hand, if we replace each distribution by its corresponding mean (i.e., if customers arrive 
at times 1 minute, 2 minutes, . . . and if each part has a processing time of exactly 
0.99 minute), then no part is ever delayed in the queue. In general, the variances as well 
as the means of the input distributions affect the output measures for queueing-type 
 systems, as noted at the end of App. 1B.

APPENDIX 4A 
COMMENTS ON COVARIANCE-STATIONARY PROCESSES

Consider the process {Di, i $ 1} for the M/M/1 queue when no customers are pres-
ent at time 0. Clearly, D1 5 0, but P(Di . 0) . 0 for i 5 2, 3, . . . . Therefore, E(D1) 5 
0 and E(Di) . 0 for i 5 2, 3, . . . , which implies that {Di, i $ 1} is not covariance-
stationary. However, if r , 1, it can be shown for all x $ 0 that

 P(Di # x) S (1 2 r) 1 r(1 2 e2(v2l)x)  as i S ` (4.15)

It follows from (4.15) and the equation for Di11 in Example 4.19 that if we delete 
the fi rst k observations from D1, D2, . . . and k is suffi ciently large, then the process 
Dk11, Dk12, . . . will be (approximately) covariance-stationary. Therefore, when we 
say “consider the process {Di, i $ 1} for the covariance-stationary M/M/1 queue,” 
we mean that we let the M/M/1 queue “warm up” for some amount of time before 
observing the fi rst delay.

Consider the process {Ci, i $ 1} for the inventory system of Example 4.23 
when I1 5 S. Since P(Ii 5 S) ? 1 for i 5 2, 3, . . . , it follows that {Ci, i $ 1} is not 
covariance-stationary. However, it can be shown that P(Ci # x) converges to a lim-
iting distribution function as i S ` [see Wagner (1969, p. A48)]. Thus, Ck11, Ck12, . . . 
will be (approximately) covariance-stationary for k large. Furthermore, the correla-
tions plotted in Fig. 4.11 are for an inventory system warmed up for some amount 
of time before the fi rst cost is observed.
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PROBLEMS

 4.1. Suppose that X is a discrete random variable with probability mass function given by

p(1) 5 1
10,  p(2) 5 3

10,  p(3) 5 2
10,  p(4) 5 3

10,  and  p(5) 5 1
10

(a) Plot p(x).
(b) Compute and plot F(x).
(c) Compute P(1.4 # X # 4.2), E(X), and Var(X).

 4.2. Suppose that X is a continuous random variable with probability density function 
given by
 f(x) 5 x2 1 2

3x 1 1
3  for 0 # x # c

(a) What must be the value of c?
Assuming this value of c, do the following:
(b) Plot f (x).
(c) Compute and plot F(x).
(d) Compute P(1

3 # X # 2
3), E(X), and Var(X).

 4.3. Suppose that X and Y are jointly discrete random variables with

 p(x, y) 5 d 2
n(n 1 1)
0

  
for x 5 1, 2, . . . , n and

y 5 1, 2, . . . , x
otherwise

 Compute pX(x) and pY(y) and determine whether X and Y are independent.

 4.4. Suppose that X and Y are jointly discrete random variables with

 p(x, y) 5 dx 1 y
30

0
  

for x 5 0, 1, 2 and
y 5 0, 1, 2, 3

otherwise

(a) Compute and plot pX(x) and pY(y).
(b) Are X and Y independent?
(c) Compute and plot FX(x) and FY(y).
(d) Compute E(X), Var(X), E(Y ), Var(Y ), Cov(X, Y ), and Cor(X, Y ).

 4.5. Are the random variables X and Y in Example 4.10 independent if the sampling of the 
two cards is done with replacement?

 4.6. Suppose that X and Y are jointly continuous random variables with

 f(x, y) 5 e32x3y7

0
  

if 0 # x # 1 and 0 # y # 1
otherwise

 Compute fX(x) and fY(y) and determine whether X and Y are independent.

 4.7. Suppose that X and Y are jointly continuous random variables with

 f(x, y) 5 e y 2 x
0

  
if 0 , x , 1 and 1 , y , 2
otherwise

(a) Compute and plot fX(x) and fY(y).
(b) Are X and Y independent?
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(c) Compute FX(x) and FY(y).
(d) Compute E(X), Var(X), E(Y ), Var(Y ), Cov(X, Y ), and Cor(X, Y ).

 4.8. If X and Y are jointly continuous random variables with joint probability density func-
tion f (x, y) and X and Y are independent, show that Cov(X, Y ) 5 0. Therefore, X and Y 
being independent implies that E(XY ) 5 E(X)E(Y ).

 4.9. Suppose that X is a discrete random variable with pX(x) 5 0.25 for x 5 22, 21, 1, 2. 
Let Y also be a discrete random variable such that Y 5 X2. Clearly, X and Y are not 
independent. However, show that Cov(X, Y ) 5 0. Therefore, uncorrelated random 
variables are not necessarily independent.

4.10. Suppose that X1 and X2 are jointly normally distributed random variables with joint 
probability density function

 fX1, X2
(x1, x2) 5

1

2p2s2
1s

2
2(1 2 r2

12)
 e2qy2  

for 2` , x1 , `
and 2` , x2 , `

 where

 q 5
1

1 2 r2
12

c (x1 2 m1)2

s2
1

2 2r12

(x1 2 m1)(x2 2 m2)

2s2
1s

2
2

1
(x2 2 m2)2

s2
2

d
 If r12 5 0, show that X1 and X2 are independent.

4.11. Suppose that X and Y are random variables such that Y 5 aX 1 b and a and b are con-
stants. Show that

 Cor(X, Y) 5 e11 if a . 0
21 if a , 0

 This is why the correlation is said to be a measure of linear dependence.

4.12. If X1 and X2 are random variables, then E(X2
1)E(X2

2) $ [E(X1X2)]
2 by Schwarz’s 

 inequality. Use this fact to show that 21 # r12 # 1.

4.13. For any random variables X1, X2 and any numbers a1, a2, show that 
Var(a1X1 1 a2X2) 5 a2

1 Var(X1) 1 2a1a2 Cov(X1, X2) 1 a2
2 Var(X2).

4.14. Justify the equation for Di11 in Example 4.19.

4.15. Using the equation for Di11 in Example 4.19, write a C program requiring approxi-
mately 15 lines of code to simulate the M/M/1 queue with a mean interarrival time of 
1 and a mean service time of 0.5. Run the program until 1000 Di’s have been observed 
and compute D(1000). The program should not require a simulation clock, an event 
list, or a timing routine.

4.16. Using the fact that E(On
i51 ai Xi) 5 On

i51 ai 
E(Xi) for any random variables X1, X2, . . . , 

Xn and any numbers a1, a2, . . . , an, show that if X1, X2, . . . , Xn are IID random variables 
with mean m and variance s2, then E[X(n)] 5 m and E[S2(n)] 5 s2. Show that the 
fi rst result still holds if the Xi’s are dependent.

4.17.  Show that Eq. (4.7) is correct.
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4.18. If X1, X2, . . . , Xn are IID random variables with mean m and variance s2, then compute 
Cov[X(n), S2(n)]. When will this covariance be equal to 0?

4.19. Show that the equality of the two probability statements in Eq. (4.10) is correct.

4.20. For the confi dence interval given by (4.12), show that if we increase the sample size 
from n to 4n, then the half-length is decreased by a factor of approximately 2.

4.21. Explain why the 90 percent confi dence interval in Example 4.27 contained only 5 of 
the 10 observations.

4.22. For the confi dence interval given by (4.12), show that the coverage approaches 1 2 a 
as n S `.

4.23. Suppose that 7.3, 6.1, 3.8, 8.4, 6.9, 7.1, 5.3, 8.2, 4.9, and 5.8 are 10 observations from 
a distribution (not highly skewed) with unknown mean m. Compute X(10), S2(10), 
and an approximate 95 percent confi dence interval for m.

4.24. For the data in Prob. 4.23, test the null hypothesis H0: m 5 6 at level a 5 0.05.

4.25. In Example 4.30 explain why the power goes to 1 as n gets large. (Hint: Look at what 
 happens to the numerator and denominator in the statistic tn 5 [X(n) 2 1]y2S2(n)yn 

as n gets large.)

4.26. In Example 4.30 the estimated power was 0.433 for n 5 10 and the alternative hypoth-
esis H1: m 5 1.5 and s 5 1.
(a) For n 5 10 will the power increase or decrease if the alternative hypothesis is in-

stead H1: m 5 1.25 and s 5 1? Substantiate your answer by randomly sampling 
(e.g., in Excel) from an appropriate normal distribution.

(b) For n 5 10 will the power increase or decrease if the alternative hypothesis is in-
stead H1: m 5 1.5 and s 5 0.75? Substantiate your answer by randomly sampling 
from an appropriate normal distribution.

4.27.  A manufacturing process is supposed to produce ball bearings with a diameter of 
0.5 inch. The company examines n 5 50 ball bearings and fi nds that X(50) 5 0.45 and 
S2(n) 5 0.06. Test the null hypothesis H0: m 5 0.5 against the alternative hypothesis 
H1: m ? 0.5 at level a 5 0.05. Also, construct a 95 percent confi dence interval for m.

4.28. Show algebraically that rejection of the null hypothesis H0: m 5 m0 by the t test given 
by (4.14) is equivalent to the t confi dence interval given by (4.12) not containing m0.

4.29. Suppose that X and Y are random variables with unknown covariance Cov(X, Y ). If the 
pairs Xi, Yi (for i 5 1, 2, . . . , n) are independent observations of X, Y, then show that

 Cov
^

(X, Y ) 5

^
n

i51

[Xi 2 X(n)][Yi 2 Y(n)]

n 2 1

 is an unbiased estimator of Cov(X, Y ).
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4.30. A random variable X is said to have the memoryless property if

 P(X . t 1 s 0X . t) 5 P(X . s)  for all t, s . 0

 [The conditional probability P(X . t 1 s 0X . t) is the probability of the event 
{X .  t 1 s} occurring given that the event {X . t} has occurred; see Ross (2003, 
chap. 3).] Show that the exponential distribution has the memoryless property.

4.31. A geometric distribution with parameter p (0 , p , 1) has probability mass function

 p(x) 5 p(1 2 p)x  for x 5 0, 1, 2, . . .

 Show that this distribution has the memoryless property.

4.32. Suppose that a man has k keys, one of which will open a door. Compute the expected 
number of keys required to open the door for the following two cases:
(a) The keys are tried one at a time without replacement.
(b) The keys are tried one at a time with replacement. (Hint: Condition on the out-

come of the fi rst try.)

4.33. Are the mean, median, and mode equal for every symmetric distribution?

4.34. In Example 4.32 is the long-run throughput (departure rate) larger when interarrival 
times and processing times are each exponentially distributed or when they are each a 
constant?
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C H A P T E R  5

Building Valid, Credible, 
and Appropriately Detailed 
Simulation Models

Recommended sections for a fi rst reading: 5.1 through 5.5, 5.6.1

5.1 
INTRODUCTION AND DEFINITIONS

One of the most diffi cult problems facing a simulation analyst is that of trying to 
determine whether a simulation model is an accurate representation of the actual 
system being studied, i.e., whether the model is valid. In this chapter we present a 
practical discussion of how to build valid and credible models. We also provide 
guidelines on how to determine the level of detail for a model of a complex system, 
also a critical and challenging issue. Information for this chapter came from a re-
view of the existing literature, from consulting studies performed by Averill M. Law 
& Associates, and from the experiences of the thousands of people who have at-
tended the author’s simulation short courses since 1977. We present more than 
40 examples to illustrate the concepts presented.

Important works on validation and verifi cation include those by Balci (1998), 
Banks et al. (2010), Carson (1986, 2002), Feltner and Weiner (1985), Law (2009, 
2011), Naylor and Finger (1967), Sargent (2012), Shannon (1975), and Van Horn 
(1971). References on the assessment of an existing simulation model include 
 Fossett et al. (1991), Gass (1983), Gass and Thompson (1980), and Knepell and 
Arangno (1993).

We begin by defi ning the important terms used in this chapter, including verifi ca-
tion, validation, and credibility. Verifi cation is concerned with determining whether 
the “assumptions document” (see Sec. 5.4.3) has been correctly translated into a 
computer “program,” i.e., debugging the simulation computer program. Although 
verifi cation is simple in concept, debugging a large-scale simulation program is a 
diffi cult and arduous task due to the potentially large number of logical paths. Tech-
niques for verifying a simulation computer program are discussed in Sec. 5.3.
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Validation is the process of determining whether a simulation model is an accu-
rate representation of the system, for the particular objectives of the study. [Fishman 
and Kiviat (1968) appear to be the fi rst ones to have given defi nitions similar to 
these.] The following are some general perspectives on validation:

• Conceptually, if a simulation model is “valid,” then it can be used to make deci-
sions about the system similar to those that would be made if it were feasible and 
cost-effective to experiment with the system itself.

• The ease or diffi culty of the validation process depends on the complexity of the 
system being modeled and on whether a version of the system currently exists (see 
Sec. 5.4.5). For example, a model of a neighborhood bank would be relatively 
easy to validate since it could be closely observed. However, a model of the ef-
fectiveness of a naval weapons system in the year 2025 would be impossible to 
validate completely, since the location of the battle and the nature of the enemy 
weapons would be unknown.

• A simulation model of a complex system can only be an approximation to the ac-
tual system, no matter how much effort is spent on model building. There is no 
such thing as absolute model validity, nor is it even desired. The more time (and 
hence money) that is spent on model development, the more valid the model 
should be in general. However, the most valid model is not necessarily the most 
cost-effective. For example, increasing the validity of a model beyond a certain 
level might be quite expensive, since extensive data collection may be required, 
but might not lead to signifi cantly better insight or decisions. A famous quote by 
Professor George E.P. Box says, “All models are wrong, but some are useful.” 
This means that it is not possible to get every detail of the system into a model, 
but some models are still useful for decision making.

• A simulation model should always be developed for a particular set of purposes. 
Indeed, a model that is valid for one purpose may not be for another.

• The measures of performance used to validate a model should include those that 
the decision maker will actually use for evaluating system designs.

• Validation is not something to be attempted after the simulation model has 
 already been developed, and only if there is time and money remaining. Unfortu-
nately, our experience indicates that this recommendation is often not followed.

E X A M P L E  5 . 1 .  An organization paid a consulting company $500,000 to perform a 
“simulation study.” After the study was supposedly completed, a person from the client 
organization called and asked, “Can you tell me in fi ve minutes on the phone how to val-
idate our model?”

• Each time a simulation model is being considered for a new application, its va-
lidity should be reexamined. The current purpose may be substantially different 
from the original purpose, or the passage of time may have invalidated certain 
model parameters.

A simulation model and its results have credibility if the manager and other 
key project personnel accept them as “correct.” (We will henceforth use the term 
“manager” to mean manager, decision maker, or client, as is appropriate to the con-
text.) Note that a credible model is not necessarily valid, and vice versa. Also, a 
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model can be credible and not actually used as an aid in making decisions. For 
 example, a model could be credible but not used because of political or economic 
reasons. The following things help establish credibility for a model:

• The manager’s understanding of and agreement with the model’s assumptions 
(see Sec. 5.4.2)

• Demonstration that the model has been validated and verifi ed
• The manager’s ownership of and involvement with the project
• Reputation of the model developers
• A compelling animation

The U.S. Department of Defense (DoD) is a large user of simulation models, and 
in recent years there has been considerable interest in verifi cation, validation, and a 
concept known as accreditation (VV&A). Accreditation [see Modeling & Simula-
tion Coordination Offi ce (2011)] is the offi cial certifi cation (by the project sponsor) 
that a simulation model is acceptable for a specifi c purpose. The main reason that 
accreditation is mandated within DoD is that someone must take responsibility for the 
decision to use a model for a particular application, since a large amount of money and 
people’s lives may be at stake. Also, most military analyses are done with legacy mod-
els, which may have been developed for another application or by another organiza-
tion. Issues that are considered in an accreditation  decision include:

• Verifi cation and validation that have been done
• Credibility of the model
• Simulation model development and use history (e.g., model developer and 

similar applications)
• Quality of the data that are available
• Quality of the documentation
• Known problems or limitations with the simulation model

The timing and relationships of validation, verifi cation, and establishing credi-
bility are shown in Fig. 5.1. The rectangles represent states of the model or the sys-
tem of interest, the solid horizontal arrows correspond to the actions necessary to 
move from one state to another, and the curved dashed arrows show where the three 
major concepts are most prominently employed. The numbers below each solid 
arrow correspond to the steps in a sound simulation study, as discussed in Sec. 1.7. 
We have not attempted to illustrate feedback arcs in the fi gure.

Validation should be contrasted with output analysis (the subject of Chaps. 9 
through 12), which is a statistical issue concerned with estimating a simulation model’s 

Results used

in decision-

making

process

“Correct”

results

available

Simulation

program

Assumptions

document
System

Sell

results to

management

10

Make

model runs

5, 6, 7, 8, 9

Programming

4

Analysis

and data

1, 2, 3

Establish

credibility

Validation Verification Validation Establish credibility

FIGURE 5.1
Timing and relationships of validation, verifi cation, and establishing credibility.
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(not necessarily the system’s) true measures of performance. Topics of  interest in out-
put analysis include simulation run length, length of the warmup  period (if any), and 
number of independent model runs (using different random numbers).

To get a better idea of the difference between validation and output analysis, sup-
pose that we want to estimate the mean mS of some system. Suppose that we construct 
a simulation model whose corresponding mean is mM. We make a simulation run and 
obtain an estimate m̂M of mM. Then the error in m̂M as an estimate of mS is given by

  Error in m̂M 5 0 m̂M 2 mS 0
  5 0 m̂M 2 mM 1 mM 2 mS 0
  # 0 m̂M 2 mM 0 1 0mM 2 mS 0  (by the triangle inequality)

Validation is concerned with making the second absolute value small (in the line 
above), while output analysis is concerned with making the fi rst absolute value 
small. Thus, to have a good estimate of the mean of the system, we have to be con-
cerned with both validation and output analysis.

5.2 
GUIDELINES FOR DETERMINING 
THE LEVEL OF MODEL DETAIL

A simulation practitioner must determine what aspects of a complex real-world sys-
tem actually need to be incorporated into the simulation model and at what level of 
detail, and what aspects can be safely ignored. It is rarely necessary to have a one-
to-one correspondence between each element of the system and each element of 
the model. Modeling each aspect of the system will seldom be required to make 
effective decisions, and might result in excessive model execution time, in missed 
deadlines, or in obscuring important system factors.

E X A M P L E  5 . 2 .  A dog-food manufacturer had a consulting company build a simula-
tion model of its manufacturing line, which produced 1 million cans per day at a con-
stant rate. Because each can of food was represented by a separate entity in the model, 
the model was very expensive to run and, thus, not very useful. A few years later the 
model was rewritten, treating the manufacturing process as a “continuous fl ow” (see 
Sec. 1.2). The new model produced accurate results and executed in a small fraction of 
the time necessary for the original model.

E X A M P L E  5 . 3 .  A simulation model of a 1.5-mile-long factory was built in 1985 at a 
cost of $250,000. However, the model was so detailed that no runs were ever made due 
to excessive computer memory requirements.

We now present some general guidelines for determining the level of detail 
 required by a simulation model [see also Law (1991) and Robinson (2004, 
pp. 87–92)].

• Carefully defi ne the specifi c issues to be investigated by the study and the measures 
of performance that will be used for evaluation. Models are not universally valid, 
but are designed for specifi c purposes. If the issues of interest have not been delin-
eated, then it is impossible to determine the appropriate level of model detail. Since 
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some models can accurately estimate one measure of per formance but not another, 
it is also important to specify the performance measures of interest. For example, a 
simple model of a manufacturing system might accurately predict throughput (e.g., 
parts per day) but be inadequate for deter mining the required fl oor space for work-
in-process (see Example 14.3). Finally, it is important to understand the manager’s 
needs. A great model for the wrong problem will never be used. Problem formula-
tion is usually done at an initial kickoff meeting with people representing all key 
aspects of the system being present.

E X A M P L E  5 . 4 .  A U.S. military analyst worked on a simulation model for six months 
without interacting with the general who requested it. At the Pentagon briefi ng for the 
study, the general walked out after 5 minutes stating, “That’s not the problem I’m inter-
ested in.”

• The entity moving through the simulation model does not always have to be the 
same as the entity moving through the corresponding system (see Example 5.5). 
Furthermore, it is not always necessary to model each component of the system 
in complete detail (see Example 5.26).

E X A M P L E  5 . 5 .  A large food manufacturer built a simulation model of its manufactur-
ing line for snack crackers. Initially, they tried to model each cracker as a separate en-
tity, but the computational requirements of the model made this approach infeasible. As 
a result, the company was forced to use a box of crackers as the entity moving through 
the model. The validity of this modeling approach was determined by using sensitivity 
analysis (see below and Example 5.25).

• Use subject-matter experts (SMEs) and sensitivity analyses to help determine the 
level of model detail. People who are familiar with systems similar to the one of 
interest are asked what components of the proposed system are likely to be the 
most important and, thus, need to be carefully modeled. Sensitivity analyses (see 
Sec. 5.4.4) can be used to determine what system factors (e.g., parameters or dis-
tributions) have the greatest impact on the desired measures of performance. 
Given a limited amount of time for model development, one should obviously 
concentrate on the most important factors.

• A mistake often made by beginning modelers is to include an excessive amount 
of model detail. As a result, we recommend starting with a “moderately detailed” 
model, which can later be embellished if needed. The adequacy of a particular 
version of the model is determined in part by presenting the model to SMEs and 
managers. Regular interaction with these people also maintains their interest in 
the simulation study.

E X A M P L E  5 . 6 .  We developed a simulation model of a pet-food manufacturing system, 
which consisted of a meat plant and a cannery. In the meat plant, meat was either ground 
fi ne or into chunks and then placed into buckets and transported to the cannery by an 
overhead conveyor system. In the cannery buckets are dumped into mixers that process the 
meat and then dispense it to fi ller/seamers for canning. The empty buckets are conveyed 
back to the meat plant for refi lling. Originally, it was decided that the system producing 
the chunky product was relatively unimportant and, thus, it was  modeled in a simple man-
ner. However, at the structured walk-through of the model (see Sec. 5.4.3), machine opera-
tors stated that this subsystem was actually much more complex. To gain credibility with 
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these members of the project team, we had to include machine breakdowns and contention 
for resources. Furthermore, after the initial model runs were made, it was necessary to 
make additional changes to the model suggested by a mixer operator.

• Do not have more detail in the model than is necessary to address the issues of 
interest, subject to the proviso that the model must have enough detail to be cred-
ible. Thus, it may sometimes be necessary to include things in a model that are not 
strictly required for model validity, due to credibility concerns.

• The level of model detail should be consistent with the type of data available. A 
model used to design a new manufacturing system will generally be less detailed 
than one used to fi ne-tune an existing system, since little or no data will be avail-
able for a proposed system.

• In virtually all simulation studies, time and money constraints are a major factor 
in determining the amount of model detail.

• If the number of factors (aspects of interest) for the study is large, then use a 
“coarse” simulation model or an analytic model to identify what factors have a 
signifi cant impact on system performance. A “detailed” simulation model is then 
built, emphasizing these factors [see Haider, Noller, and Robey (1986) for an ex-
ample]. Note that there are commercial software packages available for performing 
analytic analyses in application areas such as manufacturing systems and com-
munications networks. Statistical experimental design (see Chap. 12) might also 
be useful for determining important factors.

5.3 
VERIFICATION OF SIMULATION COMPUTER PROGRAMS

In this section we discuss eight techniques that can be used to debug the computer 
program of a simulation model [see Balci (1998) for additional techniques from the 
fi eld of software engineering]. Some of these techniques may be used to debug any 
computer program, while others we believe to be unique to simulation modeling.

Technique 1

In developing a simulation model, write and debug the computer program in 
modules or subprograms. By way of example, for a 10,000-statement simulation 
model it would be poor programming practice to write the entire program before 
attempting any debugging. When this large, untested program is fi nally run, it  almost 
certainly will not execute, and determining the location of the errors in the program 
will be extremely diffi cult. Instead, the simulation model’s main program and a few 
of the key subprograms should be written and debugged fi rst, perhaps representing 
the other required subprograms as “dummies” or “stubs.” Next, additional subpro-
grams or levels of detail should be added and debugged successively, until a model 
is developed that satisfactorily represents the system under study. In general, it is 
always better to start with a “moderately detailed” model, which is gradually made 
as complex as needed, than to develop “immediately” a complex model, which may 
turn out to be more detailed than necessary and excessively expensive to run (see 
Example 5.25 for further discussion).
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E X A M P L E  5 . 7 .  For the multiteller bank with jockeying considered in Sec. 2.6, a good 
programming approach would be fi rst to write and debug the computer program with-
out letting customers jockey from queue to queue.

Technique 2

It is advisable in developing large simulation models to have more than one 
person review the computer program, since the writer of a particular subprogram 
may get into a mental rut and, thus, may not be a good critic. In some organizations, 
this idea is implemented formally and is called a structured walk-through of the 
program. For example, all members of the modeling team, say, systems analysts, 
programmers, etc., are assembled in a room, and each is given a copy of a particu-
lar  set of subprograms to be debugged. Then the subprograms’ developer goes 
through the programs but does not proceed from one statement to another until 
 everyone is convinced that a statement is correct.

Technique 3

Run the simulation under a variety of settings of the input parameters, and 
check to see that the output is reasonable. In some cases, certain simple measures of 
performance may be computed exactly and used for comparison. (See the case 
study in Sec. 14.6.)

E X A M P L E  5 . 8 .  For many  queueing systems with s servers in parallel, it can be shown 
that the long-run average utilization of the servers is r 5 ly(sv) (see App. 1B for nota-
tion). Thus, if the average utilization from a simulation run is close to the utilization 
factor r, there is some indication that the program may be working correctly.

Technique 4

One of the most powerful techniques that can be used to debug a discrete-event 
simulation program is a “trace.” In a trace, the state of the simulated system, i.e., the 
contents of the event list, the state variables, certain statistical counters, etc., are 
displayed just after each event occurs and are compared with hand calculations to 
see if the program is operating as intended. In performing a trace it is desirable to 
evaluate each possible program path as well as the program’s ability to deal with 
“extreme” conditions. Sometimes such a thorough evaluation may require that spe-
cial (perhaps deterministic) input data be prepared for the model. Most simulation 
packages provide the capability to perform traces.

A batch-mode trace often produces a large volume of output, which must be 
checked event by event for errors. Unfortunately, some key information may be 
omitted from the trace (not having been requested by the analyst); or, worse yet, a 
particular error may not occur in the “short” debugging simulation run. Either diffi -
culty will require that the simulation be rerun. As a result, it is usually preferable to 
use an interactive debugger to fi nd programming errors.

An interactive debugger allows an analyst to stop the simulation at a selected 
point in time, and to examine and possibly change the values of certain variables. 
This latter capability can be used to “force” the occurrence of certain types of errors. 
Many modern simulation packages have an interactive debugger.

E X A M P L E  5 . 9 .  Table 5.1 shows a trace for the intuitive explanation of the single-
server queue in Sec. 1.4.2. The fi rst row of the table is a snapshot of the system just after 
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TABLE 5.1

Partial trace for the single-server queue considered in Sec. 1.4.2

        Number of  Area under
  Server Number in Times of  Event list customers Total number-in-queue Area under
Event Clock status queue arrival Arrive Depart delayed delay function busy function

Initialization 0 0 0  0.4 ` 0 0 0 0
Arrival 0.4 1 0  1.6 2.4 1 0 0 0
Arrival 1.6 1 1 1.6 2.1 2.4 1 0 0 1.2
Arrival 2.1 1 2 1.6, 2.1 3.8 2.4 1 0 0.5 1.7
Departure 2.4 1 1 2.1 3.8 3.1 2 0.8 1.1 2.0
Departure 3.1 1 0  3.8 3.3 3 1.8 1.8 2.7
Departure 3.3 0 0  3.8 ` 3 1.8 1.8 2.9
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254 building valid, credible, and appropriately detailed simulation models

initialization at time 0, the second row is a snapshot of the system just after the fi rst 
event (an arrival) has occurred, etc.

Technique 5

The model should be run, when possible, under simplifying assumptions for 
which its true characteristics are known or can easily be computed.

E X A M P L E  5 . 1 0 .  For the job-shop model presented in Sec. 2.7, it is not possible to 
compute the desired system characteristics analytically. Therefore, one must use simu-
lation. To debug the simulation model, one could fi rst run the general model of 
Sec. 2.7.2 with one workstation, one machine in that station, and only type 1 jobs 
(which have an arrival rate of 0.3y0.25 5 1.2 jobs per hour). The resulting model is 
known as the MyE2y1 queue and has known transient and steady-state characteristics 
[see Kelton (1985) and Gross et al. (2009)]. Table 5.2 gives the theoretical values of the 
steady-state average number in queue, average utilization, and average delay in queue, 
and also estimates of these quantities from a simulation run of length 2000 eight-hour 
days. Since the estimates are very close to the true values, we have some degree of 
 confi dence that the computer program is correct.
 A more defi nitive test of the program can be achieved by running the general model 
of Sec. 2.7.2 with the original number of workstations (5), the original number of ma-
chines in each station (3, 2, 4, 3, 1), only type 1 jobs, and with exponential service times 
(with the same mean as the corresponding 2-Erlang service time) at each workstation. 
The resulting model is, in effect, four multiserver queues in series, with the fi rst queue 
an MyMy4, the second an MyMy3, etc. [The interdeparture times from an MyMys queue 
(s is the number of servers) that has been in operation for a long time are IID exponential 
random variables; see Gross et al. (2009).] Furthermore, steady-state characteristics are 
known for the MyMys queue [see Gross et al. (2009)]. Table 5.3 gives, for each workstation, 

TABLE 5.2

Theoretical values (T) and simulation estimates (S) for a simplifi ed 
job-shop model (MyE2y1 queue)

Average number   Average delay
in queue Average utilization in queue

   T      S T     S T     S

0.676   0.685 0.600   0.604 0.563   0.565

TABLE 5.3

Theoretical values (T) and simulation estimates (S) for a simplifi ed job-shop model 
(four multiserver queues in series)

 Average number  Average delay

Work  in queue Average utilization in queue

station T     S T     S T     S

3 0.001   0.001  0.150   0.149 0.001   0.001
1 0.012   0.012 0.240   0.238 0.010   0.010
2 0.359   0.350 0.510   0.508 0.299   0.292
5 0.900   0.902 0.600   0.601 0.750   0.752

Law01323_ch05_246-278.indd Page 254  10/29/13  4:19 PM f-494 Law01323_ch05_246-278.indd Page 254  10/29/13  4:19 PM f-494 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



chapter five 255

the theoretical values of the steady-state average number in queue, average utilization, 
and average delay in queue, and also estimates of these quantities from a simulation run 
of length 2000 eight-hour days. Once again, the simulation estimates are quite close to 
the theoretical values, which gives increased confi dence in the program.

E X A M P L E  5 . 1 1 .  We developed a simulation model for a large provider of cellular 
phone service, where the goal was to determine the long-term availability (proportion of 
time up) of several alternative network confi gurations. Originally, we tried computing 
availability using analytic approaches such as continuous-time Markov chains and 
 conditional expectation [see, for example, Ross (2003)], but we were only able to obtain 
results for simple cases. Therefore, we needed to use simulation, and we partially veri-
fi ed our simulation model by comparing the simulation and analytic results for the sim-
ple cases.

Technique 6

With some types of simulation models, it may be helpful to observe an anima-
tion of the simulation output (see Sec. 3.4.3).

E X A M P L E  5 . 1 2 .  A simulation model of a network of automobile traffi c intersections 
was developed, supposedly debugged, and used for some time to study such issues as 
the effect of various light-sequencing policies. However, when the simulated fl ow of 
traffi c was animated, it was found that simulated cars were actually colliding in the 
 intersections; subsequent inspection of the computer program revealed several previ-
ously undetected errors.

Technique 7

Compute the sample mean and sample variance for each simulation input prob-
ability distribution, and compare them with the desired (e.g., historical) mean and 
variance. This suggests that values are being correctly generated from these 
distributions.

E X A M P L E  5 . 1 3 .  The parameters of gamma and Weibull distributions are defi ned 
 differently in various simulation packages and books. Thus, this technique would be 
valuable here.

Technique 8

Use a commercial simulation package to reduce the amount of programming 
required. On the other hand, care must be taken when using a simulation package 
(particularly a recently released one), since it may contain errors of a subtle nature. 
Also, simulation packages contain powerful high-level macro statements, which are 
sometimes not well documented.

5.4 
TECHNIQUES FOR INCREASING MODEL 
VALIDITY AND CREDIBILITY

In this section we discuss six classes of techniques for increasing the validity and 
credibility of a simulation model. You might review the ten steps in a sound simula-
tion study (Sec. 1.7) before proceeding.
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5.4.1 Collect High-Quality Information and Data on the System

In developing a simulation model, the analyst should make use of all existing infor-
mation, including the following:

Conversations with Subject-Matter Experts

A simulation model is not an abstraction developed by an analyst working in 
isolation; in fact, the modeler must work closely with people who are intimately fa-
miliar with the system. There will never be one single person or document that con-
tains all the information needed to build the model. Therefore, the analyst will have 
to be resourceful to obtain a complete and accurate set of information. Care must be 
taken to identify the true SMEs for each subsystem and to avoid obtaining biased 
data (see Example 5.19). Ideally, SMEs should have some knowledge of simulation 
modeling, so that they supply relevant information. The process of bringing all the 
system information together in one place is often valuable in its own right, even if a 
simulation study is never performed. Note that since the specifi cations for a system 
may be changing during the course of a simulation study, the modeler may have to 
talk to some SMEs on a continuing basis.

E X A M P L E  5 . 1 4 .  For a manufacturing system, the modelers should obtain informa-
tion from sources such as machine operators, manufacturing and industrial engineers, 
maintenance personnel, schedulers, managers, vendors, and blueprints.

E X A M P L E  5 . 1 5 .  For a communications network, relevant people might include 
 end-users, network designers, technology experts (e.g., for switches and satellites), 
 system administrators, application architects, maintenance personnel, managers, and 
carriers.

Observations of the System

If a system similar to the one of interest exists, then data should be obtained 
from it for use in building the model. These data may be available from historical 
records or may have to be collected during a time study. Since the people who 
 provide the data might be different from the simulation modelers, it is important that 
the following two principles be followed:

• The modelers need to make sure that the data requirements (type, format, amount, 
conditions under which they should be collected, why needed, etc.) are specifi ed 
precisely to the people who provide the data.

• The modelers need to understand the process that produced the data, rather than 
treat the observations as just abstract numbers.

The following are fi ve potential diffi culties with data:

• Data are not representative of what one really wants to model.

E X A M P L E  5 . 1 6 .  The data that have been collected during a military fi eld test may not 
be representative of actual combat conditions due to differences in troop behavior and 
lack of battlefi eld smoke (see also Prob. 5.1).

• Data are not of the appropriate type or format.
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E X A M P L E  5 . 1 7 .  In modeling a manufacturing system, the largest source of random-
ness is usually random downtimes of a machine. Ideally, we would like data on time to 
failure (in terms of actual machine busy time) and time to repair of a machine. Some-
times data are available on machine breakdowns, but quite often they are not in the 
proper format. For example, the times to failure might be based on wall-clock time and 
include periods that the machine was idle or off-shift.

• Data may contain measurement, recording, or rounding errors.

E X A M P L E  5 . 1 8 .  Repair times for military-aircraft components were often rounded to 
the nearest day, making it impossible to fi t a continuous probability distribution (see 
Chap. 6).

• Data may be “biased” because of self-interest.

E X A M P L E  5 . 1 9 .  The maintenance department in an automotive factory reported the 
reliability of certain machines to be greater than reality to make themselves look good.

• Data may have inconsistent units.

E X A M P L E  5 . 2 0 .  The U.S. Transportation Command transports military cargo by air, 
land, and sea. Sometimes there is confusion in building simulation models because the 
U.S. Air Force and the U.S. Army use short tons (2000 pounds) while the U.S. Navy 
uses long tons (2200 pounds).

Existing Theory

For example, if one is modeling a service system such as a bank and the arrival 
rate of customers is constant over some time period, theory tells us that the inter-
arrival times of customers are quite likely to be IID exponential random variables; 
in other words, customers arrive in accordance with a Poisson process (see Sec. 6.12.1 
and Example 6.4).

Relevant Results from Similar Simulation Studies

If one is building a simulation model of a military ground encounter (as has 
been done many times in the past), then results from similar studies should be 
sought out and used, if possible.

Experience and Intuition of the Modelers

It will often be necessary to use one’s experience or intuition to hypothesize 
how certain components of a complex system operate, particularly if the system 
does not currently exist in some form. It is hoped that these hypotheses can be sub-
stantiated later in the simulation study.

5.4.2 Interact with the Manager on a Regular Basis

We now discuss one of the most important ideas in this chapter, whose use will 
 increase considerably the likelihood that the completed model will be employed in 
the decision-making process. It is extremely important for the modeler to interact 
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with the manager on a regular basis throughout the course of the simulation study. 
This approach has the following benefi ts:

• When a simulation study is initiated, there may not be a clear idea of the problem 
to be solved. Thus, as the study proceeds and the nature of the problem becomes 
clearer, this information should be conveyed to the manager, who may reformu-
late the study’s objectives. Clearly, the greatest model for the wrong problem is 
invalid!

• The manager’s interest and involvement in the study are maintained.
• The manager’s knowledge of the system contributes to the actual validity of the 

model.
• The model is more credible since the manager understands and accepts the 

 model’s assumptions. As a matter of fact, it is extremely desirable to have the 
manager (and other important personnel) “sign off” on key model assumptions. 
This may cause the manager to believe, “Of course, it’s a good model, since I 
helped develop it.”

5.4.3 Maintain a Written Assumptions Document 
and Perform a Structured Walk-Through

Communication errors are a major reason why simulation models often contain 
 invalid assumptions or have critical omissions. The documentation of all model 
concepts, assumptions, algorithms, and data summaries in a written assumptions 
document can greatly lessen this problem, and it will also enhance the credibility of 
the model. (Within DoD and elsewhere an assumptions document is better known 
as a conceptual model.) However, deciding on the appropriate content of an as-
sumptions document is a less-than-obvious task that depends on the modeler’s in-
sight, knowledge of modeling principles (e.g., from operations research, probability 
and statistics, etc.), and experience in modeling similar types of systems. An as-
sumptions document is not an “exact” description of how the system works, but 
rather a description of how it works relative to the particular issues that the model is 
to address. Indeed, the assumptions document is the embodiment of the simulation 
analyst’s vision of how the system of interest should be modeled.

The assumptions document should be written to be readable by analysts, SMEs, 
and technically trained managers alike, and it should contain the following:

• An overview section that discusses overall project goals, the specifi c issues to be 
addressed by the simulation study, model inputs, and the performance measures 
for evaluation.

• A process-fl ow or system-layout diagram, if appropriate (see Fig. 14.31).
• Detailed descriptions of each subsystem in bullet format and how these sub-

systems interact. (Bullet format, as on this page, makes the assumptions document 
easier to review at the structured walk-through of the assumptions document, 
which is described below.)

• What simplifying assumptions were made and why. Remember that a simulation 
model is supposed to be a simplifi cation or abstraction of reality.
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• Limitations of the simulation model.
• Summaries of a data set such as its sample mean and a histogram. Detailed statisti-

cal analyses or other technical material should probably be placed in appendices 
to the report—remember that the assumptions document should be readable by 
technical managers.

• Sources of important or controversial information (people, books, technical 
 papers, etc.).

The assumptions document should contain enough detail so that it is a “blue-
print” for creating the simulation computer program. Additional information on as-
sumptions documents (conceptual models) can be found in Modeling & Simulation 
 Coordination Offi ce (2011), Pace (2003), and Robinson (2008a,b).

As previously discussed, the simulation modeler will need to collect system 
information from many different people. Furthermore, these people are typically 
very busy dealing with the daily problems that occur within their organizations, 
often resulting in their giving something less than their undivided attention to the 
questions posed by the simulation modeler. As a result, there is a considerable dan-
ger that the simulation modeler will not obtain a complete and correct description of 
the system. One way of dealing with this potential problem is to conduct a struc-
tured walk-through of the assumptions document before an audience of SMEs and 
managers. Using a projection device, the simulation modeler goes through the as-
sumptions document bullet by bullet, but not proceeding from one bullet to the next 
until everybody in the room is convinced that a particular bullet is correct and at an 
appropriate level of detail. A structured walk-through will increase both the validity 
and the credibility of the simulation model.

The structured walk-through ideally should be held at a remote site (e.g., a hotel 
meeting room), so that people give the meeting their full attention. Furthermore, it 
should be held prior to the beginning of programming in case major problems are 
uncovered at the meeting. The assumptions document should be sent to participants 
prior to the meeting and their comments requested. We do not, however, consider 
this to be a replacement for the structured walk-through itself, since people may not 
have the time or motivation to review the document carefully on their own. Fur-
thermore, the interactions that take place at the actual meeting are invaluable. 
[Within DoD the structured walk-through of the assumptions document (conceptual 
model) is sometimes called conceptual model validation.] It is imperative that all 
key members of the project team be present at the structured walk-through and that 
they all take an active role.

It is likely that many model assumptions will be found to be incorrect or to be 
missing at the structured walk-through. Thus, any errors or omissions found in the 
assumptions document should be corrected before programming begins.

We now present two examples of structured walk-throughs, the fi rst being very 
successful and the other producing quite surprising but still useful results.

E X A M P L E  5 . 2 1 .  We performed a structured walk-through in doing a simulation 
study  for a Fortune 500 manufacturing company (see Sec. 14.6). There were nine 
 people at the meeting, including two modelers and seven people from the client orga-
nization. The client personnel included the foreman of the machine operators, three 
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260 building valid, credible, and appropriately detailed simulation models

engineers of  various types, two people from the scheduling department, and a manager. 
The assumptions document was 19 pages long and contained approximately 160 ten-
tative model assumptions. Each of the 160 assumptions was presented and discussed, 
with the whole process taking 5½ hours. The process resulted in several erroneous 
 assumptions being discovered and corrected, a few new assumptions being added, and 
some level-of-detail issues being resolved. Furthermore, at the end of the meeting, all 
nine people felt that they had a valid model! In other words, they had taken ownership 
of the model.

E X A M P L E  5 . 2 2 .  At a structured walk-through for a transportation system, a signifi -
cant percentage of the assumptions given to us by our corporate sponsor were found to 
be wrong by the SMEs present. (Due to the long geographic distances between the 
home offi ces of the sponsor and the SMEs, it was not possible for the SMEs to be pres-
ent at the kickoff meeting for the project.) As a result, various people were assigned 
responsibilities to collect information on different parts of the system. The collected 
information was used to update the assumptions document, and a second walk-through 
was successfully performed. This experience pointed out the critical importance of hav-
ing all key project members present at the kickoff meeting.

Some people think that the need for an assumptions document and its formal 
review are just common sense. However, based on talking to literally thousands of 
simulation practitioners, we believe that, perhaps, 75 percent of all simulation mod-
els have inadequate documentation.

5.4.4 Validate Components of the Model by Using Quantitative Techniques

The simulation analyst should use quantitative techniques whenever possible to 
test the validity of various components of the overall model. We now give some 
examples of techniques that can be used for this purpose, all of which are generally 
applicable.

If one has fi tted a theoretical probability distribution to a set of observed data, 
then the adequacy of the representation can be assessed by using the graphical plots 
and goodness-of-fi t tests discussed in Chap. 6.

As stated in Sec. 5.4.1, it is important to use appropriate data in building a 
model; however, it is equally important to exercise care when structuring these data. 
For example, if several sets of data have been observed for the “same” random phe-
nomenon, then the correctness of merging these data can be assessed by the 
 Kruskal-Wallis test of homogeneity of populations (see Sec. 6.13). If the data sets 
appear to be homogeneous, they can be merged and the combined data set used for 
some purpose in the simulation model.

E X A M P L E  5 . 2 3 .  For the manufacturing system described in the case study of 
Sec. 14.6, time-to-failure and time-to-repair data were collected for two “identical” 
 machines made by the same vendor. However, the Kruskal-Wallis test showed that 
the two distributions were, in fact, different for the two machines. Thus, each 
 machine was given its own time-to-failure and time-to-repair distributions in the 
simulation model.
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An important technique for determining which model factors have a signifi cant 
impact on the desired measures of performance is sensitivity analysis. If a particular 
factor appears to be important, then it needs to be modeled carefully. The following 
are examples of factors that could be investigated by a sensitivity analysis:

• The value of a parameter (see Example 5.24)
• The choice of a distribution
• The entity moving through the simulated system (see Example 5.25)
• The level of detail for a subsystem (see Example 5.26)
• What data are the most crucial to collect (using a “coarse” model of the system)

E X A M P L E  5 . 2 4 .  In a simulation study of a new system, suppose that the value of a 
parameter is estimated to be 0.75 as a result of conversations with SMEs. The impor-
tance of this parameter can be determined by running the simulation with 0.75 and, in 
addition, by running it with each of the values 0.70 and 0.80. If the three simulation runs 
produce approximately the same results, then the output is not sensitive to the choice 
of the parameter over the range 0.70 to 0.80. Otherwise, a better specifi cation of the 
parameter is needed.

E X A M P L E  5 . 2 5 .  We built a simulation model for a candy-bar manufacturing line. Ini-
tially, we used a single candy bar as the basic entity moving through the model, but this 
resulted in excessive computer execution time. A sensitivity analysis was performed, 
and it was found that using one-quarter of a case of candy bars (150 candy bars) pro-
duced virtually the same simulation results for the desired performance measure, cases 
produced per shift, while reducing the execution time considerably.

E X A M P L E  5 . 2 6 .  We developed a simulation model of the assembly and test area for 
a PC manufacturing company. Later the company managers decided that they wanted to 
run the model on their own computers, but the memory requirements of the model were 
too great. As a result, we were forced to simplify greatly the model of the assembly area 
to save computer memory. (The main focus of the simulation study was the required 
capacity for the test area.) We ran the simplifi ed simulation model (the model of the test 
area was unchanged) and found that the desired performance measure, daily through-
put, differed by only 2 percent from that of the original model. [This is an example of 
using one model to help validate another (see Sec. 5.4.5).] Thus, a large amount of detail 
was unnecessary for the assembly area. Note, however, that the simplifi ed model would 
not have been appropriate to study how to improve the effi ciency of the assembly area. 
On the other hand, it may not have been necessary to model the test area in this case.

When one is performing a sensitivity analysis, it is important to use the method of 
common random numbers (see Sec. 11.2) to control the randomness in the simulation. 
Otherwise, the effect of changing one factor may be confounded with other changes 
(e.g., different random values from some input distribution) that inadvertently occur.

If one is trying to determine the sensitivity of the simulation output to changes 
in two or more factors of interest, then it is not correct, in general, to vary one factor 
at a time while setting the other factors to some arbitrary values. A more correct 
approach is to use statistical experimental design, which is discussed in Chap. 12. 
The effect of each factor can be formally estimated; and if the number of factors is 
not too large, interactions between factors can also be detected.
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5.4.5 Validate the Output from the Overall Simulation Model

The most defi nitive test of a simulation model’s validity is to establish that its out-
put data closely resemble the output data that would be expected from the actual 
(proposed) system. This might be called results validation and, in this section, we 
will discuss several ways that it could be carried out.

Comparison with an Existing System

If a system similar to the proposed one now exists, then a simulation model of 
the existing system is developed and its output data are compared to those from 
the existing system itself. If the two sets of data compare “closely,” then the model 
of the existing system is considered “valid.” (The accuracy required from the 
model will depend on its intended use and the utility function of the manager.) 
The model is then modifi ed so that it represents the proposed system. The greater 
the commonality between the existing and proposed systems, the greater our con-
fi dence in the model of the proposed system. There is no completely defi nitive ap-
proach for validating the model of the proposed system. If there were, there might 
be no need for a simulation model in the fi rst place. If the above comparison is 
successful, then it has the additional benefi t of providing credibility for the use of 
simulation (see Example 5.27). The comparison of the model and system output 
data could be done using numerical statistics such as the sample mean, the sample 
variance, and the sample correlation function. Alternatively, the assessment could 
be made by using graphical plots (see Example 5.30) such as histograms, distribu-
tion functions, box plots, and spider-web plots (called radar plots in Microsoft 
Excel).

E X A M P L E  5 . 2 7 .  We performed a simulation study for the corporate headquarters of 
a manufacturer of paper products. A particular manufacturing plant for this company 
currently had two machines of a certain type, and local management wanted to purchase 
a third machine. The goal of the study was to see whether the additional machine was 
really needed. To validate our model, we fi rst simulated the existing system with two 
machines. The model and system throughputs for the two machines differed by 0.4 and 
1.1 percent, while the machine utilizations differed by 1.7 and 11 percent. (The rela-
tively large error of 11 percent was caused by the second machine operator’s not fol-
lowing company policy.) Using the “validated” simulation model, we simulated the 
system with three machines and found that the additional machine was not necessary. 
Based on the credible simulation results, the vice president for manufacturing of the 
entire company rejected the plant’s request for a new machine, resulting in a capital 
avoidance of $1.4 million.

E X A M P L E  5 . 2 8 .  A U.S. Air Force test agency performed a simulation study for a 
wing of bombers using the Logistics Composite Model (LCOM). The ultimate goal of 
the study was to evaluate the effect of various proposed logistics policies on the avail-
ability of the bombers, i.e., the proportion of time that the bombers were available 
to  fl y  missions. Data were available from the actual operations of the wing over a 
9-month period, and they included both failure data for various aircraft components 
and the wing availability. To validate the model, the Air Force fi rst simulated the 
9-month period with the existing logistics policy. The model availability differed from 
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the historical availability by less than 3 percent, providing strong evidence for the 
validity of the model.

E X A M P L E  5 . 2 9 .  A major manufacturer of telecommunications switches submitted a 
prototype switch to an artifi cial traffi c stream (e.g., exponential interarrival times) in a 
laboratory. A simulation model of the switch was then submitted to the same traffi c 
stream, and comparable model and system performance measures were compared. 
The closeness of the respective measures gave the model developers confi dence in the 
validity of the model.

E X A M P L E  5 . 3 0 .  A hypothetical new ground-to-ground missile is being developed 
by the U.S. Army. Eight prototype missiles were fi eld tested for the same scenario 
(and set of environmental conditions), and their impact points in an xy coordinate sys-
tem were recorded. A simulation model for the missile system was developed, 15 in-
dependent replications of the model were made for the same scenario using different 
random numbers, and the corresponding impact points were computed. The impact 
points for the test and simulated missiles (in feet) are plotted in Fig. 5.2. It appears 
from the fi gure that the simulated missiles are less accurate than the test missiles, but 
it would be desirable to have further substantiation. We next computed the miss dis-
tance d for each test missile and each simulated missile using the Pythagorean theo-
rem, which states that

 d 5 2x2 1 y2

The resulting miss distances (in feet) are given in Table 5.4, where it’s seen that the average 
miss distance for the simulated missiles is 14.7 percent larger than the average miss dis-
tance for the test missiles. A spider-web plot for the miss distances is given in Fig. 5.3. 
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FIGURE 5.2
Impact points for the test and simulated missiles (in feet).
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TABLE 5.4

Miss distances d for the test and simulated missiles (in feet)

Missile number Test miss distance Simulation miss distance

 1 174.45  134.60
 2  146.09 194.73
 3 194.72 168.14
 4 149.84 178.82
 5 161.93 163.78
 6 165.52 186.39
 7 153.62 237.20
 8 133.46 187.73
 9 — 197.90
10 — 173.55
11 — 166.64
12 — 199.10
13 — 168.17
14 — 204.32
15 — 191.48

Sample mean 159.95 183.50
Sample variance 355.75 545.71
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FIGURE 5.3
Spider-web plot for the test and simulation miss distances.
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The numbers 50, 100, . . . , 250 are the miss distances, and the numbers 1, 2, . . . , 15 are 
the missile numbers. It is clear from this plot that the simulation miss distances are, in 
general, larger than the test miss distances. Dot plots for the miss distances are given in 
Fig. 5.4. It follows from these plots that the simulation miss distances have a larger 
mean (central tendency) and variance (spread) than the test miss distances. In summary, 
based on the sample means, the sample variances, and the three plots, it appears that the 
model does not provide a valid representation of the prototype missile relative to the 
criterion of miss distance. However, we will revisit this example in Sec. 5.6.2.

In addition to statistical procedures, one can use a Turing test [see Turing 
(1950), Schruben (1980), and Carson (1986)] to compare the output data from the 
model to those from the system. People knowledgeable about the system (e.g., en-
gineers or managers) are asked to examine one or more sets of system data as well 
as one or more sets of model data, without knowing which sets are which. Each data 
set should be presented on a separate piece of paper using exactly the same format. 
If these SMEs can differentiate between the system and model data, their explana-
tion of how they were able to do so is used to improve the model.

E X A M P L E  5 . 3 1 .  Schruben (1980) reports the use of a Turing test in a simulation 
study of an automobile-component factory. Data from the factory and from the simula-
tion were put on time-study forms and reviewed at a meeting by three managers, three 
industrial engineers, and two factory workers. The inability of these people to agree on 
which data were real and which were simulated led to immediate acceptance of the 
simulation model.

E X A M P L E  5 . 3 2 .  An animation version of the Turing test was used in validating a 
simulation model of microscopic vehicle fl ow on a freeway. An animation of traffi c fl ow 
from the simulation was displayed simultaneously on a large-screen monitor with an 
animation produced from data collected from the actual freeway. The data from the 
freeway were collected by a video camera mounted on an airplane.

100 140120 180160 220200 260240
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FIGURE 5.4
Dot plots for the test and simulation miss distances.
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Up to now, we have discussed validating a simulation model relative to past 
or present system output data; however, a perhaps more defi nitive test of a model 
is to establish its ability to predict future system behavior. Since models often 
evolve over time and are used for multiple applications (particularly legacy mod-
els within the DoD), there is often an opportunity for such prospective validation. 
For example, if a model is used to decide which version of a proposed system to 
build, then after the system has been built and suffi cient time has elapsed for out-
put data to be collected, these data can be compared with the predictions of the 
model. If there is reasonable agreement, we have increased confi dence in the “va-
lidity” of the model. On the other hand, discrepancies between the two data sets 
should be used to update the model. Regardless of the accuracy of a model’s past 
predictions, a model should be carefully scrutinized before each new application, 
since a change in purpose or the passage of time may have invalidated some  aspect 
of the existing model. This once again points out the need for good documentation 
of the model.

Suppose that we compare the output data from an existing system with those 
from a simulation model of that system and fi nd signifi cant discrepancies. If these 
discrepancies or other information objectively suggests how to improve the model, 
then these changes should be made and the simulation rerun. If the new simulation 
output data compare closely with the system output data, then the model can be con-
sidered “valid.”

Suppose instead that there are major discrepancies between the system and 
model output data, but that changes are made to the model, somewhat without jus-
tifi cation (e.g., some parameter is “tweaked”), and the resulting output data are 
again compared with the system output data. This procedure, which we call cali-
bration of a model, is continued until the two data sets agree closely. However, we 
must ask whether this procedure produces a valid model for the system, in general, 
or whether the model is only representative of this particular set of input data. 
To answer this question (in effect, to validate the model), one can use a completely 
independent set of system input and output data. The calibrated model might be 
driven by the second set of input data (in a manner similar to that described in 
Sec. 5.6.1) and the resulting model output data compared with the second set of 
system output data. This idea of using one set of data for calibration and another 
independent set for validation is fairly common in economics and the biological 
sciences. In particular, it was used by the Crown Zellerbach Corporation in 
 developing a simulation model of tree growth. Here the system data were available 
from the U.S. Forest Service.

E X A M P L E  5 . 3 3 .  In order to make the idea of model calibration clearer, consider 
the xy data in Table 5.5, which are also plotted in Fig. 5.5. A linear regression model 
and a sixth-degree polynomial regression model were each fi t to the data using 
the  method of least squares, and both are also plotted in Fig. 5.5. Note that the 
 linear model does not go through any of the seven points, but that the calibrated 
 polynomial model goes through each of the points exactly. (The R2 values are 0.97 
and 1, respectively.) Thus, in this sense, the polynomial model provides a better fi t 
to the data.
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 If we use the two models to predict the value of y for x9 5 1.5, then the linear and 
(over-fi t) polynomial models give 5.46 and 2.86, respectively, with the former predic-
tion appearing to be much more reasonable.

Comparison with Expert Opinion

Whether or not there is an existing system, SMEs should review the simulation 
results for reasonableness. (Care must be taken in performing this exercise, since if 
one knew exactly what output to expect, there would be no need for a model.) If the 
simulation results are consistent with perceived system behavior, then the model is 
said to have face validity.

E X A M P L E  5 . 3 4 .  The above idea was put to good use in the development of a simula-
tion model of the U.S. Air Force manpower and personnel system. (This model was 

TABLE 5.5

Data for calibration example

 x y

 1.1  5.5
 2.3  6.1
 3.2 10.1
 4.5 11.7
 5.9 15.1
 6.4 16.8
 7.1 19.4
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FIGURE 5.5
Linear and sixth-degree polynomial regression models fi t to data, and their predictions 
for x9 5 1.5.
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designed to provide Air Force policy analysts with a systemwide view of the effects of 
various proposed personnel policies.) The model was run under the baseline personnel 
policy, and the results were shown to Air Force analysts and decision makers, who 
 subsequently identifi ed some discrepancies between the model and perceived system 
behavior. This information was used to improve the model, and after several additional 
evaluations and improvements, a model was obtained that appeared to approximate cur-
rent Air Force policy closely. This exercise improved not only the validity of the model, 
but also its credibility.

Comparison with Another Model

Suppose that another model was developed for the same system and for a 
 “similar” purpose, and that it is thought to be a “valid” representation. Then numer-
ical statistics or graphical plots for the model that is currently of interest can be 
 informally compared with the comparable statistics or graphical plots from the 
other model. Alternatively, the confi dence-interval procedures discussed in 
Sec. 10.2 can be used to make a more formal comparison between the two models. It 
should be kept in mind that just because two models produce similar results doesn’t 
necessarily mean that either model is valid, since both models could contain a 
similar error.

E X A M P L E  5 . 3 5 .  A defense supply center was building a new simulation model called 
the Performance and Requirements Impact Simulation to replace an existing model. 
One of the purposes of both models is to decide when to order and how much 
to order for each stock number. To validate the old model, the total dollar amount of 
all orders placed by the model for fi scal year 1996 was compared with the total dollar 
amount for the actual system for the same time period. Since these dollar amounts dif-
fered by less than 3 percent, there was a fair amount of confi dence in the validity of 
the old model. To validate the new model, the two models were used to predict the 
total dollar amount of all orders for fi scal year 1998, and the results differed by less 
than 6 percent. Thus, there was reasonable confi dence in the validity of the new 
model.

In Example 5.35, it probably would have been a good idea for the simulation 
analysts to also use a smaller level of aggregation for validation purposes, such as 
the dollar amounts for certain categories of stock numbers. (It is possible that posi-
tive errors for some categories might cancel out negative errors for other catego-
ries.) Also, it would have been interesting to compare the total dollar amounts for all 
orders placed by the two models in 1996.

5.4.6 Animation

An animation can be an effective way to fi nd invalid model assumptions and to en-
hance the credibility of a simulation model.

E X A M P L E  5 . 3 6 .  A simulation model was developed for a candy packaging system. A 
newly promoted operations manager, who had no familiarity with the simulation model, 
declared, “That’s my system!” upon seeing an animation of his system for the fi rst 
time—the model gained instant credibility.
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5.5 
MANAGEMENT’S ROLE IN THE SIMULATION PROCESS

The manager of the system of interest must have a basic understanding of simulation 
and be aware that a successful simulation study requires a commitment of his or her 
time and resources. The following are some of the responsibilities of the manager:

• Formulating problem objectives
• Directing personnel to provide information and data to the simulation modeler 

and to attend the structured walk-through
• Interacting with the simulation modeler on a regular basis
• Using the simulation results as an aid in the decision-making process

Simulation studies require the use of an organization’s technical personnel for 
some period of time. If the study is done in-house, then several company personnel 
may be required full-time for several months. These people often have other jobs 
such as being responsible for the day-to-day operations of a manufacturing system. 
Even if a consultant does the study, company personnel must be involved in the 
modeling process and may also be needed to collect data.

5.6 
STATISTICAL PROCEDURES FOR COMPARING REAL-WORLD 
OBSERVATIONS AND SIMULATION OUTPUT DATA

In this section we present statistical procedures that might be useful for carrying out 
the comparison of model and system output data (see Sec. 5.4.5).

Suppose that R1, R2, . . . , Rk are observations from a real-world system and that 
M1, M2, . . . , Ml are output data from a corresponding simulation model (see Exam-
ple 5.37). We would like to compare the two data sets in some way to determine 
whether the model is an accurate representation of the real-world system. The fi rst 
approach that comes to mind is to use one of the classical statistical tests (t, Mann-
Whitney, two-sample chi-square, two-sample Kolmogorov-Smirnov, etc.) to deter-
mine whether the underlying distributions of the two data sets can be safely regarded 
as being the same. [For a good discussion of these tests, which assume IID data, see 
Breiman (1973) and Conover (1999).] However, the output processes of almost all 
real-world systems and simulations are nonstationary (the distributions of the suc-
cessive observations change over time) and autocorrelated (the observations in the 
process are correlated with each other), and thus none of these tests is directly 
 applicable. Furthermore, we question whether hypothesis tests, as compared with 
constructing confi dence intervals for differences, are even the appropriate statistical 
approach. Since the model is only an approximation to the actual system, a null hy-
pothesis that the system and model are the “same” is clearly false. We believe that it 
is more useful to ask whether the differences between the system and the model are 
signifi cant enough to affect any conclusions derived from the model. In Secs. 5.6.1 
through 5.6.3 we discuss, respectively, inspection, confi dence-interval, and time-
series approaches to this comparison problem. Finally, two additional approaches 
based on regression analysis and bootstrapping are discussed in Sec. 5.6.4.
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5.6.1 Inspection Approach

The approach that seems to be used by most simulation practitioners who attempt 
the aforementioned comparison is to compute one or more numerical statistics 
from the real-world observations and corresponding statistics from the model out-
put data, and then compare the two sets of statistics without the use of a formal sta-
tistical procedure (see Examples 5.27 and 5.28). Examples of statistics that might 
be used for this purpose are the sample mean, the sample variance (see Sec. 4.4 for 
a discussion of the danger in using the sample variance from autocorrelated data), 
and the sample correlation function. (The comparison of graphical plots can also 
be quite useful, as we saw in Example 5.30.) The diffi culty with this inspection 
 approach, which is graphically illustrated in Example 5.37, is that each statistic is 
essentially a sample of size 1 from some underlying population, making this idea 
particularly vulnerable to the inherent randomness of the obser vations from both the 
real system and the simulation model.

E X A M P L E  5 . 3 7 .  To illustrate the danger of using inspection, suppose that the real-
world system of interest is the MyMy1 queue with r 5 0.6 and that the corresponding 
simulation model is the MyMy1 queue with r 5 0.5; in both cases the arrival rate is 1. 
Suppose that the output process of interest is D1, D2, . . . (where Di is the delay in queue 
of the ith customer) and let

 X 5

^
200

i51

Di

200
  for the system

and

 Y 5

^
200

i51

Di

200
  for the model

(Thus, the number of observations for the system, k, and for the model, l, are both equal 
to 200.) We shall attempt to determine how good a representation the model is for the 
system for comparing an estimate for mY 5 E(Y ) 5 0.49 [the expected average delay of 
the fi rst 200 customers for the model; see Heathcote and Winer (1969) for a discussion 
of how to compute E(Y)] with an estimate of mX 5 E(X ) 5 0.87. Table 5.6 gives the 
results of three independent simulation experiments, each corresponding to a possible 
application of the inspection approach. For each experiment, m̂X and m̂Y represent the 
sample mean of the 200 delays for the system and model, respectively, and m̂X 2 m̂Y 

TABLE 5.6

Results for three experiments with 
the inspection approach

Experiment M̂X M̂Y M̂X 2 M̂Y

1 0.90 0.70 0.20
2 0.70 0.71 20.01
3 1.08 0.35 0.73
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is an estimate of mX 2 mY 5 0.38, which is what we are really trying to estimate. Note 
that m̂X 2 m̂Y varies greatly from experiment to experiment. Also observe for experi-
ment 2 that m̂X 2 m̂Y 5 20.01, which would tend to lead one to think that the model is 
a good representation for the system. However, we believe that the model is really a 
poor representation for the system for purposes of estimation of the expected average 
delay in the real-world system, since mY is nearly 44 percent smaller than mX.

Because of the inherent danger in using the basic inspection approach pre-
sented above, we now describe a better approach for comparing system and model 
output data if the system data are complete enough and in the right format. In par-
ticular, it is recommended that the system and model be compared by “driving” the 
model with historical system input data (e.g., actual observed interarrival times and 
service times), rather than samples from the input probability distributions, and then 
comparing the model and system outputs; see Fig. 5.6. (The system outputs are 
those corresponding to the historical system input data.) Thus, the system and the 
model experience exactly the same observations from the input random variables, 
which should result in a statistically more precise comparison. We call this idea the 
correlated inspection approach, since it generally results in comparable model and 
system output statistics being positively correlated. This approach is a more defi ni-
tive way to validate the assumptions of the simulation model other than the probabil-
ity distributions; the latter are validated by using the techniques of Chap. 6. (Note 
that a simulation that is driven by historical input data is sometimes called a trace-
driven simulation.)

E X A M P L E  5 . 3 8 .  To illustrate the benefi ts of the correlated inspection approach, sup-
pose that the system is the fi ve-teller bank of Sec. 2.6 with jockeying, and the model is 
the same bank but without jockeying (i.e., customers never leave the line they originally 
join). Assume, however, that the mean service time is now 4 minutes. Let

 X 5 average delay in queue for system

and

 Y 5 average delay in queue for model

We will attempt to determine the accuracy of the model by comparing an estimate of the 
expected average delay for the model mY 5 E(Y ) with an estimate of the expected aver-
age delay for the system mX 5 E(X ). Table 5.7 gives the results from the fi rst 10 of 500 

Historical system
input data

Historical system
input data

Actual
system

Simulation
model

System output
data

Model output
data

Compare
FIGURE 5.6
The correlated inspection approach.
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independent experiments, each corresponding to a possible application of the correlated 
inspection approach. There, Xj and Yj are the average delay for the system and for the 
model in the jth experiment, respectively, and Xj 2 Yj is an estimate of mX 2 mY, which 
is what we are really trying to estimate. (Note that Xj and Yj use exactly the same inter-
arrival times and service times; they differ only in the jockeying rule employed.) Also 
given in the table are Y¿j , the average delay for the model in the jth experiment when 
independent random numbers are used to generate the interarrival times and service 
times, and Xj 2 Y¿j , whose mean is also mX 2 mY. [Note that Xj and Y¿j  are based on in-
dependent (and thus different) realizations of the same input probability distributions.] 
Comparing Y¿j  and Xj corresponds approximately to an application of the basic inspec-
tion approach. (In an actual application of the basic inspection approach, the input prob-
ability distributions would not be known and would have to be estimated from system 
input data.) Finally, the last two rows of the table give the usual sample mean and 
sample variance for each column computed from all 500 experiments. Observe from the 
table that Xj 2 Yj is a much better estimator of mX 2 mY than is Xj 2 Y¿j , since it has 
a  considerably smaller variance (0.08 versus 4.08). Thus, the difference X 2 Y for a 
particular application of the correlated inspection approach is likely to be much closer 
to mX 2 mY than the difference X 2 Y9 for a particular application of the basic inspec-
tion approach.
 We now explain more clearly why Var(X 2 Y ) is less than Var(X 2 Y9). In particu-
lar, if A and B are random variables, then it can be shown (see Prob. 4.13) that

 Var(A 2 B) 5 Var(A) 1 Var(B) 2 2 Cov(A, B)

In the case of the basic inspection approach, A 5 X, B 5 Y9, Cov(X, Y9) 5 0 (the esti-
mated value was 0.03; see Prob. 4.29), and thus

 Var(X 2 Y¿) 5 Var(X) 1 Var(Y¿)

TABLE 5.7

Results for the fi rst 10 of 500 experiments with the correlated and basic inspection 
approaches, and a summary for all 500

Experiment j Xj Yj Y9j Xj 2 Yj Xj 2 Y9j

 1  3.06  3.81  2.62 20.75 0.44
 2 2.79 3.37 2.05 20.58 0.74
 3 2.21 2.61 4.56 20.40 22.35
 4 2.54 3.59 1.86 21.05 0.68
 5 9.27 11.02 2.41 21.75 6.86
 6 3.09 3.75 1.85 20.66 1.24
 7 2.50 2.84 1.13 20.34 1.37
 8 0.31 0.71 3.12 20.40 22.81
 9 3.17 3.94 5.09 20.77 21.92
10 0.98 1.18 1.25 20.20 20.27

Sample mean  2.10 2.85 2.70 20.75 20.60
 of all 500

Sample variance  2.02 2.28 2.12 0.08 4.08
 of all 500
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For the correlated inspection approach, A 5 X, B 5 Y, Cov
^

(X, Y) 5 2.11 [Cor
^

(X, Y) 5 
0.99] and thus

  Var(X 2 Y) 5 Var(X) 1 Var(Y) 2 2 Cov(X, Y)

  5 Var(X) 1 Var(Y¿) 2 2 Cov(X, Y)

  , Var(X 2 Y¿)

assuming that the sign of the true covariance is the same as that of its estimate.
 The idea of comparing a model and the corresponding system under the same sta-
tistical conditions is similar to the use of the variance-reduction technique known as 
common random numbers in simulation (see Sec. 11.2) and the use of blocking in sta-
tistical experimental design. It should be mentioned, however, that we do not recom-
mend using historical system input data to drive a model for the purpose of making 
production runs (see Sec. 6.1).

E X A M P L E  5 . 3 9 .  The correlated inspection approach was used to help validate a sim-
ulation model of a cigarette manufacturing process at Brown & Williamson Tobacco 
Company [see Carson (1986) and Carson et al. (1981) for details]. The manufacturing 
system basically consists of a cigarette maker, a reservoir (buffer) for cigarettes, a 
packer, and a cartoner. The maker and packer are subject to frequent product-induced 
failures such as the cigarette paper’s tearing. The major objective of the study was to 
determine the optimal capacity of the reservoir, which helps lessen the effect of the 
above failures.
 The existing system was observed over a 4-hour period, and time-to-failure and 
time-to-repair data were collected for the maker and packer, as well as the total cigarette 
production. These times to failure and times to repair were used to drive the simulation 
model for a 4-hour simulation run, and the total model cigarette production was 
 observed. The fact that the model production differed from the actual production by 
only 1 percent helped convince management of the model’s validity.

E X A M P L E  5 . 4 0 .  For the freeway simulation of Example 5.32, the correlated inspec-
tion approach was used to compare the average travel time for the simulation model and 
the system. The model was driven by car entry times, speeds, lanes, etc., that were ob-
served from the actual system.

In summary, we believe that the inspection approach may provide valuable 
 insight into the adequacy of a simulation model for some simulation studies (par-
ticularly if the correlated approach can be used). As a matter of fact, for most stud-
ies it will be the only feasible statistical approach because of severe limitations on 
the amount of data available on the operation of the real system. However, as 
 Example 5.37 shows, extreme care must be used in interpreting the results of this 
approach (especially the basic version).

5.6.2 Confi dence-Interval Approach Based on Independent Data

We now describe a more reliable approach for comparing a model with the corre-
sponding system for the situation where it is possible to collect a potentially large 
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274 building valid, credible, and appropriately detailed simulation models

number of sets of data from both the system and the model. This might be the case, 
e.g., when the system of interest is located in a laboratory (see Example 5.29). This 
approach will not, however, be feasible for most military and manufacturing situa-
tions due to the paucity of real-world data.

In the spirit of terminating simulations (see Secs. 9.3 and 9.4, and Chap. 10), 
suppose we collect m independent sets of data from the system and n independent 
sets of data from the model. Let Xj be a random variable defi ned on the jth set of 
system data, and let Yj be the same random variable defi ned on the jth set of model 
data. (For Example 5.38, Xj is the average delay in queue for the system from 
 experiment j.) The Xj’s are IID random variables (assuming that the m sets of sys-
tem data are homogeneous) with mean mX 5 E(Xj), and the Yj’s are IID random 
variables (assuming that the n data sets for the model were produced by independent 
replications) with mean mY 5 E(Yj). We will attempt to compare the model with 
the system by constructing a confi dence interval for z 5 mX 2 mY. We believe that 
constructing a confi dence interval for z is preferable to testing the null hypothesis 
H0: mX 5 mY for the following reasons:

• Since the model is only an approximation to the system, H0 will clearly be false 
in almost all cases.

• A confi dence interval provides more information than the corresponding hypoth-
esis test. If the hypothesis test indicates that mX ? mY, then the confi dence inter-
val will provide this information and also give an indication of the magnitude by 
which mX differs from mY. Constructing a confi dence interval for z is a special 
case of the problem of comparing two systems by means of a confi dence interval, 
as discussed in Sec. 10.2. Thus, we may construct a confi dence interval for z 
by using either the paired-t approach or the Welch approach. (In the notation of 
Sec. 10.2, n1 5 m, n2 5 n, X1j 5 Xj, and X2j 5 Yj.) The paired-t approach requires 
m 5 n but allows Xj to be correlated with Yj, which would be the case if the idea 
underlying the correlated inspection approach is used (see Sec. 5.6.1). The Welch 
approach can be used for any values of m $ 2 and n $ 2 but requires that the Xj’s 
be independent of the Yj’s.

Runciman, Vagenas, and Corkal (1997) used the paired-t approach to help val-
idate a model of underground mining operations. For their model Xj was the aver-
age number of tons of ore hauled per shift for month j ( j 5 1, 2, 3).

Suppose that we have constructed a 100(1 2 a) percent confi dence interval for 
z by using either the paired-t or Welch approach, and we let l(a) and u(a) be the cor-
responding lower and upper confi dence-interval endpoints, respectively. If 0 ” 
[l(a), u(a)], then the observed difference between mX and mY, that is, X(m) 2 Y(n), 
is said to be statistically signifi cant at level a. This is equivalent to rejecting the null 
hypothesis H0: mX 5 mY in favor of the two-sided alternative hypothesis H1: mX ? mY 
at the same level a. If 0 [ [l(a), u(a)], any observed difference between mX and mY 
is not statistically signifi cant at level a and might be explained by sampling 
 fl uctuation. Even if the observed difference between mX and mY is statistically sig-
nifi cant, this need not mean that the model is, for practical purposes, an “invalid” 
representation of the system. For example, if z 5 1 but mX 5 1000 and mY 5 999, 
then the difference that exists between the model and the system is probably of no 
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practical consequence regardless of whether we detect statistical signifi cance. We 
shall say that the difference between a model and a system is practically signifi cant 
if the “magnitude” of the difference is large enough to invalidate any inferences 
about the system that would be derived from the model. Clearly, the decision as to 
whether the difference between a model and a system is practically signifi cant is a 
subjective one, depending on such factors as the purpose of the model and the util-
ity function of the person who is going to use the model.

If the length of the confi dence interval for z is not small enough to decide prac-
tical signifi cance, it will be necessary to obtain additional Xj’s or Yj’s (or both). 
Note, however, that for the Welch approach it is not possible to make the confi dence 
interval arbitrarily small by adding only Xj’s or only Yj’s. Thus, if the number of sets 
of system data, m, cannot be increased, it may not be possible to determine practi-
cal signifi cance by just making more and more replications of the model.

E X A M P L E  5 . 4 1 .  Suppose that Xj and Yj are defi ned as in Example 5.38, and we would 
like to construct a 90 percent confi dence interval for z 5 mX 2 mY using the paired-t 
approach to determine whether the model (no jockeying) is an accurate representation 
of the system (with jockeying). Letting Wj 5 Xj 2 Yj and m 5 n 5 10, we obtained from 
the fi rst 10 rows of Table 5.7 the following:

 W(10) 5 X(10) 2 Y(10) 5 2.99 2 3.68 5 20.69  (point estimate for z)

 Var
^

[W(10)] 5

^
10

j51

[Wj 2 W(10)]2

(10)(9)
5 0.02

and the 90 percent confi dence interval for z is

 W(10) 6 t9,0.952Var^[W(10)] 5 20.69 6 0.26

or [20.95, 20.43]. Since the interval does not contain 0, the observed difference be-
tween mX and mY is statistically signifi cant. It remains to decide the practical signifi -
cance of such a difference.

E X A M P L E  5 . 4 2 .  Consider the missile system and corresponding simulation model of 
Example 5.30. Let

 Xj 5 miss distance for jth test missile ( j 5 1, 2, . . . , 8)

 Yj 5 miss distance for jth simulated missile ( j 5 1, 2, . . . , 15)

Since m 5 8 ? 15 5 n, we will use the Welch approach (see Sec. 10.2.2) to construct 
a 95 percent confi dence interval for z 5 mX 2 mY. We get

 X(8) 5 159.95,    Y(15) 5 183.50

 S2
X(8) 5 355.75,   S2

Y(15) 5 545.71

f̂ 5 17.34 (estimated degrees of freedom)

and a 95 percent confi dence for z 5 mX 2 mY is

 X(8) 2 Y(15) 6 tf̂ ,0.975B
S2

X(8)

8
1

S2
Y(15)

15
5 223.55 6 18.97
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276 building valid, credible, and appropriately detailed simulation models

or [242.52, 24.58]. Since the interval does not contain 0, the observed difference be-
tween the mean miss distance for the test missile and the mean miss distance for the 
simulated missile is statistically signifi cant. The practical signifi cance of such a differ-
ence must be determined by the relevant SMEs.

Two diffi culties with the above replication approach are that it may require a 
large amount of data (each set of output data produces only one “observation”) and 
that it provides no information about the autocorrelation structures of the two out-
put processes (if of interest).

5.6.3 Time-Series Approaches

In this section we briefl y discuss three time-series approaches for comparing model 
output data with system output data. [A time series is a fi nite realization of a sto-
chastic process. For example, the delays D1, D2, . . . , D200 from a queueing model 
(see Example 5.37) or system form a time series.] These approaches require only 
one set of each type of output data and may also yield information on the auto-
correlation structures of the two output processes. Thus, the two diffi culties of the 
replication approach mentioned above are not present here. There are, however, 
other signifi cant diffi culties.

The spectral-analysis approach [see Fishman and Kiviat (1967) and Naylor 
(1971, p. 247)] proceeds by computing the sample spectrum, i.e., the Fourier 
cosine transformation of the estimated autocovariance function, of each output 
process and then using existing theory to construct a confi dence interval for the 
difference of the logarithms of the two spectra. This confi dence interval can po-
tentially be used to assess the degree of similarity of the two autocorrelation 
functions. Two drawbacks of this approach are that it requires that the output 
processes be covariance-stationary (an assumption generally not satisfi ed in 
practice), and that a high level of mathematical sophistication is required to 
apply it. It is also diffi cult to relate this type of confi dence interval to the validity 
of the simulation model.

Spectral analysis is a nonparametric approach in that it makes no assumptions 
about the distributions of the observations in the time series. Hsu and Hunter (1977) 
suggest an alternative approach, which consists of fi tting a parametric time-series 
model [see Box, Jenkins, and Reinsel (2008)] to each set of output data and then 
applying a hypothesis test to see whether the two models appear to be the same. As 
stated above, we believe that a hypothesis-test approach is less desirable than one 
based on a confi dence interval.

Chen and Sargent (1987) give a method for constructing a confi dence interval 
for the difference between the steady-state mean of a system and the corresponding 
steady-state mean of the simulation model, based on Schruben’s standardized 
time-series approach (see Sec. 9.5.3). An attractive feature of the method, com-
pared with the approach in Sec. 5.6.2, is that only one set of output data is needed 
from the system and one set from the model. The method does, however, require 
that the two sets of output data be independent and satisfy certain other 
assumptions.
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5.6.4 Other Approaches

Kleijnen, Bettonvil, and Van Groenendaal (1998) developed a hypothesis test 
based on regression analysis to test the composite null hypothesis that the model 
mean is equal to the system mean and the model variance is equal to the system 
variance, in the case of a trace-driven simulation model (see Sec 5.6.1). Their 
test assumes that n (normally distributed) IID observations are available from the 
system and n (normally distributed) IID observations are available from the 
model, with n $ 3. Therefore, it would have to be applied in the same context as 
in Sec. 5.6.2. They evaluate the statistical properties of the test (i.e., the proba-
bility of a Type I error and the power) by performing experiments with the 
M/M/1 queue.

Kleijnen, Cheng, and Bettonvil (2000, 2001) developed a distribution-free 
 hypothesis test based on bootstrapping [see, e.g., Efron and Tibshirani (1993)] to 
test the null hypothesis that the model mean is equal to the system mean, in the case 
of a trace-driven simulation model. Their test assumes that n IID observations are 
available from the system and sn IID observations are available from the model, 
with n $ 3 and s a positive integer (e.g., 10) that is chosen by the user. Therefore, it 
would have to be applied in the same context as in Sec. 5.6.2. They evaluate the sta-
tistical properties of the test by performing experiments with the M/M/1 queue and 
other queueing systems.

Once again, we believe that it is preferable to use a confi dence interval rather 
than a hypothesis test to validate a simulation model.

PROBLEMS

5.1. As stated in Sec. 5.4.1, care must be taken that data collected on a system are represen-
tative of what one actually wants to model. Discuss this potential problem with regard 
to a study that will involve observing the effi ciency of workers on an assembly line for 
the purpose of building a simulation model.

5.2. Discuss why validating a model of a computer system might be easier than validating a 
military combat model. Assume that the computer system of interest is similar to an 
existing one.

5.3. If one constructs a confi dence interval for z 5 mX 2 mY, using the confi dence-interval 
approach of Sec. 5.6.2, which of the following outcomes are possible?

 Statistically Practically
 signifi cant signifi cant
(a) Yes Yes
(b) Yes No
(c) Yes ?
(d) No Yes
(e) No No
( f ) No ?
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5.4. Use the Welch approach with m 5 5 and n 5 10 to construct a 90 percent confi dence 
interval for z 5 mX 2 mY, given the following data:

Xj’s: 0.92, 0.91, 0.57, 0.86, 0.90

Yj’s: 0.28, 0.32, 0.48, 0.49, 0.70, 0.51, 0.39, 0.28, 0.45, 0.57

Is the confi dence interval statistically signifi cant?

5.5. Suppose that you are simulating a single-server queueing system (see Sec. 1.4) with 
exponential interarrival times and would like to perform a sensitivity analysis to deter-
mine the effect of using gamma versus lognormal (see Sec. 6.2.2) service times. 
 Discuss how you would use the method of common random numbers (see Sec. 11.2) to 
make the analysis more statistically precise. What relationship does your method have 
to the correlated inspection approach?

5.6. Repeat the analysis of Example 5.41 if the Yj’s are replaced by the Y ¿j ’s from Table 5.7. 
Comment on the effi cacy of the two confi dence intervals.

5.7. Suppose that a simulation model is built for a manufacturing system consisting of a 
large number of machines in series separated by buffers (queues). Since the computer 
execution time of the model is excessive, it is decided to divide the model into two 
submodels. The fi rst submodel is run and the departure time of each part (and any other 
required attributes) is written to a fi le. The second submodel is executed by driving it 
with the information stored in the fi le. Discuss the legitimacy of this modeling 
approach.

5.8. Construct empirical distribution functions (see the defi nition in Sec. 6.2.4) for the 8 test 
miss distances and 15 simulation miss distances in Table 5.4, and then plot both func-
tions on the same graph. Based on this graph, does the test or simulation miss distances 
tend to be smaller?

5.9. Construct box plots (see Sec. 6.4.3) for the 8 test miss distances and 15 simulation miss 
distances in Table 5.4. Based on these plots, which miss distances have a larger mean 
(central tendency) and which miss distances have a larger variance (spread)?
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C H A P T E R  6

Selecting Input Probability 
Distributions

Recommended sections for a fi rst reading: 6.1, 6.2, 6.4 through 6.7, 6.11

6.1 
INTRODUCTION

To carry out a simulation using random inputs such as interarrival times or demand 
sizes, we have to specify their probability distributions. For example, in the simula-
tion of the single-server queueing system in Sec. 1.4.3, the interarrival times were 
taken to be IID exponential random variables with a mean of 1 minute; the demand 
sizes in the inventory simulation of Sec. 1.5 were specifi ed to be 1, 2, 3, or 4 items 
with respective probabilities 1

6, 
1
3, 

1
3, and 1

6. Then, given that the input random vari-
ables to a simulation model follow particular distributions, the simulation proceeds 
through time by generating random values from these distributions. Chapters 7 
and 8 discuss methods for generating random values from various distributions 
and processes. Our concern in this chapter is with how the analyst might go about 
spec ifying these input probability distributions.

Almost all real-world systems contain one or more sources of randomness, as 
illustrated in Table 6.1. Furthermore, in Figs. 6.1 through 6.4 we show histograms 
for four data sets taken from actual simulation projects. Figure 6.1 corresponds to 
890 machine processing times (in minutes) for an automotive manufacturer. It can 
be seen that the histogram has a longer right tail (positive skewness) and that the 
minimum value is approximately 25 minutes. In Fig. 6.2 we show a histogram for 
219 interarrival times (in minutes) to a drive-up bank (see Example 6.4). Figure 6.3 
displays a histogram for 856 ship-loading times (in days) (see Example 6.17). 
 Finally, in Fig. 6.4 we give a histogram for the number of yards of paper (scaled for 
confi dentiality reasons) on 1000 large rolls of paper used to make facial or bath-
room tissue. In this case the histogram has a longer left tail (negative skewness). 
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280 selecting input probability distributions

Note that none of the four histograms has a symmetric shape like that of a normal 
distribution, despite the fact that many simulation practitioners and simulation 
books widely use normal input distributions.

We saw in Sec. 4.7 that it is generally necessary to represent each source of 
 system randomness by a probability distribution (rather than just its mean) in the 
sim ulation model. The following example shows that failure to choose the “correct” 
distribution can also affect the accuracy of a model’s results, sometimes drastically.

E X A M P L E  6 . 1 .  A single-server queueing system (e.g., a single machine in a factory) 
has exponential interarrival times with a mean of 1 minute. Suppose that 200 service 
times are available from the system, but their underlying probability distribution is 

TABLE 6.1

Sources of randomness for common simulation applications

Type of system Sources of randomness

Manufacturing  Processing times, machine times to failure, 
 machine repair times

Defense-related  Arrival times and payloads of missiles or 
  airplanes, outcome of an engagement, miss 

distances for munitions

Communications  Interarrival times of messages, message types, 
 message lengths

Transportation  Ship-loading times, interarrival times of 
 customers to a subway

FIGURE 6.1
Histogram of 890 machine processing times for an automotive manufacturer.
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FIGURE 6.2
Histogram of 219 interarrival times to a drive-up bank.
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FIGURE 6.3
Histogram of 856 ship-loading times.
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282 selecting input probability distributions

 unknown. Using an approach to be discussed in Sec. 6.5, we “fi t” the “best” exponential, 
gamma, Weibull, lognormal, and normal distributions (see Sec. 6.2.2 for a discussion of 
these distributions) to the observed service-time data. (In the case of the exponential dis-
tribution, we chose the mean b so that the resulting distribution most closely “resembled” 
the available data.) We then made 100 independent simulation runs (i.e., different random 
numbers were used for each run, as discussed in Sec. 7.2) of the queueing system, using 
each of the fi ve fi tted distributions. (For the normal distribution, if a service time was 
negative, then it was generated again.) Each of the 500 simulation runs was continued 
until 1000 delays in queue were collected. A summary of the results from these simula-
tion runs is given in Table 6.2. Note in the second column of the table that the average 
of the 100,000 delays is given for each of the service-time distributions (see Prob. 6.27). 
As we will see in Sec. 6.7, the Weibull distribution actually provides the best model 
for the service-time data. Thus, the average delay for the real system should be close 
to 4.36 minutes. On the other hand, the average delays for the normal and lognormal 

FIGURE 6.4
Histogram of the yardages for 1000 large rolls of paper for a household-
products manufacturer.
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TABLE 6.2

Simulation results for the fi ve service-time distributions (in minutes where appropriate)

Service-time  Average delay Average number Proportion
distribution in queue in queue of delays $20

Exponential 6.71 6.78 0.064
Gamma 4.54 4.60 0.019
Weibull 4.36 4.41 0.013
Lognormal 7.19 7.30 0.078
Normal 6.04 6.13 0.045
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distributions are 6.04 and 7.19 minutes, respectively, corresponding to model output 
errors of 39 percent and 65 percent. This is particularly surprising for the lognormal dis-
tribution, since it has the same general shape (i.e., skewed to the right) as the Weibull 
distribution. However, it turns out that the lognormal distribution has a “thicker” right tail, 
which allows larger service times and delays to occur. The relative differences between 
the “tail probabilities” in column 4 of the table are even more signifi cant. The choice of 
probability distributions can evidently have a large impact on the simulation output and, 
potentially, on the quality of the decisions made with the simulation results.

If it is possible to collect data on an input random variable of interest, these data 
can be used in one of the following approaches to specify a distribution (in increas-
ing order of desirability):

1. The data values themselves are used directly in the simulation. For example, if 
the data represent service times, then one of the data values is used whenever a 
service time is needed in the simulation. This is sometimes called a trace-driven 
simulation.

2. The data values themselves are used to defi ne an empirical distribution function 
(see Sec. 6.2.4) in some way. If these data represent service times, we would 
sample from this distribution when a service time is needed in the simulation.

3. Standard techniques of statistical inference are used to “fi t” a theoretical distri-
bution form (see Example 6.1), e.g., exponential or Poisson, to the data and to 
perform hypothesis tests to determine the goodness of fi t. If a particular theoret-
ical distribution with certain values for its parameters is a good model for the 
service-time data, then we would sample from this distribution when a service 
time is needed in the simulation.

Two drawbacks of approach 1 are that the simulation can only reproduce what 
has happened historically and that there is seldom enough data to make all the de-
sired simulation runs. Approach 2 avoids these shortcomings since, at least for con-
tinuous data, any value between the minimum and maximum observed data points 
can be generated (see Sec. 8.3.16). Thus, approach 2 is generally preferable to ap-
proach 1. However, approach 1 does have its uses. For example, suppose that it is 
desired to compare a proposed material-handling system with the existing system for 
a distribution center. For each incoming order there is an arrival time, a list of the 
desired products, and a quantity for each product. Modeling a stream of orders for a 
certain period of time (e.g., for 1 month) will be diffi cult, if not impossible, using 
approach 2 or 3. Thus, in this case the existing and proposed systems will often be 
simulated using the historical order stream. Approach 1 is also recommended for 
model validation when model output for an existing system is compared with the 
corresponding output for the system itself. (See the discussion of the correlated 
 inspection approach in Sec. 5.6.1.)

If a theoretical distribution can be found that fi ts the observed data reasonably 
well (approach 3), then this will generally be preferable to using an empirical dis-
tribution (approach 2) for the following reasons:

• An empirical distribution function may have certain “irregularities,” particularly 
if only a small number of data values are available. A theoretical distribution, on 
the other hand, “smooths out” the data and may provide information on the over-
all underlying distribution.
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• If empirical distributions are used in the usual way (see Sec. 6.2.4), it is not possi-
ble to generate values outside the range of the observed data in the simulation (see 
Sec. 8.3.16). This is unfortunate, since many measures of performance for simu-
lated systems depend heavily on the probability of an “extreme” event’s occurring, 
e.g., generation of a very large service time. With a fi tted theoretical distribution, 
however, values outside the range of the observed data can be generated.

• There may be a compelling physical reason in some situations for using a certain 
theoretical distribution form as a model for a particular input random variable 
(see, for example, Sec. 6.12.1). Even when we are fortunate enough to have this 
kind of information, it is a good idea to use observed data to provide empirical 
support for the use of this particular distribution.

• A theoretical distribution is a compact way of representing a set of data values. 
Conversely, if n data values are available from a continuous distribution, then 2n 
values (e.g., data and corresponding cumulative probabilities) must be entered 
and stored in the computer to represent an empirical distribution in simulation 
packages. Thus, use of an empirical distribution will be cumbersome if the data 
set is large.

• A theoretical distribution is easier to change. For example, suppose that a set of 
interarrival times is found to be modeled well by an exponential distribution with 
a mean of 1 minute. If we want to determine the effect on the simulated system of 
increasing the arrival rate by 10 percent, then all we have to do is to change the 
mean of the exponential distribution to 0.909.

There are defi nitely situations for which no theoretical distribution will provide 
an adequate fi t for the observed data, including the following:

• The data are a mixture of two or more heterogeneous populations (see the discus-
sion of machine repair times in Sec. 6.4.2).

• The times to perform some task have been signifi cantly rounded (effectively mak-
ing the data discrete), and there are not enough distinct values in the sample to 
allow any continuous theoretical distribution to provide a good representation.

In situations where no theoretical distribution is appropriate, we recommend using 
an empirical distribution. Another possible drawback of theoretical distributions 
(e.g., lognormal) is that arbitrarily large values can be generated, albeit with a very 
small probability. Thus, if it is known that a random variable can never take on val-
ues larger than b, then it might be desirable to truncate the fi tted theoretical distrib-
ution at b (see Sec. 6.8). For example, it might be known that a service time in a 
bank is extremely unlikely to exceed 15 minutes.

The remainder of this chapter discusses various topics related to the selection of 
input distributions. Section 6.2 discusses how theoretical distributions are parame-
terized, provides a compendium of relevant facts on most of the commonly used 
continuous and discrete distributions, and discusses how empirical distributions can 
be specifi ed. In Sec. 6.3 we present techniques for determining whether the data are 
independent observations from some underlying distribution, which is a requirement 
of many of the statistical procedures in this chapter. In Secs. 6.4 through 6.6 we 
discuss the three basic activities in specifying a theoretical distribution on the basis 
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of observed data. The ExpertFit distribution-fi tting software and a comprehensive 
example are discussed in Sec. 6.7. In Sec. 6.8 we indicate how certain of the theo-
retical distributions, e.g., gamma, Weibull, and lognormal, can be “shifted” away 
from 0 to make them better fi t our observed data in some cases; we also discuss 
truncated distributions. We treat Bézier distributions, which are a fourth way to 
specify a distribution based on observed data, in Sec. 6.9. In Sec. 6.10 we describe 
how multivariate distributions are specifi ed and estimated when observed data are 
available. In Sec. 6.11 we describe several possible methods for specifying input 
distributions when no data are available. Several useful probabilistic models for de-
scribing the manner in which “customers” arrive to a system are given in Sec. 6.12, 
while in Sec. 6.13 we present techniques for determining whether observations 
from different sources are homogeneous and can be merged.

The graphical plots and goodness-of-fi t tests presented in this chapter were 
developed using the ExpertFit distribution-fi tting software (see Sec. 6.7).

6.2 
USEFUL PROBABILITY DISTRIBUTIONS

The purpose of this section is to discuss a variety of distributions that have been found 
to be useful in simulation modeling and to provide a unifi ed listing of relevant prop-
erties of these distributions [see also Forbes et al. (2011); Johnson, Kotz, and 
 Balakrishnan (1994, 1995); and Johnson, Kotz, and Kemp (1992)]. Section 6.2.1 
provides a short discussion of common methods by which continuous distributions 
are defi ned, or parameterized. Then Secs. 6.2.2 and 6.2.3 contain compilations of 
several continuous and discrete distributions. Finally, Sec. 6.2.4 suggests how the 
data themselves can be used directly to defi ne an empirical distribution.

6.2.1 Parameterization of Continuous Distributions

For a given family of continuous distributions, e.g., normal or gamma, there are 
usually several alternative ways to defi ne, or parameterize, the probability density 
function. However, if the parameters are defi ned correctly, they can be classifi ed, on 
the basis of their physical or geometric interpretation, as being one of three basic 
types: location, scale, or shape parameters.

A location parameter g specifi es an abscissa (x axis) location point of a distri-
bution’s range of values; usually g is the midpoint (e.g., the mean m for a normal 
distribution) or lower endpoint (see Sec. 6.8) of the distribution’s range. (In the lat-
ter case, location parameters are sometimes called shift parameters.) As g changes, 
the associated distribution merely shifts left or right without otherwise changing. 
Also, if the distribution of a random variable X has a location parameter of 0, then 
the distribution of the random variable Y 5 X 1 g has a location parameter of g.

A scale parameter b determines the scale (or unit) of measurement of the val-
ues in the range of the distribution. (The standard deviation s is a scale parameter 
for the normal distribution.) A change in b compresses or expands the associated 
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distribution without altering its basic form. Also, if the distribution of the random 
variable X has a scale parameter of 1, then the distribution of the random variable 
Y 5 bX has a scale parameter of b.

A shape parameter a determines, distinct from location and scale, the basic 
form or shape of a distribution within the general family of distributions of interest. 
A change in a generally alters a distribution’s properties (e.g., skewness) more fun-
damentally than a change in location or scale. Some distributions (e.g., exponential 
and normal) do not have a shape parameter, while others (e.g., beta) may have two.

6.2.2 Continuous Distributions

Table 6.3 gives information relevant to simulation modeling applications for 13 con-
tinuous distributions. Possible applications are given fi rst to indicate some (certainly 
not all) uses of the distribution [see Hahn and Shapiro (1994) and Lawless (2003) for 
other applications]. Then the density function and distribution function (if it exists in 
simple closed form) are listed. Next is a short description of the parameters, includ-
ing their possible values. The range indicates the interval where the associated ran-
dom variable can take on values. Also listed are the mean (expected value), variance, 
and mode, i.e., the value at which the density function is maximized. MLE refers to 
the maximum-likelihood estimator(s) of the parameter(s), treated later in Sec. 6.5. 
General comments include relationships of the distribution under study to other dis-
tributions. Graphs are given of the density functions for each distribution. The nota-
tion following the name of each distribution is our abbreviation for that distribution, 
which includes the parameters. The symbol , is read “is distributed as.”

Note that we have included the less familiar Johnson SB, Johnson SU, log- 
logistic, Pearson type V, and Pearson type VI distributions, because we have found 
that these distributions often provide a better fi t to data sets than standard distribu-
tions such as gamma, lognormal, and Weibull.

TABLE 6.3

Continuous distributions

Uniform U(a, b)

Possible  Used as a “fi rst” model for a quantity that is felt to be randomly varying between
 applications   a and b but about which little else is known. The U(0, 1) distribution is essential 

in generating random values from all other distributions (see Chaps. 7 and 8).

Density  f(x) 5 •
1

b 2 a

0

if a # x # b

otherwise (See Fig. 6.5)

Distribution F(x) 5 µ
0

x 2 a

b 2 a

1

  

if x , a

if a # x # b

if b , x

Parameters  a and b real numbers with a , b; a is a location parameter, b 2 a is a scale 
 parameter
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Range  [a, b]

Mean 
a 1 b

2

Variance 
(b 2 a)2

12

Mode Does not uniquely exist

MLE â 5 min
1# i#n

 Xi, b̂ 5 max
1# i#n

 Xi

Comments 1.  The U(0, 1) distribution is a special case of the beta distribution (when 
al 5 a2 5 1).

 2. If X , U(0, 1) and [x, x 1 Dx] is a subinterval of [0, 1] with Dx $ 0,

 P(X [ [x, x 1 ¢x]) 5 #
x1¢x

x
1dy 5 (x 1 ¢x) 2 x 5 ¢x

   which justifi es the name “uniform.”

TABLE 6.3 (continued)

Uniform U(a, b)

1/(b � a)

f(x)

0 a b x
FIGURE 6.5
U(a, b) density function.

Exponential expo(B)

Possible  Interarrival times of “customers” to a system that occur at a constant rate, time
 applications  to failure of a piece of equipment.

Density  f (x) 5 •
1

b
 e2xyb

0
  

if x $ 0

otherwise (see Fig. 6.6)

Distribution F(x) 5 e 1 2 e2xyb

0
  

if x $ 0

otherwise

Parameter Scale parameter b . 0

Range [0, `)

Mean b

Variance b2

Mode 0

(continued)
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MLE b̂ 5 X(n)

Comments 1.  The expo(b) distribution is a special case of both the gamma and Weibull 
distributions (for shape parameter a 5 1 and scale parameter b in both cases).

 2.  If X1, X2, . . . , Xm are independent expo(b) random variables, then X1 1 
X2 1  .  .  . 1 Xm , gamma(m, b), also called the m-Erlang(b) distribution.

 3.  The exponential distribution is the only continuous distribution with the 
memoryless property (see Prob. 4.30).

TABLE 6.3 (continued)

Exponential expo(B)

1.2
f (x)

1.0

0.8

0.6

0.4

0.2

0 1 2 3 4 5 6 x

FIGURE 6.6
expo(1) density function.

Gamma gamma(A, B)

Possible  Time to complete some task, e.g., customer service or machine repair
 applications

Density  f (x) 5 •
b2ax  

a21e2xyb

G(a)

0
  

if x . 0

otherwise (see Fig. 6.7)

   where G(a) is the gamma function, defi ned by G(z) 5 e`
0  t z21e2tdt for any real 

number z . 0. Some properties of the gamma function: G(z 1 1) 5 zG(z) 
for any z . 0, G(k 1 1) 5 k! for any nonnegative integer k, G(k 1 1

2) 5 1p . 1 . 3 . 5 . . . (2k 2 1)y2k for any positive integer k, G(1y2) 5 1p
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TABLE 6.3 (continued)

Gamma gamma(A, B)

Distribution If a is not an integer, there is no closed form. If a is a positive integer, then

 F(x) 5 • 1 2 e2xyb^
a21

j50

(xyb) j

j!

0
  

if x . 0

otherwise

Parameters Shape parameter a . 0, scale parameter b . 0

Range [0, `)

Mean ab

Variance ab2

Mode b(a 2 1) if a $ 1, 0 if a , 1

MLE The following two equations must be satisfi ed:

 ln b̂ 1 °(â) 5

^
n

i51

lnXi

n
,  âb̂ 5 X(n)

   which could be solved numerically. [° (â) 5 G¿(â)yG(â) and is called the 
digamma function; G¿ denotes the derivative of G.] Alternatively, approxima-
tions to â and b̂ can be obtained by letting T 5 [ln X(n) 2 On

i51 ln Xiyn]21, 
using Table 6.21 (see App. 6A) to obtain â as a function of T, and letting 
b̂ 5 X(n)yâ. [See Choi and Wette (1969) for the derivation of this procedure 
and of Table 6.21.]

1 2 3 4 5 6 7

f(x)
1.2

1.0

0.8

0.6

0.4

0.2

0 x

� � 12

� � 1

� � 2

� � 3

FIGURE 6.7
gamma(a, 1) density functions. (continued)
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Comments 1.  The expo(b) and gamma(1, b) distributions are the same.
 2.  For a positive integer m, the gamma(m, b) distribution is called the 

 m-Erlang(b) distribution.
 3.  The chi-square distribution with k df is the same as the gamma(ky2, 2) 

distribution.
 4.  If X1, X2, . . . , Xm are independent random variables with Xi , gamma(ai, b), 

then X1 1 X2 1 . . . 1 Xm , gamma(a1 1 a2 1 . . . 1 am, b).
 5.  If X1 and X2 are independent random variables with Xi , gamma(ai, b), then 

X1y(X1 1 X2) , beta(a1, a2).
 6.  X , gamma(a, b) if and only if Y 5 1yX has a Pearson type V distribution 

with shape and scale parameters a and 1yb, denoted PT5(a, 1yb).
 7. 

   lim
xS0 

 f (x) 5 µ
` if a , 1

1

b
if a 5 1

0 if a . 1

Weibull Weibull(A, B)

Possible  Time to complete some task, time to failure of a piece of equipment; used as a
 applications  rough model in the absence of data (see Sec. 6.11)

Density  f (x) 5 eab2axa21e2(xyb)
a

0

if x . 0

otherwise (see Fig. 6.8)

Distribution F(x) 5 e 1 2 e2(xyb)
a

0
  

if x . 0

otherwise

Parameters Shape parameter a . 0, scale parameter b . 0

Range [0, `)

Mean 
b

a
 G a1

a
b

Variance 
b2

a
e 2G a2

a
b 2

1

a
cG a1

a
b d 2 f

Mode
 

•b aa 2 1

a
b1ya

0
  

if a $ 1

if a , 1

MLE The following two equations must be satisfi ed:

 
^

n

i51

X â
i   ln Xi

^
n

i51

X â
i

2
1

â
5

^
n

i51

ln Xi

n
,  b̂ 5

° ^
n

i51

X 
â
i

n

¢
1yâ

   The fi rst can be solved for â numerically by Newton’s method, and the second 
equation then gives b̂ directly. The general recursive step for the Newton 
 iterations is

 âk11 5 âk 1
A 1 1yâk 2 CkyBk

1yâ2
k 1 (Bk Hk 2 C 2

k )yB2
k

TABLE 6.3 (continued)

Gamma gamma(A, B)
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TABLE 6.3 (continued)

FIGURE 6.8
Weibull(a, 1) density functions.
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292 selecting input probability distributions

  where

  A 5

^
n

i51

ln Xi

n
,  Bk 5 ^

n

i51

Xâk
i ,  Ck 5 ^

n

i51

Xâk
i  ln Xi

  and

  Hk 5 ^
n

i51

Xâk
i  (ln Xi)

2

   [See Thoman, Bain, and Antle (1969) for these formulas, as well as for confi dence 
intervals on the true a and b.] As a starting point for the iterations, the estimate

 â0 5 • (6yp2) c^
n

i51

(ln Xi)
2 2 a^

n

i51

ln Xib
2^n d

n 2 1

¶
21y2

   [due to Menon (1963) and suggested in Thoman, Bain, and Antle (1969)] may 
be used. With this choice of â0, it was reported in Thoman, Bain, and Antle 
(1969) that an average of only 3.5 Newton iterations were needed to achieve 
four-place accuracy.

Comments 1.  The expo(b) and Weibull(1, b) distributions are the same.
 2. X , Weibull(a, b) if and only if Xa , expo(ba) (see Prob. 6.2).
 3.  The (natural) logarithm of a Weibull random variable has a distribution 

known as the extreme-value or Gumbel distribution [see Averill M. Law & 
Associates (2013), Lawless (2003), and Prob. 8.1(b)].

 4.  The Weibull(2, b) distribution is also called a Rayleigh distribution with 
 parameter b, denoted Rayleigh(b). If Y and Z are independent normal ran-
dom variables with mean 0 and variance b2 (see the normal distribution), then 
X 5 (Y 2 1 Z 2)1y2 , Rayleigh(21y2b).

 5.  As a S `, the Weibull distribution becomes degenerate at b. Thus, Weibull 
densities for large a have a sharp peak at the mode.

 6.  The Weibull distribution has a negative skewness when a . 3.6 [see 
Fig. 6.8(b)].

 7. 

   lim
xS0

 f(x) 5 µ
` if a , 1

1

b
if a 5 1

0 if a . 1

Normal N(M, S2)

Possible  Errors of various types, e.g., in the impact point of a bomb; quantities that are the
 applications  sum of a large number of other quantities (by virtue of central limit theorems)

Density  f (x) 5
1

22ps2
 e2(x2m)

2
y(2s

2
)  for all real numbers x

 (see Fig. 6.9)

Distribution No closed form

Parameters Location parameter m [ (2`, `), scale parameter s . 0

Range (2`, `)

TABLE 6.3 (continued)

Weibull Weibull(A, B)
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chapter six 293

Mean m

Variance s2

Mode m

MLE m̂ 5 X (n),  ŝ 5 c n 2 1

n
 S2(n) d 1y2

Comments 1.  If two jointly distributed normal random variables are uncorrelated, they are 
also independent. For distributions other than normal, this implication is not 
true in general.

 2.  Suppose that the joint distribution of X1, X2, . . . , Xm is multivariate normal 
and let mi 5 E(Xi) and Cij 5 Cov(Xi, Xj). Then for any real numbers a, b1, 
b2, . . . , bm, the random variable a 1 b1X1 1 b2X2 1 . . . 1 bmXm has a normal 
distribution with mean m 5 a 1 Om

i51 bimi  and variance

   s2 5 ^
m

i51
^
m

j51

bibjCij

    Note that we need not assume independence of the Xi’s. If the Xi’s are 
 independent, then

   s2 5 ^
m

i51

b2
i  Var(Xi)

 3.  The N(0, 1) distribution is often called the standard or unit normal distri-
bution.

 4.  If X1, X2, . . . , Xk are independent standard normal random variables, then 
X 2

1 1 X 2
2 1 . . . 1 X 2

k  has a chi-square distribution with k df, which is also 
the gamma(ky2, 2) distribution.

TABLE 6.3 (continued)

Normal N(M, S2)

FIGURE 6.9
N(0, 1) density function.
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294 selecting input probability distributions

 5.  If X , N(m, s2), then eX has the lognormal distribution with scale parameter 
em and shape parameter s, denoted LN(m, s2).

 6.  If X , N(0, 1), if Y has a chi-square distribution with k df, and if X and Y are 
independent, then Xy1Yyk has a t distribution with k df (sometimes called 
Student’s t distribution).

 7.  If the normal distribution is used to represent a nonnegative quantity (e.g., 
time), then its density should be truncated at x 5 0 (see Sec. 6.8).

 8. As s S 0, the normal distribution becomes degenerate at m.

Lognormal LN(M, S2)

Possible  Time to perform some task [density takes on shapes similar to gamma(a, b) and
 applications   Weibull(a, b) densities for a . 1, but can have a large “spike” close to x 5 0 

that is often useful]; quantities that are the product of a large number of other 
quantities (by virtue of central limit theorem); used as a rough model in the 
absence of data (see Sec. 6.11)

Density
  

f (x) 5 •
1

x22ps2
 exp 

2(ln x 2 m)2

2s2

0
  

if x . 0

otherwise (see Fig. 6.10)

Distribution No closed form

Parameters Shape parameter s . 0, scale parameter em . 0

Range [0, `)

Mean e  

m1s
2
y2

Variance e  

2m1s
2
(es

2
2 1)

TABLE 6.3 (continued)

Normal N(M, S2)

FIGURE 6.10
LN(0, s2) density functions.
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chapter six 295

Mode e  

m2s
2

MLE m̂ 5

^
n

i51

ln Xi

n
, ŝ 5 £ ^

n

i51

(ln Xi 2 m̂)2

n

§
1y2

, MLE for scale parameter 5 e  

m̂

Comments 1.  X , LN(m, s2) if and only if ln X , N(m, s2). Thus, if one has data X1, 
X2, . . . , Xn that are thought to be lognormal, the logarithms of the data points 
ln X1, ln X2, . . . , ln Xn can be treated as normally distributed data for pur-
poses of hypothesizing a distribution, parameter estimation, and goodness-
of-fi t testing.

 2.  As s S 0, the lognormal distribution becomes degenerate at em. Thus, 
lognormal densities for small s have a sharp peak at the mode.

 3. lim
xS0

 f(x) 5 0, regardless of the parameter values.

Beta beta(A1, A2)

Possible  Used as a rough model in the absence of data (see Sec. 6.11); distribution of a
 applications   random proportion, such as the proportion of defective items in a shipment; 

time to complete a task, e.g., in a PERT network

Density 
 

f (x) 5 •
x  

a121(1 2 x)a221

B(a1,a2)
if 0 , x , 1

0 otherwise (see Fig. 6.11)

   where B(a1, a2) is the beta function, defi ned by

   B(z1, z2) 5 #
1

0
t z121(1 2 t)z221 dt

   for any real numbers z1 . 0 and z2 . 0. Some properties of the beta function:

   B(z1, z2) 5 B(z2, z1),  B(z1, z2) 5
G(z1)G(z2)

G(z1 1 z2)

Distribution  No closed form, in general. If either a1 or a2 is a positive integer, a  binomial 
  expansion can be used to obtain F(x), which will be a polynomial in x, and the 

powers of x will be, in general, positive real numbers ranging from 0 through 
al 1 a2 2 1.

Parameters Shape parameters a1 . 0 and a2 . 0

Range [0, 1]

Mean 
a1

a1 1 a2

Variance 
a1a2

(a1 1 a2)2(a1 1 a2 1 1)

Mode e
 

a1 2 1

a1 1 a2 2 2
0 and 1
0
1
does not uniquely exist

  

if a1 . 1, a2 . 1
if a1 , 1, a2 , 1
if (a1 , 1, a2 $ 1) or if (a1 5 1, a2 . 1)
if (a1 $ 1, a2 , 1) or if (a1 . 1, a2 5 1)
if a1 5 a2 5 1

TABLE 6.3 (continued)

Lognormal LN(M, S2)

(continued)
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296 selecting input probability distributions

MLE The following two equations must be satisfi ed:

  °(â1) 2 °(â1 1 â2) 5 lnG1,  °(â2) 2 °(â1 1 â2) 5 lnG2

   where ° is the digamma function, G1 5 (ßn
i51 Xi)

1yn, and G2 5 
[ßn

i51(1 2 Xi)]1yn  [see Gnanadesikan, Pinkham, and Hughes (1967)]; note 
that G1 1 G2 # 1. These equations could be solved numerically [see Beckman 
and Tietjen (1978)], or approximations to â1  and â2  can be obtained from 
Table 6.22 (see App. 6A), which was computed for particular (G1, G2) pairs 
by modifi cations of the methods in Beckman and Tietjen (1978).

Comments 1.  The U(0, 1) and beta(1, 1) distributions are the same.
 2.  If X1 and X2 are independent random variables with Xi , gamma(ai, b), then 

X1y(X1 1 X2) , beta(a1, a2).
 3.  A beta random variable X on [0, 1] can be rescaled and relocated to obtain a 

beta random variable on [a, b] of the same shape by the transformation 
a 1 (b 2 a)X.

 4. X , beta(a1, a2) if and only if 1 2 X , beta(a2, a1).
 5.  X , beta(a1, a2) if and only if Y 5 Xy(1 2 X) has a Pearson type VI dis-

tribution with shape parameters a1, a2 and scale parameter 1, denoted 
PT6(a1, a2, 1).

TABLE 6.3 (continued)

Beta beta(A1, A2)

FIGURE 6.11
beta(a1, a2) density functions.
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chapter six 297

 6.  The beta(1, 2) density is a left triangle, and the beta(2, 1) density is a right 
triangle.

 7. 

   lim
xS0

 f(x) 5 •
` if a1 , 1

a2 if a1 5 1

0 if a1 . 1

,  lim
xS1

 f (x) 5 •
` if a2 , 1

a1 if a2 5 1

0 if a2 . 1

 8.  The density is symmetric about x 5 1
2 if and only if a1 5 a2. Also, the mean 

and the mode are equal if and only if a1 5 a2 . 1.

Pearson type V PT5(A, B)

Possible  Time to perform some task (density takes on shapes similar to lognormal, but
 applications  can have a larger “spike” close to x 5 0)

Density 
 

f (x) 5 •
x2(a11)e2byx

b2aG(a)
if x . 0

0 otherwise (see Fig. 6.12)
 

Distribution
 

F(x) 5 • 1 2 FG 
a1

x
b if x . 0

0 otherwise

  where FG(x) is the distribution function of a gamma(a, lyb) random variable

Parameters Shape parameter a . 0, scale parameter b . 0

TABLE 6.3 (continued)

Beta beta(A1, A2)

FIGURE 6.12
PT5(a, 1) density functions.
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298 selecting input probability distributions

Range [0, `)

Mean 
b

a 2 1
  for a . 1

Variance 
b2

(a 2 1)2(a 2 2)
  for a . 2

Mode 
b

a 1 1

MLE  If one has data X1, X2, . . . , Xn, then fi t a gamma(aG, bG) distribution to 1yX1, 
  1yX2, . . . , 1yXn, resulting in the maximum-likelihood estimators âG  and b̂G.  

Then the maximum-likelihood estimators for the PT5(a, b) are â 5 âG  and 
b̂ 5 1yb̂G  (see comment 1 below).

Comments 1.  X , PT5(a, b) if and only if Y 5 1yX , gamma(a, 1yb). Thus, the Pearson 
type V distribution is sometimes called the inverted gamma distribution.

 2.  Note that the mean and variance exist only for certain values of the shape 
parameter.

Pearson type VI PT6(A1, A2, B)

Possible Time to perform some task
 applications

Density 
 

f (x) 5 •
(xyb)a121

bB(a1, a2)[1 1 (xyb)]a11a2
if x . 0

0 otherwise (see Fig. 6.13)
 

Distribution
 

F(x) 5 •FB 
a x

x 1 b
b if x . 0

0 otherwise

  where FB(x) is the distribution function of a beta(a1, a2) random variable

Parameters Shape parameters a1 . 0 and a2 . 0, scale parameter b . 0

Range [0, `)

Mean 
ba1

a2 2 1
  for a2 . 1

Variance 
b2a1(a1 1 a2 2 1)

(a2 2 1)2(a2 2 2)
  for a2 . 2

Mode
 

•
b(a1 2 1)

a2 1 1
if a1 $ 1

0 otherwise

MLE  If one has data X1, X2, . . . , Xn that are thought to be PT6(a1, a2, 1), then fi t a 
  beta(a1, a2) distribution to Xiy(1 1 Xi) for i 5 1, 2, . . . , n, resulting in the 

maximum-likelihood estimators â1  and â2 . Then the maximum-likelihood 
 estimators for the PT6(a1, a2, 1) (note that b 5 1) distribution are also â1  and 
â2  (see comment 1 below).

TABLE 6.3 (continued)

Pearson type V PT5(A, B)
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Comments 1.  X , PT6(a1, a2, 1) if and only if Y 5 Xy(1 1 X) , beta(a1, a2).
 2.  If X1 and X2 are independent random variables with X1 , gamma(a1, b) and 

X2 , gamma(a2, 1), then Y 5 X1yX2 , PT6(a1, a2, b) (see Prob. 6.3).
 3.  Note that the mean and variance exist only for certain values of the shape 

parameter a2.

TABLE 6.3 (continued)

Pearson type VI PT6(A1, A2, B)
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FIGURE 6.13
PT6(a1, a2, 1) density functions.

Log-logistic LL(A, B)

Possible Time to perform some task
 applications

Density 
 

f (x) 5 •
a(xyb)a21

b[1 1 (xyb)a]2
if x . 0

0 otherwise (see Fig. 6.14)
 

Distribution
 

F(x) 5 •
1

1 1 (xyb)2a if x . 0

0 otherwise

Parameters Shape parameter a . 0, scale parameter b . 0

(continued)
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300 selecting input probability distributions

Range [0, `)

Mean bu cosecant(u)  for a . 1, where u 5 pya

Variance b2u{2 cosecant(2u) 2 u[cosecant(u)]2}  for a . 2

Mode
 

•b aa 2 1

a 1 1
b1ya

if a . 1

0 otherwise

MLE Let Yi 5 ln Xi. Solve the following two equations for â and b̂:

  ^
n

i51

[1 1 e(Yi2 â)yb̂]21
5

n

2
 (6.1)

  and

  ^
n

i51

aYi 2 â

b̂
b 

1 2 e(Yi2 â)yb̂

1 1 e(Yi2 â)yb̂
  5 n  (6.2)

   Then the MLEs for the log-logistic distribution are â 5 1yâ  and b̂ 5 eb̂.  
Johnson, Kotz, and Balakrishnan (1995, chap. 23) suggest solving Eqs. (6.1) 
and (6.2) by using Newton’s method.

TABLE 6.3 (continued)

Log-logistic LL(A, B)

FIGURE 6.14
LL(a, 1) density functions.
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Comment  X , LL(a, b) if and only if ln X is distributed as a logistic distribution (see 
  Prob. 8.1) with location parameter ln b and scale parameter 1ya. Thus, if one 

has data X1, X2, . . . , Xn that are thought to be log-logistic, the logarithms of 
the data points ln X1, ln X2, . . . , ln Xn can be treated as having a logistic dis-
tribution for purposes of hypothesizing a distribution, parameter estimation, 
and goodness-of-fi t testing.

Johnson SB JSB(A1, A2, a, b)

Density  f (x) 5 •
a2(b 2 a)

(x 2 a)(b 2 x)12p
0

 e
2

1

2
ca11a2 ln ax2a

b2x
b d2

  
if a , x , b

otherwise (see Fig. 6.15) 

Distribution
 

F(x) 5 •£ ca1 1 a2 ln ax 2 a

b 2 x
bd if a , x , b

0 otherwise

   where F(x) is the distribution function of a normal random variable with 
m 5 0 and s2 5 1

Parameters  Location parameter a [ (2`, ` ), scale parameter b 2 a (b . a), shape  
 parameters a1 [ (2`, ` ) and a2 . 0

Range [a, b]

Mean  All moments exist but are extremely complicated [see Johnson, Kotz, and  
 Balakrishnan (1994, p. 35)]

Mode The density is bimodal when a2 ,
1

12
 and

  Za1Z ,
21 2 2a2

2

a2

2 2a2 tanh21(21 2 2a2
2)

   [tanh21 is the inverse hyperbolic tangent]; otherwise the density is unimodal. The 
equation satisfi ed by any mode x, other than at the endpoints of the range, is

  
2(x 2 a)

b 2 a
5 1 1 a1a2 1 a2

2 lnax 2 a

b 2 x
b

Comments 1.  X , JSB(a1, a2, a, b) if and only if

   a1 1 a2 lnaX 2 a

b 2 X
b , N(0, 1)

 2.  The density function is skewed to the left, symmetric, or skewed to the right 
if a1 . 0, a1 5 0, or a1 , 0, respectively.

 3. lim
xSa

 f(x) 5 lim
xSb

 f(x) 5 0 for all values of a1 and a2.

 4.  The four parameters may be estimated using a number of methods [see, for 
example, Swain, Venkatraman, and Wilson (1988) and Slifker and Shapiro 
(1980)].

TABLE 6.3 (continued)

Log-logistic LL(A, B)

(continued)
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TABLE 6.3 (continued)
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f (x)

x

(a)

FIGURE 6.15
JSB(a1, a2, 0, 1) density functions.

Law01323_ch06_279-323.indd Page 302  11/10/13  8:56 PM user-f-w-198 Law01323_ch06_279-323.indd Page 302  11/10/13  8:56 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



chapter six 303

Density  f (x) 5
a2

12p2(x 2 g)2 1 b2
 e21

2Ua11a2 ln [x2g
b

13Qx2g
b
R211]}2

   for 2` , x , `
 (see Fig. 6.16) 

Distribution F(x) 5 £ ea1 1 a2 ln c x 2 g

b
1 Ba

x 2 g

b
b2

1 1 d f  for 2` , x , `

Parameters  Location parameter g [ (2`, ` ), scale parameter b . 0, shape parameters 
 a1 [ (2`, ` ) and a2 . 0

Range (2`, `)

Mean g 2 be1y(2a2
2) sinh aa1

a2

b, where sinh is the hyperbolic sine

Mode  The equation satisfi ed by the mode, other than at the endpoints of the range, is 
 g 1 by, where y satisfi es

  y 1 a1a22y2 1 1 1 a2
22y2 1 1 ln(y 1 2y2 1 1) 5 0

Comments 1.  X , JSU(a1, a2, g, b) if and only if

   a1 1 a2 ln c X 2 g

b
1 Ba

X 2 g

b
b2

1 1 d , N(0, 1)

 2.  The density function is skewed to the left, symmetric, or skewed to the right 
if a1 . 0, a1 5 0, or a1 , 0, respectively.

 3.  The four parameters may be estimated by a number of methods [see, for exam-
ple, Swain, Venkatraman, and Wilson (1988) and Slifker and Shapiro (1980)].

TABLE 6.3 (continued)

Johnson SU JSU(A1, A2, G, B)

FIGURE 6.16
JSU(a1, a2, 0, 1) density functions.

f (x)
0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
�6 �4 �2 0 2 4 6 x

�1 � 0, �2 � 2

�1 � �2, �2 � 2

�1 � �3, �2 � 2

�1 � 2, �2 � 2

�1 � 3, �2 � 2

(a)

(continued)
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Triangular triang(a, b, m)

Possible  Used as a rough model in the absence of data (see Sec. 6.11)
 applications 

Density  f(x) 5 e 2(x 2 a)

(b 2 a)(m 2 a)
if a # x # m

2(b 2 x)

(b 2 a)(b 2 m)
if m , x # b

0 otherwise

 (see Fig. 6.17)

Distribution F(x) 5 f0 if x , a
(x 2 a)2

(b 2 a)(m 2 a)
if a # x # m

1 2
(b 2 x)2

(b 2 a)(b 2 m)
if m , x # b

1 if b , x

Parameters  a, b, and m real numbers with a , m , b. a is a location parameter, b 2 a is a 
 scale parameter, m is a shape parameter

Range [a, b]

Mean 
a 1 b 1 m

3

TABLE 6.3 (continued)

f(x)
0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
�4 �2 0 2 4 6 8 10 12 x

�1 � �1, �2 � 2

�1 � �1, �2 � 1

�1 � �1, �2 � 12

�1 � �1, �2 � 3  2

(b)

FIGURE 6.16
(continued)
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Variance 
a2 1 b2 1 m2 2 ab 2 am 2 bm

18

Mode m

MLE  Our use of the triangular distribution, as described in Sec. 6.11, is as a rough 
 model when there are no data. Thus, MLEs are not relevant.

Comment  The limiting cases as m S b and m S a are called the right triangular and left 
  triangular distributions, respectively, and are discussed in Prob. 8.7. For a 5 0 

and b 5 1, both the left and right triangular distributions are special cases of 
the beta distribution.

TABLE 6.3 (continued)

Triangular triang(a, b, m)

FIGURE 6.17
triang(a, b, m) density function.

f(x)

2/(b � a)

0 a m b x

6.2.3 Discrete Distributions

The descriptions of the six discrete distributions in Table 6.4 follow the same pattern 
as for the continuous distributions in Table 6.3.

6.2.4 Empirical Distributions

In some situations we might want to use the observed data themselves to specify 
directly (in some sense) a distribution, called an empirical distribution, from which 
random values are generated during the simulation, rather than fi tting a theoretical 
distribution to the data. For example, it could happen that we simply cannot fi nd a 
theoretical distribution that fi ts the data adequately (see Secs. 6.4 through 6.6). This 
section explores ways of specifying empirical distributions.

For continuous random variables, the type of empirical distribution that can be 
defi ned depends on whether we have the actual values of the individual original 
observations X1, X2, . . . , Xn rather than only the number of Xi’s that fall into each of 
several specifi ed intervals. (The latter case is called grouped data or data in the 
form of a histogram.) If the original data are available, we can defi ne a continuous, 
piecewise-linear distribution function F by fi rst sorting the Xi’s into increasing 
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306 selecting input probability distributions

TABLE 6.4

Discrete distributions

Bernoulli Bernoulli( p)

Possible applications Random occurrence with two possible outcomes; used to generate other dis-
 crete random variates, e.g., binomial, geometric, and negative binomial

Mass (see Fig. 6.18) p(x) 5 •
1 2 p

p

0

if x 5 0

if x 5 1

otherwise

Distribution F(x) 5 •
0

1 2 p

1

  

if x , 0

if 0 # x , 1

if 1 # x

Parameter p [ (0, 1)

Range {0, 1}

Mean p

Variance p(1 2 p)

Mode •
0

0 and 1

1

  

if p , 1
2

if p 5 1
2

if p . 1
2

MLE p̂ 5 X(n)

Comments 1.  A Bernoulli(p) random variable X can be thought of as the outcome of 
an experiment that either “fails” or “succeeds.” If the probability of 
 success is p, and we let X 5 0 if the experiment fails and X 5 1 if it 
succeeds, then X , Bernoulli(p). Such an experiment, often called a 
 Bernoulli trial, provides a convenient way of relating several other dis-
crete distributions to the Bernoulli distribution.

 2.  If t is a positive integer and X1, X2, . . . , Xt are independent Bernoulli(p) 
random variables, then X1 1 X2 1 . . . 1 Xt has the binomial distribu-
tion with parameters t and p. Thus, a binomial random variable can be 
thought of as the number of successes in a fi xed number of independent 
Bernoulli trials.

 3.  Suppose we begin making independent replications of a Bernoulli trial 
with probability p of success on each trial. Then the number of failures 
before observing the fi rst success has a geometric distribution with 
 parameter p. For a positive integer s, the number of failures before 

FIGURE 6.18
Bernoulli(p) mass function (p . 0.5 
here).0 1 x

p(x)

p

1 � p

Law01323_ch06_279-323.indd Page 306  11/10/13  8:56 PM user-f-w-198 Law01323_ch06_279-323.indd Page 306  11/10/13  8:56 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



chapter six 307

 observing the sth success has a negative binomial distribution with 
 parameters s and p.

 4.  The Bernoulli(p) distribution is a special case of the binomial distribu-
tion (with t 5 1 and the same value for p).

Discrete uniform DU(i, j)

Possible applications Random occurrence with several possible outcomes, each of which is 
  equally likely; used as a “fi rst” model for a quantity that is varying 

among the integers i through j but about which little else is known

Mass (see Fig. 6.19) p(x) 5 •
1

j 2 i 1 1

0

if x [ {i, i 1 1, . . . , j}

otherwise

Distribution F(x) 5 µ
0
:x ; 2 i 1 1

j 2 i 1 1

1

if x , i

if i # x # j

if j , x

  where :x ;  denotes the largest integer #x

Parameters i and j integers with i # j; i is a location parameter, j 2 i is a scale 
 parameter

Range {i, i 1 1, . . . , j}

Mean 
i 1 j

2

Variance 
( j 2 i 1 1)2 2 1

12

Mode Does not uniquely exist

MLE î 5 min
1#k#n

 Xk,   ĵ 5 max
1#k#n

 Xk

Comment The DU(0, 1) and Bernoulli(1
2) distributions are the same.

TABLE 6.4 (continued)

Bernoulli Bernoulli( p)

FIGURE 6.19
DU(i, j) mass function.

i � 2
i � 1 i � 1

i � 2 j � 2
j � 1 j � 1

j � 2i j x

1�( j � i � 1)

p(x)

(continued)
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308 selecting input probability distributions

Possible applications Number of successes in t independent Bernoulli trials with probability p of 
  success on each trial; number of “defective” items in a batch of size t; 

number of items in a batch (e.g., a group of people) of random size; 
number of items demanded from an inventory

Mass (see Fig. 6.20) p(x) 5 •a
t

x
b p  

x(1 2 p)t2x

0

if x [ {0, 1, . . . , t}

otherwise

  where a t

x
b is the binomial coeffi cient, defi ned by

       a t

x
b 5

t!

x!(t 2 x)!

Distribution F(x) 5 µ
0

^
:x;

i50

a t

i
b pi(1 2 p)t2i

1

if x , 0

if 0 # x # t

if t , x

Parameters t a positive integer, p [ (0, 1)

Range {0, 1, . . . , t}

TABLE 6.4 (continued)

Binomial bin(t, p)

FIGURE 6.20
bin(t, p) mass functions.

0.6

0.5

0.4

0.3

0.2

0.1

p(x)

0
0 1 2 3 4 5 x

p(x)
0.6

0.5

0.4

0.3

0.2

0.1

0 1 2 3 4 5 x

p(x)
0.6

0.5

0.4

0.3

0.2

0.1

00
0 1 2 3 4 5 6 7 8 9 10 x

0 1 2 3 4 5 6 7 8 9 10 x

p(x)
0.6

0.5

0.4

0.3

0.2

0.1

0

t � 5
p � 0.1

t � 10
p � 0.1

t � 10
p � 0.5

t � 5
p � 0.5
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Mean tp

Variance tp(1 2 p)

Mode e p(t 1 1) 2 1 and p(t 1 1)

: p(t 1 1) ;   
if p(t 1 1) is an integer

otherwise

MLE If t is known, then p̂ 5 X(n)yt.  If both t and p are unknown, then t̂  and p̂  
  exist if and only if X(n) . (n 2 1)S2(n)yn 5 V(n). Then the following 

approach could be taken. Let M 5 max
1# i#n

 Xi, and for k 5 0, 1, . . . , M, let 

   fk be the number of Xi’s $ k. Then it can be shown that t̂  and p̂  are the 
values for t and p that maximize the function

  g(t, p) 5 ^
M

k51

 fk ln(t 2 k 1 1) 1 nt ln(1 2 p) 1 nX(n) ln 
p

1 2 p

   subject to the constraints that t [ {M, M 1 1, . . .} and 0 , p , 1. It is 
easy to see that for a fi xed value of t, say t0, the value of p that maximizes 
g(t0, p) is X(n)yt0, so t̂  and p̂  are the values of t and X(n)yt that lead to 
the largest value of g[t, X(n)yt] for t [ {M, M 1 1, . . . , M¿}, where 
M9 is given by [see DeRiggi (1983)]

  M¿ 5 j X(n)(M 2 1)

1 2 [V(n)yX(n)]
k

  Note also that g[t, X(n)yt] is a unimodal function of t.

Comments 1.  If Y1, Y2, . . . , Yt are independent Bernoulli(p) random variables, then 
Y1 1 Y2 1 . . . 1 Yt , bin(t, p).

 2.  If X1, X2, . . . , Xm are independent random variables and Xi , bin(ti, p), 
then X1 1 X2 1 . . . 1 Xm , bin(t1 1 t2 1 . . . 1 tm, p).

 3. The bin(t, p) distribution is symmetric if and only if p 5 1
2.

 4. X , bin(t, p) if and only if t 2 X , bin(t, 1 2 p).
 5. The bin(1, p) and Bernoulli(p) distributions are the same.

Geometric geom( p)

Possible applications Number of failures before the fi rst success in a sequence of independent 
  Bernoulli trials with probability p of success on each trial; number of items 

inspected before encountering the fi rst defective item; number of items in a 
batch of random size; number of items demanded from an inventory

Mass (see Fig. 6.21) p(x) 5 e p(1 2 p)x

0
  

if x [ {0, 1, . . .}

otherwise

Distribution F(x) 5 e 1 2 (1 2 p) :x;11

0
  

if x $ 0

otherwise

Parameter p [ (0, 1)

Range {0, 1, . . .}

Mean 
1 2 p

p

TABLE 6.4 (continued)

Binomial bin(t, p)

(continued)
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310 selecting input probability distributions

Variance 
1 2 p

p2

Mode 0

MLE p̂ 5
1

X(n) 1 1

Comments 1.  If Y1, Y2, . . . is a sequence of independent Bernoulli(p) random vari-
ables and X 5 min{i: Yi 5 1} 2 1, then X , geom(p).

 2.  If X1, X2, . . . , Xs are independent geom(p) random variables, then 
X1 1 X2 1 . . . 1 Xs has a negative binomial distribution with parame-
ters s and p.

 3.  The geometric distribution is the discrete analog of the exponential dis-
tribution, in the sense that it is the only discrete distribution with the 
memoryless property (see Prob. 4.31).

 4.  The geom(p) distribution is a special case of the negative binomial dis-
tribution (with s 5 1 and the same value for p).

TABLE 6.4 (continued)

Geometric geom( p)

p(x)
0.6

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5 6 7 8 9 10 x

p � 0.25

p(x)
0.6

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5 6 7 8 9 10 x

p � 0.50

FIGURE 6.21
geom(p) mass functions.
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Possible applications Number of failures before the sth success in a sequence of independent 
  Bernoulli trials with probability p of success on each trial; number of good 

items inspected before encountering the sth defective item; number of items 
in a batch of random size; number of items demanded from an inventory

Mass (see Fig. 6.22) p(x) 5 •a
s 1 x 2 1

x
b ps(1 2 p)x

0

if x [ {0, 1, . . .}

otherwise

Distribution F(x) 5 • ^
:x;

i50

as 1 i 2 1

i
b ps(1 2 p)i

0

if x $ 0

otherwise

Parameters s a positive integer, p [ (0, 1)

Range {0, 1, . . .}

Mean 
s(1 2 p)

p

Variance 
s(1 2 p)

p2

Mode Let y 5 [s(1 2 p) 2 1]yp; then

 Mode 5 e y and y 1 1

:y ; 1 1

if y is an integer

otherwise

MLE If s is known, then p̂ 5 sy[X(n) 1 s]. If both s and p are unknown, then ŝ 
  and p̂ exist if and only if V(n) 5 (n 2 1)S2(n)yn . X(n). Let M 5 

max
1# i#n

 Xi, and for k 5 0, 1, . . . , M, let fk be the number of Xi’s $ k. Then 

   we can show that ŝ and p̂ are the values for s and p that maximize the 
function

  h(s, p) 5 ^
M

k51

fk ln(s 1 k 2 1) 1 ns ln p 1 nX(n) ln(1 2 p)

   subject to the constraints that s [ {1, 2, . . .} and 0 , p , 1. For a fi xed 
value of s, say s0, the value of p that maximizes h(s0, p) is s0y[X(n) 1 s0], 
so that we could examine h(1, 1y[X(n) 1 1]), h(2, 2y[X(n) 1 2]), . . . . 
Then ŝ and p̂ are chosen to be the values of s and sy[X(n) 1 s] that lead 
to the biggest observed value of h(s, sy[X(n) 1 s]). However, since 
h(s, sy[X(n) 1 s]) is a unimodal function of s [see Levin and Reeds 
(1977)], it is clear when to terminate the search.

Comments 1.  If Y1, Y2, . . . , Ys are independent geom(p) random variables, then 
Y1 1 Y2 1 . . . 1 Ys , negbin(s, p).

 2.  If Y1, Y2, . . . is a sequence of independent Bernoulli(p) random vari-
ables and X 5 min{i: Oi

j51 Yj 5 s} 2 s, then X , negbin(s, p).
 3.  If X1, X2, . . . , Xm  are independent random variables and Xi , negbin(si, p), 

then X1 1 X2 1 . . . 1 Xm , negbin(s1 1 s2 1 . . . 1 sm, p).
 4. The negbin(1, p) and geom(p) distributions are the same.

TABLE 6.4 (continued)

Negative binomial negbin(s, p)

(continued)
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Poisson Poisson(L)

Possible applications Number of events that occur in an interval of time when the events are 
   occurring at a constant rate (see Sec. 6.12); number of items in a batch 

of random size; number of items demanded from an inventory

Mass (see Fig. 6.23) p(x) 5 •
e2l lx

x!

0

if x [ {0, 1, . . .}

otherwise

Distribution F(x) 5 •
0

e2l^
:x;

i50

 
li

i!

if x , 0

if x $ 0

Parameter l . 0

Range {0, 1, . . .}

Mean l

Variance l

TABLE 6.4 (continued)

p(x)
0.30

0.25

0.20

0.15

0.10

0.05

0
0 1 2 3 4 5 6 7 8 9 10 x

s � 2

s � 5
p(x)
0.30

0.25

0.20

0.15

0.10

0.05

0
0 1 2 3 4 5 6 7 8 9 10 x

p � 0.5

p � 0.5

FIGURE 6.22
negbin(s, p) mass functions.
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Mode el 2 1 and l

:l ;   
if l is an integer

otherwise

MLE l̂ 5 X(n).

Comments 1.  Let Y1, Y2, . . . be a sequence of nonnegative IID random variables, and let 
X 5 max{i: Oi

j51 Yj # 1}. Then the distribution of the Yi’s is expo(1yl) 
if and only if X , Poisson(l). Also, if X¿ 5 max{i: Oi

j51 Yj # l}, then 
the Yi’s are expo(1) if and only if X9 , Poisson(l) (see also Sec. 6.12).

 2.  If X1, X2, . . . , Xm are independent random variables and Xi , Poisson(li), 
then X1 1 X2 1 . . . 1 Xm , Poisson(l1 1 l2 1 . . . 1 lm).

TABLE 6.4 (continued)

Poisson Poisson(L)

FIGURE 6.23
Poisson(l) mass functions.
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p(x)

x

� � 2 0.6

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5 6 7 8 9 10

p(x)

x

� � 6

order. Let X(i) denote the ith smallest of the Xj’s, so that X(1) # X(2) # . . . # X(n). 
Then F is given by

F(x) 5 µ
0

i 2 1

n 2 1
1

x 2 X(i)

(n 2 1)(X(i11) 2 X(i))

1

  

if x , X(1)

if X(i) # x , X(i11)
  for i 5 1, 2, . . . , n 2 1

if X(n) # x

Figure 6.24 gives an illustration for n 5 6. Note that F(x) rises most rapidly 
over those ranges of x in which the Xi’s are most densely distributed, as desired. 
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Also, for each i, F(X(i)) 5 (i 2 1)y(n 2 1), which is approximately (for large n) the 
proportion of the Xj’s that are less than X(i); this is also the way we would like a con-
tinuous distribution function to behave. (See Prob. 6.5 for a discussion of another 
way to defi ne F.) However, one clear disadvantage of specifying this particular em-
pirical distribution is that random values generated from it during a simulation run 
can never be less than X(1) or greater than X(n) (see Sec. 8.3.16). Also, the mean of 
F(x) is not equal to the sample mean X(n) of the Xi’s (see Prob. 6.6).

If, however, the data are grouped, then a different approach must be taken since 
we do not know the values of the individual Xi’s. Suppose that the n Xi’s are grouped 
into k adjacent intervals [a0, a1), [a1, a2), . . . , [ak21, ak), so that the jth interval 
 contains nj observations, where n1 1 n2 1 . . . 1 nk 5 n. (Often the aj’s will be 
equally spaced, but we need not make this assumption.) A reasonable piecewise-
linear empirical distribution function G could be specifi ed by fi rst letting G(a0) 5 0 
and G(aj) 5 (n1 1 n2 1 . . . 1 nj)yn for j 5 1, 2, . . . , k. Then, interpolating linearly 
between the aj’s, we defi ne

 G(x) 5 µ
0

G(aj21) 1
x 2 aj21

aj 2 aj21
 [G(aj) 2 G(aj21)

1

]

if x , a0

if aj21 # x , aj
for j 5 1, 2, . . . , k

if ak # x

Figure 6.25 illustrates this specifi cation of an empirical distribution for k 5 4. In 
this case, G(aj) is the proportion of the Xi’s that are less than aj, and G(x) rises most 
rapidly over ranges of x where the observations are most dense. The random values 
generated from this distribution, however, will still be bounded both below (by a0) 
and above (by ak); see Sec. 8.3.16.

In practice, many continuous distributions are skewed to the right and have a 
density with a shape similar to that in Fig. 6.26. Thus, if the sample size n is not very 
large, we are likely to have few, if any, observations from the right tail of the true 
underlying distribution (since these tail probabilities are usually small). Moreover, 
the above empirical distributions do not allow random values to be generated 

FIGURE 6.24
Continuous, piecewise-linear empirical distribution function from 
original data.
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 beyond the largest observation. On the other hand, very large generated values can 
have a signifi cant impact on the disposition of a simulation run. For example, a large 
service time can cause considerable congestion in a queueing-type system. As a 
result, Bratley, Fox, and Schrage (1987, pp. 131–133, 150–151) suggest append-
ing an exponential distribution to the right side of the empirical distribution, which 
allows values larger than X(n) to be generated.

For discrete data, it is quite simple to defi ne an empirical distribution, provided 
that the original data values X1, X2, . . . , Xn are available. For each possible value x, 
an empirical mass function p(x) can be defi ned to be the proportion of the Xi’s that 
are equal to x. For grouped discrete data we could defi ne a mass function such that 
the sum of the p(x)’s over all possible values of x in an interval is equal to the 

FIGURE 6.25
Continuous, piecewise-linear empirical distribution function from grouped 
data.

n1�n

(n1 � n2)�n

(n1 � n2 � n3)�n

1

G(x)

a0 a1 a2 a3 a4 x

FIGURE 6.26
Typical density function experienced in practice.

f(x)

x

Law01323_ch06_279-323.indd Page 315  11/10/13  8:56 PM user-f-w-198 Law01323_ch06_279-323.indd Page 315  11/10/13  8:56 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



316 selecting input probability distributions

 proportion of the Xi’s in that interval. How the individual p(x)’s are allocated for the 
possible values of x within an interval is essentially arbitrary.

6.3 
TECHNIQUES FOR ASSESSING 
SAMPLE INDEPENDENCE

An important assumption made by many of the statistical techniques discussed in 
this chapter is that the observations X1, X2, . . . , Xn are an independent (or random) 
sample from some underlying distribution. For example, maximum-likelihood esti-
mation (see Sec. 6.5) and chi-square tests (see Sec. 6.6.2) assume independence. If 
the assumption of independence is not satisfi ed, then these statistical techniques 
may not be valid. However, even when the data are not independent, heuristic tech-
niques such as histograms can still be used.

Sometimes observations collected over time are dependent. For example, sup-
pose that X1, X2, . . . represent hourly temperatures in a certain city starting at noon 
on a particular day. We would not expect these data to be independent, since hourly 
temperatures close together in time should be positively correlated. As a second ex-
ample, consider the single-server queueing system in Sec. 1.4. Let X1, X2, . . . be the 
delays in queue of the successive customers arriving to the system. If the arrival rate 
of customers is close to the service rate, the system will be congested and the Xi’s 
will be highly positively correlated (see Sec. 4.3).

We now describe two graphical techniques for informally assessing whether the 
data X1, X2, . . . , Xn (listed in time order of collection) are independent. The correla-
tion plot is a graph of the sample correlation r̂j (see Sec. 4.4) for j 5 1, 2, . . . , l 
(l is a positive integer). The sample correlation r̂j is an estimate of the true correla-
tion rj between two observations that are j observations apart in time. (Note that 
21 # rj # 1.) If the observations X1, X2, . . . , Xn are independent, then rj 5 0 for j 5 1, 
2, . . . , n 2 1. However, the r̂j’s will not be exactly zero even when the Xi’s are 
 independent, since r̂j is an observation of a random variable whose mean is not 
equal to 0 (see Sec. 4.4). If the r̂j’s differ from 0 by a signifi cant amount, then this 
is strong evidence that the Xi’s are not independent.

The scatter diagram of the observations X1, X2, . . . , Xn is a plot of the pairs 
(Xi, Xi11) for i 5 1, 2, . . . , n 2 1. Suppose for simplicity that the Xi’s are nonnegative. 
If the Xi’s are independent, one would expect the points (Xi, Xi11) to be scattered 
randomly throughout the fi rst quadrant of the (Xi, Xi11) plane. The nature of the scat-
tering will, however, depend on the underlying distributions of the Xi’s. If the Xi’s 
are positively correlated, then the points will tend to lie along a line with positive 
slope in the fi rst quadrant. If the Xi’s are negatively correlated, then the points will 
tend to lie along a line with negative slope in the fi rst quadrant.

E X A M P L E  6 . 2 .  In Figs. 6.27 and 6.28 we give the correlation plot and scatter diagram 
for 100 independent observations from an exponential distribution with a mean of 1. 
Note in Fig. 6.27 that the sample correlations are close to 0, but have absolute values as 
large as 0.16. The scattering of the points in Fig. 6.28 substantiates the independence of 
the exponential data.
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FIGURE 6.27
Correlation plot for independent exponential data.

FIGURE 6.28
Scatter diagram for independent exponential data.
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318 selecting input probability distributions

E X A M P L E  6 . 3 .  In Figs. 6.29 and 6.30 we present the correlation plot and scatter dia-
gram for 100 delays in queue from an M/M/1 queueing system (see Sec. 1.4.3) with uti-
lization factor r 5 0.8. Note that the r̂j’s are large for small values of j and that the 
points in the scatter diagram tend to lie along a line with positive slope. These facts are 
consistent with our statement that delays in queue are positively correlated.

There are also several nonparametric (i.e., no assumptions are made about the 
distributions of the Xi’s) statistical tests that can be used to test formally whether 
X1, X2, . . . , Xn are independent. Bartels (1982) proposes a rank version of von 
 Neumann’s ratio as a test statistic for independence and provides the necessary crit-
ical values to carry out the test. However, one potential drawback is that the test 
assumes that there are no “ties” in the data, where a tie means Xi 5 Xj for i fi j. This 
requirement will generally not be met for discrete data, and may not even be satis-
fi ed for continuous data if they are recorded with only a few decimal places of ac-
curacy. (See the interarrival times in Table 6.7.) Bartels states that his critical values 
may still be reasonably accurate if the number of ties is small.

There are several versions of the runs test [see, for example, Sec. 7.4.1 and 
 Gibbons (1985)], which can also be used to assess the independence of the Xi’s. 
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FIGURE 6.29
Correlation plot for correlated queueing data.
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They should have less diffi culty with ties than the rank von Neumann test, since 
runs tests require only that Xi fi Xi11 for i 5 1, 2, . . . , n 2 1. On the other hand, 
Bartels showed empirically that the rank von Neumann test is considerably more 
powerful than one of the runs tests against certain types of alternatives to the Xi’s 
being independent.

6.4 
ACTIVITY I: HYPOTHESIZING FAMILIES 
OF DISTRIBUTIONS

The fi rst step in selecting a particular input distribution is to decide what general 
families—e.g., exponential, normal, or Poisson—appear to be appropriate on the 
basis of their shapes, without worrying (yet) about the specifi c parameter values for 
these families. This section describes some general techniques that can be used to 
hypothesize families of distributions that might be representative of a simulation 
input random variable.

In some situations, use can be made of prior knowledge about a certain random 
variable’s role in a system to select a modeling distribution or at least rule out some 

3.51
Xi

0
0

3.51
Xi � 1

FIGURE 6.30
Scatter diagram for correlated queueing data.
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320 selecting input probability distributions

distributions; this is done on theoretical grounds and does not require any data at all. 
For example, if we feel that customers arrive to a service facility one at a time, at a 
constant rate, and so that the numbers of customers arriving in disjoint time inter-
vals are independent, then there are theoretical reasons (see Sec. 6.12.1) for postu-
lating that the interarrival times are IID exponential random variables. Recall also 
that several discrete distributions—binomial, geometric, and negative binomial— 
were developed from a physical model. Often the range of a distribution rules it out 
as a modeling distribution. Service times, for example, should not be generated 
 directly from a normal distribution (at least in principle), since a random value from 
any normal distribution can be negative. The proportion of defective items in a large 
batch should not be assumed to have a gamma distribution, since proportions must 
be between 0 and 1, whereas gamma random variables have no upper bound. Prior 
information should be used whenever available, but confi rming the postulated dis-
tribution with data is also strongly recommended.

In practice, we seldom have enough of this kind of theoretical prior information 
to select a single distribution, and the task of hypothesizing a distribution family 
from observed data is somewhat less structured. In the remainder of this section, we 
discuss various heuristics, or guidelines, that can be used to help one choose appro-
priate families of distributions.

6.4.1 Summary Statistics

Some distributions are characterized at least partially by functions of their true pa-
rameters. In Table 6.5 we give a number of such functions, formulas to estimate 
these functions from IID data X1, X2, . . . , Xn [these estimates are called summary 
(or descriptive) statistics], an indication of whether they are applicable to continu-
ous (C) or discrete (D) data, and comments about their interpretation or use. (We 
have included the sample minimum and maximum because of their utility, even 
though they may not be a direct function of a distribution’s parameters.) Further 
discussion of many of these functions may be found in Chap. 4.

These functions might be used in some cases to suggest an appropriate distri-
bution family. For a symmetric continuous distribution (e.g., normal), the mean m is 
equal to the median x0.5. (For a symmetric discrete distribution, the population mean 
and median may be only approximately equal; see the defi nition of the median in 
Sec. 4.2.) Thus, if the estimates X(n) and x̂0.5(n) are “almost equal,” this is some 
 indication that the underlying distribution may be symmetric. One should keep in 
mind that X(n) and x̂0.5(n) are observations of random variables, and thus their re-
lationship does not necessarily provide defi nitive information about the true relation-
ship between m and x0.5.

The coeffi cient of variation cv can sometimes provide useful information about 
the form of a continuous distribution. In particular, cv 5 1 for the exponential 
 distribution, regardless of the scale parameter b. Thus, cv̂(n)  being close to 1 sug-
gests that the underlying distribution is exponential. For the gamma and Weibull 
distributions, cv is greater than, equal to, or less than 1 when the shape parameter a 
is less than, equal to, or greater than 1, respectively. Furthermore, these distributions 
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TABLE 6.5

Useful summary statistics

  Continuous (C) 
Function  Sample estimate (summary statistic)  or discrete (D) Comments

Minimum, maximum X(1), X(n) C, D  [X(1), X(n)] is a rough 
 estimate of the range

Mean m X(n) C, D  Measure of central 
 tendency

Median x0.5 x̂0.5(n) 5 eX((n11)y2)

[X(ny2) 1 X((ny2)11)]y2
  

if n is odd

if n is even
 C, D  Alternative measure of 

 central tendency

Variance s2 S2(n) C, D Measure of variability

Coeffi cient of variation, cv 5
2s2

m
 cv̂(n) 5

2S2(n)

X(n)
 C  Alternative measure of 

 variability

Lexis ratio, t 5
s2

m
 t̂(n) 5

S2(n)

X(n)
 D  Alternative measure of 

 variability

Skewness, n 5
E[(X 2 m)3]

(s2)3y2
 n̂(n) 5

n2

(n 2 1)(n 2 2)
 
^

n

i51

[Xi 2 X(n)]3yn

[S2(n)]3y2
 C, D Measure of symmetry
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322 selecting input probability distributions

will have a shape similar to the density function in Fig. 6.26 when a . 1, which 
implies that cv , 1. On the other hand, the lognormal distribution always has a den-
sity with a shape similar to that in Fig. 6.26, but its cv can be any positive real num-
ber. Thus, if the underlying distribution (observed histogram) has this shape and 
cv̂(n) . 1, the lognormal may be a better model than either the gamma or Weibull. 
For the remainder of the distributions in Table 6.3, the cv is not particularly useful. 
[In fact, cv is not even well defi ned for distributions such as U(2c, c) (for c . 0) or 
N(0, s2), since the mean m is zero.]

For a discrete distribution, the lexis ratio t plays the same role that the coeffi -
cient of variation does for a continuous distribution. We have found the lexis ratio to 
be very useful in discriminating among the Poisson, binomial, and negative binomial 
distributions, since t 5 1, t , 1, and t . 1, respectively, for these distributions. 
(Note that the geometric distribution is a special case of the negative binomial.)

The skewness n is a measure of the symmetry of a distribution. For symmetric 
distributions like the normal, n 5 0. If n . 0 (e.g., n 5 2 for the exponential distri-
bution), the distribution is skewed to the right; if n , 0, the distribution is skewed to 
the left. Thus, the estimated skewness n̂(n) [see Joanes and Gill (1998)] can be used 
to ascertain the shape of the underlying distribution. Our experience indicates that 
many distributions encountered in practice are skewed to the right.

It is possible to defi ne another function of a distribution’s parameters, called the 
kurtosis, which is a measure of the “tail weight” of a distribution [see, for exam-
ple, Kendall, Stuart, and Ord (1987, pp. 107–108)]. However, we have not found the 
kurtosis to be very useful for discriminating among distributions.

6.4.2 Histograms

For a continuous data set, a histogram is essentially a graphical estimate (see the 
discussion below) of the plot of the density function corresponding to the distribu-
tion of our data X1, X2, . . . , Xn. Density functions, as shown in Figs. 6.5 through 
6.16, tend to have recognizable shapes in many cases. Therefore, a graphical esti-
mate of a density should provide a good clue to the distributions that might be tried 
as a model for the data.

To make a histogram, we break up the range of values covered by the data into 
k disjoint adjacent intervals [b0, b1), [b1, b2), . . . , [bk21, bk). All the intervals 
should be the same width, say, Db 5 bj 2 bj21, which might necessitate throwing 
out a few extremely large or small Xi’s to avoid getting an unwieldy-looking his-
togram plot. For j 5 1, 2, . . . , k, let hj be the proportion of the Xi’s that are in the 
jth interval [bj21, bj). Finally, we defi ne the function

 h(x) 5 •
0

hj

0

  

if x , b0

if bj21 # x , bj

if bk # x

  for j 5 1, 2, . . . , k

which we plot as a function of x. (See Example 6.4 below for an illustration of a his-
togram.) The plot of h, which is piecewise-constant, is then compared with plots of 
densities of various distributions on the basis of shape alone (location and scale 
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differences are ignored) to see what distributions have densities that resemble the 
histogram h.

To see why the shape of h should resemble the true density f of the data, let X 
be a random variable with density f, so that X is distributed as the Xi’s. Then, for any 
fi xed j ( j 5 1, 2, . . . , k),

 P(bj21 # X , bj) 5 #
bj

bj21

f(x) dx 5 ¢b f(y)

for some number y [ (bj21, bj). (The fi rst equation is by the defi nition of a continu-
ous random variable, and the second follows from the mean-value theorem of 
 calculus.) On the other hand, the probability that X falls in the jth interval is approx-
imated by hj, which is the value of h(y). Therefore,

 h(y) 5 hj < ¢b f(y)

so that h(y) is roughly proportional to f(y); that is, h and f have roughly the same shape. 
(Actually, an estimate of f is obtained by dividing the function h by the constant Db.)

Histograms are applicable to any continuous distribution and provide a readily 
interpreted visual synopsis of the data. Furthermore, it is easy to “eyeball” a his-
togram in reference to certain density functions. There are, however, certain diffi -
culties. Most vexing is the absence of a defi nitive guide for choosing the number of 
intervals k (or, equivalently, their width Db).

Several rules of thumb have been suggested for choosing the number of inter-
vals k {e.g., Sturges’s rule [see Hoaglin, Mosteller, and Tukey (1983, pp. 23–24)] 
and a normal approximation due to Scott (1979)}. The best known of these guide-
lines is probably Sturges’s rule, which says that k should be chosen according to the 
following formula:
 k 5 :1 1 log2 n ; 5 :1 1 3.322 log10 n ;
However, in general, we do not believe that such rules are very useful (see Exam-
ple 6.4). We recommend trying several different values of Db and choosing the 
smallest one that gives a “smooth” histogram. This is clearly a matter of some sub-
jectivity and represents the major problem in using histograms. If Db is chosen too 
small, the histogram will have a “ragged” shape since the variances of the hj’s will 
be large. If Db is chosen too large, then the histogram will have a “block-like” 
shape, and the true shape of the underlying density will be masked since the data 
have been overaggregated. In particular, a large spike in the density function near 
x 5 0 or elsewhere (see Fig. 6.12) could be missed if Db is too large.

As we have noted, a histogram is an estimate (except for rescaling) of the  density 
function. There are many other ways in which the density function can be estimated 
from data, some of which are quite sophisticated. We refer the interested reader to the 
survey paper of Wegman (1982, pp. 309–315) and the book by Silverman (1986).

The probability mass function corresponding to a discrete data set can also be 
estimated by using a histogram. For each possible value xj that can be assumed by 
the data, let hj be the proportion of the Xi’s that are equal to xj. Vertical bars of height 
hj are plotted versus xj, and this is compared with the mass functions of the discrete 
distributions in Sec. 6.2.3 on the basis of shape.

For a discrete data set, hj (which is a random variable) is an unbiased estimator 
of p(xj), where p(x) is the true (unknown) mass function of the data (see Prob. 6.7). 
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324 selecting input probability distributions

However, in this case we need not make any arbitrary subjective decisions about 
interval width and placement.

There are certain situations in which the histogram will have several local 
modes (or “humps”), in which case none of the standard distributions discussed 
in Sec. 6.2 may provide an adequate representation. In Fig. 6.31 we give such an 
example, which might represent (continuous) times to repair some machine col-
lected over a 1-year period. There are two types of breakdowns for the machine. 
Most of the breakdowns are minor, and the corresponding repair time is relatively 
small; this case corresponds to the left hump in Fig. 6.31. A small proportion of the 
breakdowns are major and have large repair times, since spare parts need to be 
 ordered. This results in the right hump in Fig. 6.31. If the observed repair times can 
be separated into these two cases (corresponding to minor and major repairs), with 
pj being the proportion of observations for case j ( j 5 1, 2), then a density fj(x) is fi t 
to the class j observations ( j 5 1, 2) using the methods discussed in Secs. 6.4 
through 6.6. Thus, the overall repair-time density f (x) is given by

 f(x) 5 p1 f1(x) 1 p2 f2(x)

and random repair times can be generated from f(x) during a simulation by using the 
composition technique (see Sec. 8.2.2). See Sec. 6.9 and Prob. 6.8 for alternative 
methods for modeling a histogram with several modes.

6.4.3 Quantile Summaries and Box Plots

The quantile summary [see, for example, Tukey (1970)] is a synopsis of the sample 
that is useful for determining whether the underlying probability density function 
or probability mass function is symmetric or skewed to the right or to the left. It 
is applicable to either continuous or discrete data sets; however, for expository 
 convenience we will explain it only for the continuous case.

FIGURE 6.31
Histogram corresponding to a density function with two local modes.
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Suppose that F(x) is the distribution function for a continuous random variable. 
Suppose further that F(x) is continuous and strictly increasing when 0 , F(x) , 1. 
[This means that if x1 , x2 and 0 , F(x1) # F(x2) , 1, then in fact F(x1) , F(x2).] 
For 0 , q , 1, the q-quantile of F(x) is that number xq such that F(xq) 5 q. If 
F21 denotes the inverse of F(x), then xq 5 F21(q). {F21 is that function such that 
F[F21(x)] 5 F21[F(x)] 5 x.} Here we are particularly interested in the median x0.5, 
the lower and upper quartiles x0.25 and x0.75, and the lower and upper octiles x0.125 and 
x0.875. A quantile summary for the sample X1, X2 , . . . , Xn has a form that is given in 
Table 6.6.

In Table 6.6, if the “depth” subscript l (l is equal to i, j, or k) is halfway between 
the integers m and m9 5 m 1 1, then X(l) is defi ned to be the average of X(m) and X(m9). 
The value X(i) is an estimate of the median, X( j) and X(n2j11) are estimates of the 
quartiles, and X(k) and X(n2k11) are estimates of the octiles. If the underlying distribu-
tion of the Xi’s is symmetric, then the four midpoints should be approximately 
equal. On the other hand, if the underlying distribution of the Xi’s is skewed to the 
right (left), then the four midpoints (from the top to the bottom of the table) should 
be increasing (decreasing).

A box plot is a graphical representation of the quantile summary (see Fig. 6.33). 
Fifty percent of the observations fall within the horizontal boundaries of the box 
[x0.25, x0.75]. (In some books, box plots do not contain octiles.)

The following two examples illustrate the use of the techniques discussed in 
Sec. 6.4.

E X A M P L E  6 . 4 .  A simulation model was developed for a drive-up banking facility, 
and data were collected on the arrival pattern for cars. Over a fi xed 90-minute interval, 
220 cars arrived, and we noted the (continuous) interarrival time Xi (in minutes) between 
cars i and i 1 1, for i 5 1, 2, . . . , 219. Table 6.7 lists these n 5 219 interarrival times 
after they have been sorted into increasing order. The numbers of cars arriving in the 
six consecutive 15-minute intervals were counted and found to be approximately equal, 
suggesting that the arrival rate is somewhat constant over this 90-minute interval. Fur-
thermore, cars arrive one at a time, and there is no reason to believe that the numbers of 
arrivals in disjoint intervals are not independent. Thus, on theoretical grounds (see 
Sec. 6.12.1) we postulate that the interarrival times are exponential. To substantiate this 
hypothesis, we fi rst look at the summary statistics given in Table 6.8. Since X(219) 5 
0.399 . 0.270 5 x̂0.5(219) and n̂(219) 5 1.478, this suggests that the underlying dis-
tribution is skewed to the right, rather than symmetric. Furthermore, cv̂(219) 5 0.953, 
which is close to the theoretical value of 1 for the exponential distribution. Next we 
made three different histograms of the data, using b0 5 0 in each case and Db 5 0.050, 
0.075, and 0.100, as shown in Fig. 6.32 (see also Fig. 6.2). The smoothest-looking 

TABLE 6.6

Structure of the quantile summary for the sample X1, X2, . . . , Xn

Quantile Depth Sample value(s) Midpoint

Median i 5 (n 1 1)y2  X(i) X(i)

Quartiles j 5 ( :i; 1 1)y2 X( j) X(n2j11) [X( j) 1 X(n2j11)]y2
Octiles k 5 ( : j; 1 1)y2 X(k) X(n2k11) [X(k) 1 X(n2k11)]y2
Extremes 1 X(1) X(n) [X(1) 1 X(n)]y2
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TABLE 6.7

n 5 219 interarrival times (minutes) sorted into increasing order

0.01 0.06 0.12 0.23 0.38 0.53 0.88
0.01 0.07 0.12 0.23 0.38 0.53 0.88
0.01 0.07 0.12 0.24 0.38 0.54 0.90
0.01 0.07 0.13 0.25 0.39 0.54 0.93
0.01 0.07 0.13 0.25 0.40 0.55 0.93
0.01 0.07 0.14 0.25 0.40 0.55 0.95
0.01 0.07 0.14 0.25 0.41 0.56 0.97
0.01 0.07 0.14 0.25 0.41 0.57 1.03
0.02 0.07 0.14 0.26 0.43 0.57 1.05
0.02 0.07 0.15 0.26 0.43 0.60 1.05
0.03 0.07 0.15 0.26 0.43 0.61 1.06
0.03 0.08 0.15 0.26 0.44 0.61 1.09
0.03 0.08 0.15 0.26 0.45 0.63 1.10
0.04 0.08 0.15 0.27 0.45 0.63 1.11
0.04 0.08 0.15 0.28 0.46 0.64 1.12
0.04 0.09 0.17 0.28 0.47 0.65 1.17
0.04 0.09 0.18 0.29 0.47 0.65 1.18
0.04 0.10 0.19 0.29 0.47 0.65 1.24
0.04 0.10 0.19 0.30 0.48 0.69 1.24
0.05 0.10 0.19 0.31 0.49 0.69 1.28
0.05 0.10 0.20 0.31 0.49 0.70 1.33
0.05 0.10 0.21 0.32 0.49 0.72 1.38
0.05 0.10 0.21 0.35 0.49 0.72 1.44
0.05 0.10 0.21 0.35 0.50 0.72 1.51
0.05 0.10 0.21 0.35 0.50 0.74 1.72
0.05 0.10 0.21 0.36 0.50 0.75 1.83
0.05 0.11 0.22 0.36 0.51 0.76 1.96
0.05 0.11 0.22 0.36 0.51 0.77
0.05 0.11 0.22 0.37 0.51 0.79
0.06 0.11 0.23 0.37 0.52 0.84
0.06 0.11 0.23 0.38 0.52 0.86
0.06 0.12 0.23 0.38 0.53 0.87

TABLE 6.8

Summary statistics for the 
interarrival-time data

Summary statistic Value

Minimum 0.010
Maximum 1.960
Mean 0.399
Median 0.270
Variance 0.144
Coeffi cient of variation 0.953
Skewness 1.478
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(continued)

FIGURE 6.32
Histograms of the interarrival-time data in Table 6.7: (a) Db 5 0.050; 
(b) Db 5 0.075; (c) Db 5 0.100.
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328 selecting input probability distributions

 histogram appears to be for Db 5 0.100 and its shape resembles that of an exponential 
density. (Note that Sturges’s rule gives k 5 8 and Db 5 0.250, resulting in overaggrega-
tion of the data.) Finally, in Fig. 6.33 we give the quantile summary and box plot for the 
interarrival times. The increasing midpoints and the elongated nature of the right side of 
the box plot reaffi rm that the underlying distribution is exponential. In summary, for 
both theoretical and empirical reasons, we hypothesize that the interarrival times are 
exponential.

FIGURE 6.32
(continued)
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(c)

Quantile Depth Sample value(s) Midpoint

Median 110  0.270  0.270
Quartiles 55.5 0.100  0.545 0.323
Octiles 28 0.050  0.870 0.460
Extremes 1 0.010  1.960 0.985

FIGURE 6.33
Quantile summary and box plot for the interarrival-time data.
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E X A M P L E  6 . 5 .  Table 6.9 gives the values and counts for n 5 156 observations on the 
(discrete) number of items demanded in a week from an inventory over a 3-year period, 
arranged into increasing order. Rather than giving all the individual values, we give the 
frequency counts; 59 Xi’s were equal to 0, 26 Xi’s were equal to 1, etc. Summary statis-
tics and a histogram for these data are given in Table 6.10 and Fig. 6.34, respectively. 

TABLE 6.9

Values and counts for n 5 156 demand sizes arranged 
into increasing order

0(59), 1(26), 2(24), 3(18), 4(12),
5(5), 6(4), 7(3), 9(3), 11(2)

TABLE 6.10

Summary statistics for the 
demand-size data

Summary statistic Value

Minimum 0.000
Maximum 11.000
Mean 1.891
Median 1.000
Variance 5.285
Lexis ratio 2.795
Skewness 1.687

FIGURE 6.34
Histogram of the demand-size data in Table 6.9.
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330 selecting input probability distributions

Since the lexis ratio t̂(156) 5 2.795, the binomial and Poisson distributions do not seem 
likely models. Furthermore, the large positive value of the skewness n̂(156) 5 1.687 
would appear to rule out the discrete uniform distribution that is symmetric. Therefore, 
the possible discrete models (of those considered in this book) are the geometric and 
negative binomial distributions, with the former being a special case of the latter when 
s 5 1. However, based on the monotonically decreasing histogram in Fig. 6.34 (and the 
mass functions in Fig. 6.21), we hypothesize that the demand data are from a geometric 
distribution.

6.5 
ACTIVITY II: ESTIMATION OF PARAMETERS

After one or more candidate families of distributions have been hypothesized in 
Activity I, we must somehow specify the values of their parameters in order to have 
completely specifi ed distributions for possible use in the simulation. Our IID data 
X1, X2, . . . , Xn were used to help us hypothesize distributions, and these same data 
can also be used to estimate their parameters. When data are used directly in this 
way to specify a numerical value for an unknown parameter, we say that we are 
estimating that parameter from the data.

An estimator is a numerical function of the data. There are many ways to spec-
ify the form of an estimator for a particular parameter of a given distribution, and 
many alternative ways to evaluate the quality of an estimator. We shall consider 
explicitly only one type, maximum-likelihood estimators (MLEs), for three reasons: 
(1) MLEs have several desirable properties often not enjoyed by alternative methods 
of estimation, e.g., least-squares estimators, unbiased estimators, and the method of 
moments; (2) the use of MLEs turns out to be important in justifying the chi-square 
goodness-of-fi t test (see Sec. 6.6.2); and (3) the central idea of maximum-likelihood 
estimation has a strong intuitive appeal.

The basis for MLEs is most easily understood in the discrete case. Suppose that 
we have hypothesized a discrete distribution for our data that has one unknown 
 parameter u. Let pu(x) denote the probability mass function for this distribution, so 
that the parameter u is part of the notation. Given that we have already observed the 
IID data X1, X2, . . . , Xn, we defi ne the likelihood function L(u) as follows:

 L(u) 5 pu(X1)pu(X2) . . . pu(Xn)

Now L(u), which is just the joint probability mass function since the data are inde-
pendent (see Sec. 4.2), gives the probability (likelihood) of obtaining our observed 
data if u is the value of the unknown parameter. Then the MLE of the unknown 
value of u, which we denote by û, is defi ned to be the value of u that maximizes 
L(u); that is, L(û) $ L(u) for all possible values of u. Thus, û “best explains” the 
data we have collected. In the continuous case, MLEs do not have quite as simple 
an intuitive explanation, since the probability that a continuous random variable 
equals any fi xed number is always 0 [see Prob. 6.26 and Breiman (1973, pp. 67–68) 
for intuitive justifi cation of MLEs in the continuous case]. Nevertheless, MLEs for 
continuous distributions are defi ned analogously to the discrete case. If fu(x) denotes 
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the hypothesized density function (again we assume that there is only one unknown 
parameter u), the likelihood function is given by

 L(u) 5 fu(X1)fu(X2) . . . fu(Xn)

The MLE û of u is defi ned to be the value of u that maximizes L(u) over all permis-
sible values of u. The following two examples show how to compute MLEs for the 
distributions hypothesized earlier in Examples 6.4 and 6.5.

E X A M P L E  6 . 6 .  For the exponential distribution, u 5 b (b . 0) and fb(x) 5 (1yb)e2xyb 
for x $ 0. The likelihood function is

  L(b) 5 a
1

b
 e2X1ybb a

1

b
 e2X2ybb . . . a

1

b
 e2Xnybb

  5 b2n exp a2
1

b
^

n

i51

Xib

and we seek the value of b that maximizes L(b) over all b . 0. This task is more easily 
accomplished if, instead of working directly with L(b), we work with its logarithm. 
Thus, we defi ne the log-likelihood function as

 l(b) 5 ln L(b) 5 2n ln b 2
1

b
 ^

n

i51

Xi

Since the logarithm function is strictly increasing, maximizing L(b) is equivalent to 
maximizing l(b), which is much easier; that is, b̂ maximizes L(b) if and only if b̂ max-
imizes l(b). Standard differential calculus can be used to maximize l(b) by setting its 
derivative to zero and solving for b. That is,

 
dl

db
5

2n

b
1

1

b2 ^
n

i51

Xi

which equals zero if and only if b 5 On
i51 Xiyn 5 X(n). To make sure that b 5 X(n) is 

a maximizer of l(b) (as opposed to a minimizer or an infl ection point), a suffi cient (but 
not necessary) condition is that d 2lydb2, evaluated at b 5 X(n), be negative. But

 
d 2l

db2 5
n

b2 2
2

b3 ^
n

i51

Xi

which is easily seen to be negative when b 5 X(n) since the Xi’s are positive. Thus, the 
MLE of b is b̂ 5 X(n). Notice that the MLE is quite natural here, since b is the mean 
of the hypothesized distribution and the MLE is the sample mean. For the data of 
 Example 6.4, b̂ 5 X(219) 5 0.399.

E X A M P L E  6 . 7 .  The discrete data of Example 6.5 were hypothesized to come from a 
geometric distribution. Here u 5 p (0 , p , 1) and pp(x) 5 p(1 2 p)x for x 5 0, 1, . . . . 
The likelihood function is

 L(p) 5 pn(1 2 p)^
n
i51  Xi

which is again amenable to the logarithmic transformation to obtain

 l(p) 5 ln L(p) 5 n ln p 1 ^  
n

i51

Xi ln (1 2 p)
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Differentiating l(p), we get

 
dl

dp
5

n
p

2

^
n

i51

Xi

1 2 p

which equals zero if and only if p 5 1y[X(n) 1 1]. To make sure that this is a maxi-
mizer, note that

 
d 2l

dp2 5 2
n

p2 2

^
n

i51

Xi

(1 2 p)2 , 0

for any valid p. Thus, the MLE of p is p̂ 5 1y[X(n) 1 1], which is intuitively appeal-
ing (see Prob. 6.9). For the demand-size data of Example 6.5, p̂ 5 0.346.

The above two examples illustrate two important practical tools for deriving 
MLEs, namely, the use of the log-likelihood function and setting its derivative (with 
respect to the parameter being estimated) equal to zero to fi nd the MLE. While these 
tools are often useful in fi nding MLEs, the reader should be cautioned against 
 assuming that fi nding a MLE is always a simple matter of setting a derivative to 
zero and solving easily for û. For some distributions, neither the log-likelihood 
function nor differentiation is useful; probably the best-known example is the uni-
form distribution (see Prob. 6.10). For other distributions, both tools are useful, but 
solving dlydu 5 0 cannot be accomplished by simple algebra, and numerical meth-
ods must be used; the gamma, Weibull, and beta distributions are (multiparameter) 
examples of this general situation. We refer the reader to Breiman (1973, pp. 65–84) 
for examples of techniques used to fi nd MLEs for a variety of distributions.

We have said that MLEs have several desirable statistical properties, some of 
which are as follows [see Breiman (1973, pp. 85–88) and Kendall and Stuart (1979, 
chap. 18)]:

1. For most of the common distributions, the MLE is unique; that is, L(û) is strictly 
greater than L(u) for any other value of u.

2. Although MLEs need not be unbiased, in general, the asymptotic distribution 
(as n S `) of û has mean equal to u (see property 4 below).

3. MLEs are invariant; that is, if f 5 h(u) for some function h, then the MLE of f 
is h(û). (Unbiasedness is not invariant.) For example, the variance of an expo(b) 
random variable is b2, so the MLE of this variance is [X(n)]2.

4. MLEs are asymptotically normally distributed; that is, 1n(û 2 u) S$ N(0, d(u)), 
where d(u) 5 2nyE(d2lydu2) (the expectation is with respect to Xi, assuming that 
Xi has the hypothesized distribution) and S$  denotes convergence in distribu-
tion. Furthermore, if ũ is any other estimator such that 1n(ũ 2 u) S$ N(0, s2), 
then d(u) # s2. (Thus, MLEs are called best asymptotically normal.)

5. MLEs are strongly consistent; that is, limnS`û 5 u (w.p. 1).

The proofs of these and other properties sometimes require additional mild “regu-
larity” assumptions; see Kendall and Stuart (1979).

Property 4 is of special interest, since it allows us to establish an approximate 
 confi dence interval for u. If we defi ne d(u) as in property 4 above, it can be shown 
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that

 
û 2 u

2d(û)yn
S
$

N(0, 1)

as n S `. Thus, for large n an approximate 100(1 2 a) percent confi dence interval 
for u is

 û 6 z12ay2 B
d(û)

n
 (6.3)

E X A M P L E  6 . 8 .  Construct a 90 percent confi dence interval for the parameter p of the 
geometric distribution, and specialize it to the data of Example 6.5. It is easy to show 
that

 E c
d 2l

dp2 d 5 2
n

p2 2
n(1 2 p)yp

(1 2 p)2 5 2
n

p2(1 2 p)

so that d(p) 5 p2(1 2 p) and, for large n, an approximate 90 percent confi dence inter-
val for p is given by

 p̂ 6 1.645B
p̂2(1 2 p̂)

n

For the data of Example 6.5, we get 0.346 6 0.037.

This suggests a way of checking how sensitive a simulation output measure of 
performance is to a particular input parameter. The simulation could be run for u set 
at, say, the left endpoint, the center (û), and the right endpoint of the confi dence 
interval in (6.3). If the measure of performance appeared to be insensitive to values 
of u in this range, we could feel confi dent that we have an adequate estimate of u for 
our purposes. On the other hand, if the simulation appeared to be sensitive to u, we 
might seek a better estimate of u; this would usually entail collecting more data.

The general form of the above problem may be stated as follows. A simula-
tion model’s performance measures depend on the choice of input probability 
distributions and their associated parameters. When we choose the distributions 
to use for a simulation model, we generally don’t know with absolute certainty 
whether these are the correct distributions to use, and this lack of complete 
knowledge results in what we might call model uncertainty. Also, given that cer-
tain input distributions have been selected, we typically do not know with com-
plete certainty what parameters to use for these distributions, and we might call 
this parameter uncertainty. (Parameters are typically estimated from observed 
data or are specifi ed subjectively based on expert opinion.) The term input-model 
uncertainty is used to refer to these two issues collectively. Ideally, we would 
like to have a method for constructing a confi dence interval for a simulation per-
formance measure that takes into account both the sampling variability of the 
simulation model (see Chap. 9) and input-model uncertainty. Henderson (2003) 
says that such a method should be understandable by the simulation practitioner, 
based on sound statistical procedures, relatively easy to implement, and compu-
tationally effi cient.
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There have been a number of methods suggested for addressing the problem of 
input-model uncertainty, including the following [see Barton (2012) and Henderson 
(2003)]:

• Bayesian model averaging [Chick (2001), Zouaoui and Wilson (2003, 2004)]
• Delta-method approaches [Cheng and Holland (1997, 1998, 2004)]
• Metamodel-assisted bootstrapping [Barton et al. (2013), Chapter 12]; see Cheng 

(2006) and Efron and Tibshirani (1993) for a discussion of bootstrap resampling
• Nonparametic bootstrapping [Barton and Schruben (1993, 2001)]
• Quick method based on a random-effects model [Ankenman and Nelson (2012)]

Unfortunately, most of these methods are reasonably complicated and make 
assumptions that may not always be satisfi ed in practice [see Barton (2012) and 
Barton et al. (2013)]. For example, Bayesian model averaging and the delta-method 
approaches assume that the family (or families) of distributions (but not the param-
eter values) that best represents a source of system randomness is known in ad-
vance, which is unlikely to be true in most real-world applications.

So far, we have explicitly treated only distributions with a single unknown 
 parameter. If a distribution has several parameters, we can defi ne MLEs of these 
parameters in a natural way. For instance, the gamma distribution has two parame-
ters (a and b), and the likelihood function is defi ned to be

 L(a, b) 5

b2na
 aq

n

i51

 Xib
a21

 exp c2(1yb) ^
n

i51

Xi d

[G(a)]n

The MLEs â and b̂ of the unknown values of a and b are defi ned to be the values 
of a and b that ( jointly) maximize L(a, b). [Finding â and b̂ usually proceeds by 
letting l(a, b) 5 ln L(a, b) and trying to solve the equations 0 ly0a 5 0 and 0 ly0b 5 0 
simultaneously for a and b.] Analogs of the properties of MLEs listed above also 
hold in this multiparameter case. Unfortunately, the process of fi nding MLEs when 
there are several parameters is usually quite diffi cult. (The normal distribution is a 
notable exception.)

For each of the distributions in Secs. 6.2.2 (except for the Johnson SB, Johnson 
SU, and triangular distributions) and 6.2.3, we listed either formulas for the MLEs 
or a method for obtaining them numerically. For the gamma MLEs, Table 6.21 can 
be used with standard linear interpolation. For the beta MLEs, Table 6.22 can be 
used; one could either simply pick (â1, â2) corresponding to the closest table values 
of G1 and G2 or devise a scheme for two-dimensional interpolation.

6.6 
ACTIVITY III: DETERMINING HOW REPRESENTATIVE 
THE FITTED DISTRIBUTIONS ARE

After determining one or more probability distributions that might fi t our observed 
data in Activities I and II, we must now closely examine these distributions to see 
how well they represent the true underlying distribution for our data. If several of 
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these distributions are “representative,” we must also determine which distribution 
provides the best fi t. In general, none of our fi tted distributions will probably be 
exactly correct. What we are really trying to do is to determine a distribution that is 
accurate enough for the intended purposes of the model.

In this section we discuss both heuristic procedures and goodness-of-fi t 
 hypothesis tests for determining the “quality” of fi tted distributions.

6.6.1 Heuristic Procedures

We will discuss fi ve heuristic or graphical procedures for comparing fi tted distribu-
tions with the true underlying distribution; several additional techniques can be 
found in Averill M. Law & Associates (2013).

Density-Histogram Plots and Frequency Comparisons

For continuous data, a density-histogram plot can be made by plotting ¢b f̂ (x) 
over the histogram h(x) and looking for similarities. [Recall that the area under 
h(x) is Db.] A frequency comparison is an alternative graphical comparison of a 
histogram of the data with the density function f̂ (x) of a fi tted distribution. Let 
[b0, b1), [b1, b2), . . . , [bk21, bk) be a set of k histogram intervals each with width 
Db 5 bj 2 bj21. Let hj be the observed proportion of the Xi’s in the jth interval 
[bj21, bj) and let rj be the expected proportion of the n observations that would fall 
in the jth interval if the fi tted distribution were in fact the true one; i.e., rj is given 
by (see Prob. 6.13)

 rj 5 #
bj

bj21

f̂ (x) dx (6.4)

Then the frequency comparison is made by plotting both hj and rj in the jth histo-
gram interval for j 5 1, 2, . . . , k.

For discrete data, a frequency comparison is a graphical comparison of a histo-
gram of the data with the mass function p̂(x) of a fi tted distribution. Let hj be the 
observed proportion of the Xi’s that are equal to xj, and let rj be the expected propor-
tion of the n observations that would be equal to xj if the fi tted distribution were in 
fact the true one, i.e., rj 5 p̂(xj). Then the frequency comparison is made by plotting 
both hj and rj versus xj for all relevant values of xj.

For either the continuous or discrete case, if the fi tted distribution is a good 
representation for the true underlying distribution of the data (and if the sample size 
n is suffi ciently large), then rj and hj should closely agree.

E X A M P L E  6 . 9 .  For the interarrival-time data of Example 6.4, we hypothesized an 
exponential distribution and obtained the MLE b̂ 5 0.399 in Example 6.6. Thus, the 
density of the fi tted distribution is

 f̂ (x) 5 e
2.506e2xy0.399

0
  

if x $ 0

otherwise

For the histogram in Fig. 6.32(c), we give a density-histogram plot in Fig. 6.35.
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E X A M P L E  6 . 1 0 .  The demand-size data of Example 6.5 were hypothesized to have 
come from a geometric distribution, and the MLE of the parameter p was found in 
 Example 6.7 to be p̂ 5 0.346. Thus, the mass function of the fi tted distribution is

 p̂(x) 5 e
0.346(0.654)x

0
  

if x 5 0, 1, 2, . . .

otherwise

For the histogram in Fig. 6.34, rj 5 p̂(xj) 5 p̂( j 2 1) for j 5 1, 2, . . . , 12, and the 
frequency comparison is given in Fig. 6.36, where the hj’s are represented by the white 
vertical bars and the rj’s by the gray vertical bars. Once again, the agreement is good 
except possibly for x2 5 1.

Distribution-Function-Differences Plots

The density-histogram plot can be thought of as a comparison of the individual 
probabilities of the fi tted distribution and of the individual probabilities of the true 
underlying distribution. We can also make a graphical comparison of the cumulative 
probabilities (distribution functions). Defi ne a (new) empirical distribution function 
Fn(x) as follows:

 Fn(x) 5
number of Xi’s # x

n
 (6.5)

which is the proportion of the observations that are less than or equal to x. Then we 
could plot F̂(x) (the distribution function of the fi tted distribution) and Fn(x) on the 

FIGURE 6.35
Density-histogram plot for the fi tted exponential distribution and the interarrival-time data.
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same graph and look for similarities. However, distribution functions generally do 
not have as characteristic an appearance as density or mass functions do. In fact, 
many distribution functions have some sort of “S” shape, and eyeballing for differ-
ences or similarities in S-shaped curves is somewhat perplexing. We therefore de-
fi ne the distribution-function-differences plot to be a plot of the differences between 
F̂(x) and Fn(x), over the range of the data. If the fi tted distribution is a perfect fi t and 
the sample size is infi nite, then this plot will be a horizontal line at height 0. Thus, 
the greater the vertical deviations from this line, the worse the quality of fi t. Many 
fi tted distributions that are bad in an absolute sense have large deviations at the 
lower end of the range of the data.

E X A M P L E  6 . 1 1 .  A distribution-function-differences plot for the interarrival-time 
data of Example 6.4 and the fi tted exponential distribution is given in Fig. 6.37. This 
plot indicates a good fi t except possibly at the lower end of the range of the observed 
data. (The dotted horizontal lines are error bounds that depend on the sample size n. If 
a differences plot crosses these lines, then this is a strong indication of a bad fi t. These 
error bounds were determined from the differences for each of the 35,000 data sets 
discussed in Sec. 6.7.)

E X A M P L E  6 . 1 2 .  A distribution-function-differences plot for the demand-size data of 
Example 6.5 and the fi tted geometric distribution is given in Fig. 6.38. This plot indi-
cates a good fi t except possibly at the lower end of the range of the observed data.
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FIGURE 6.36
Frequency comparison for the fi tted geometric distribution and the demand-size data.
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FIGURE 6.37
Distribution-function-differences plot for the fi tted exponential distribution and the 
 interarrival-time data.
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FIGURE 6.38
Distribution-function-differences plot for the fi tted geometric distribution and the 
 demand-size data.
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Probability Plots

A probability plot can be thought of as another graphical comparison of an es-
timate of the true distribution function of our data X1, X2, . . . , Xn with the distribu-
tion function of a fi tted distribution. There are many kinds (and uses) of probability 
plots, only two of which we describe here; see Barnett (1975), Hahn and Shapiro 
(1994), and Wilk and Gnanadesikan (1968) for additional discussions.

As in Sec. 6.2.4, let X(i) be the ith smallest of the Xj’s, sometimes called the ith 
order statistic of the Xj’s. A reasonable estimate of the distribution function F(x) of 
a random variable X is Fn(x), which was defi ned by Eq. (6.5). Note that Fn(X(i)) 5 
iyn. For purposes of probability plotting, however, it turns out to be somewhat in-
convenient to have Fn(X(n)) 5 1, that is, to have an empirical distribution function 
that is equal to 1 for a fi nite value of x (see Prob. 6.14). We therefore will use the 
following empirical distribution function here:

 F̃n(X(i)) 5 Fn(X(i)) 2
0.5
n

5
i 2 0.5

n

for i 5 1, 2, . . . , n. [Clearly, for moderately large n, this adjustment is quite 
small. Other adjustments have been suggested, such as iy(n 1 1).] A straightfor-
ward procedure would then be to plot the n points (X(1), 0.5yn), (X(2), 1.5yn), . . . , 
(X(n), (n 2 0.5)yn), compare this result with a plot of the distribution function 
of a distribution being considered as a model for the data, and look for similari-
ties. However, as stated above, many distribution functions have some sort of 
“S”  shape, and eyeballing S-shaped curves for similarities or differences is 
 diffi cult. Most of us, however, can recognize whether a set of plotted points ap-
pears to lie more or less along a straight line, and probability-plotting techniques 
 reduce the problem of comparing distribution functions to one of looking for a 
straight line.

Let qi 5 (i 2 0.5)yn for i 5 1, 2, . . . , n, so that 0 , qi , 1. For any continuous 
data set (see Prob. 6.15), a quantile–quantile (Q–Q) plot (see Sec. 6.4.3 for the 
 defi nition of a quantile) is a graph of the qi-quantile of a fi tted (model) distribution 
function F̂(x), namely, xM

qi
5 F̂21(qi), versus the qi-quantile of the empirical distri-

bution function F̃n(x), namely, xS
qi

5 F̃21
n (qi) 5 X(i), for i 5 1, 2, . . . , n. The defi ni-

tion of a Q–Q plot is illustrated in Fig. 6.39, where we have represented F̃n(x) as a 
smooth curve for convenience. Corresponding to each ordinate value q are the two 
quantiles xM

q and xS
q .

If F̂(x) is the same distribution as the true underlying distribution F(x), and if 
the sample size n is large, then F̂(x) and F̃n(x) will be close together and the Q–Q 
plot will be approximately linear with an intercept of 0 and a slope of 1. Even if F̂(x) 
is the correct distribution, there will be departures from linearity for small to mod-
erate sample sizes.

A probability–probability (P–P) plot is a graph of the model probability F̂(X(i)) 
versus the sample probability F̃n(X(i)) 5 qi, for i 5 1, 2, . . . , n; it is valid for both 
continuous and discrete data sets. This defi nition is also illustrated in Fig. 6.39.
Corresponding to each abscissa value p are the two probabilities F̂( p) and F̃n( p). If 
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340 selecting input probability distributions

F̂(x) and F̃n(x) are close together, then the P–P plot will also be approximately 
linear with an intercept of 0 and a slope of 1.

The Q–Q plot will amplify differences that exist between the tails of the model 
distribution function F̂(x) and the tails of the empirical distribution function F̃n(x), 
whereas the P–P plot will amplify differences between the middle of F̂(x) and the 
middle of F̃n(x). The difference between the right tails of the distribution functions 
in Fig. 6.40 is amplifi ed by the Q–Q plot but not the P–P plot. On the other hand, 
the difference between the “middles” of the two distribution functions in Fig. 6.41 
is amplifi ed by the P–P plot.

The above formulations of Q–Q and P–P plots implicitly assumed that 
the Xi’s were distinct (no ties); this certainly will not always be the case. To 
modify the defi nitions when the Xi’s may not be distinct, let Y1, Y2, . . . , Yl 
be the distinct values in the sample X1, X2, . . . , Xn arranged in increasing order, 

FIGURE 6.39
Defi nitions of Q–Q and P–P plots.
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FIGURE 6.40
The difference between the right tails of F̂(x) 
and F̃n(x) amplifi ed by the Q–Q plot.
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FIGURE 6.41
The difference between the “middles” of 
F̂(x) and F̃n(x) amplifi ed by the P–P plot.
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where l # n. (If the Xi’s are distinct, then Yi 5 X(i) for i 5 1, 2, . . . , n.) Let q9i be 
defi ned by

 q¿i 5 (proportion of Xj’s # Yi) 2
0.5
n

In other words, q¿i 5 F̃n(Yi). Then q9i replaces qi and Yi replaces X(i) in the defi nitions 
of Q–Q and P–P plots.

The construction of a Q–Q plot requires the calculation of the model quantile 
F̂21(qi). For the uniform, exponential, Weibull, and log-logistic distributions, 
there is no problem, since a closed-form expression for F̂21 is available. For the other 
continuous distributions, we give in Table 6.11 either a transformation for address-
ing the problem or a reference to a numerical approximation for F̂21. Also given in 
Table 6.11 are similar prescriptions for computing the model probability F̂(X(i)), 
which is required for a P–P plot. Functions for computing F̂ or F̂21 are also 
available in the IMSL Statistical Library [Rogue Wave (2013)], and the ExpertFit 
statistical package (see Sec. 6.7) performs Q–Q and P–P plots automatically.

E X A M P L E  6 . 1 3 .  A Q–Q plot for the fi tted exponential distribution and the  interarrival-
time data is given in Fig. 6.42. The plot is fairly linear except for large values of q9i. This 
is not uncommon, since the Q–Q plot will amplify small differences between F̂(x) and 
F̃n(x) when they are both close to 1. The corresponding P–P plot is given in Fig. 6.43. 
Its linearity indicates that the middle of the fi tted exponential agrees closely with the 
middle of the true underlying distribution.

TABLE 6.11

Approaches for computing F̂ or F̂21 for certain mathematically 
intractable distributions

 F̂ F̂21

Gamma See Bhattacharjee (1970) See Best and Roberts (1975)

Normal See Milton and Hotchkiss (1969) See Moro (1995)

Lognormal Fit a normal distribution  Same as F̂
   to Yi 5 ln Xi for i 5 1, 2, 

. . . , n; see Sec. 6.2.2

Beta See Bosten and Battiste (1974)  See Cran, Martin, 
 and Thomas (1977)

Pearson  Fit a gamma distribution Same as F̂
 type V   to Yi 5 1yXi for i 5 1, 2, 

. . . , n; see Sec. 6.2.2 

Pearson  Fit a beta distribution Same as F̂
 type VI   to Yi 5 Xiy(1 1 Xi) for 

i 5 1, 2, . . . , n; see Sec. 6.2.2

Johnson SB See the normal distribution Same as F̂

Johnson SU See the normal distribution Same as F̂
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FIGURE 6.42
Q–Q plot for exponential distribution and interarrival-time data.

E X A M P L E  6 . 1 4 .  The P–P plot for the fi tted geometric distribution and the demand-
size data is given in Fig. 6.44. Once again we fi nd the P–P plot to be reasonably linear, 
indicating agreement between the geometric and true distributions.

6.6.2 Goodness-of-Fit Tests

A goodness-of-fi t test is a statistical hypothesis test (see Sec. 4.5) that is used to as-
sess formally whether the observations X1, X2, . . . , Xn are an independent sample 
from a particular distribution with distribution function F̂. That is, a goodness-of-fi t 
test can be used to test the following null hypothesis:

 H0: The Xi’s are IID random variables with distribution function F̂

Before proceeding with a discussion of several specifi c goodness-of-fi t tests, we 
feel compelled to comment on the formal structure and properties of these tests. 
First, failure to reject H0 should not be interpreted as “accepting H0 as being true.” 
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These tests are often not very powerful for small to moderate sample sizes n; that is, 
they are not very sensitive to subtle disagreements between the data and the fi tted 
distribution. Instead, they should be regarded as a systematic approach for detecting 
fairly gross differences. On the other hand, if n is very large, then these tests will 
almost always reject H0 [see Gibbons (1985, p. 76)]. Since H0 is virtually never 
exactly true, even a minute departure from the hypothesized distribution will be 
detected for large n. This is an unfortunate property of these tests, since it is usually 
suffi cient to have a distribution that is “nearly” correct.

Chi-Square Tests

The oldest goodness-of-fi t hypothesis test is the chi-square test, which dates 
back at least to the paper of K. Pearson (1900). As we shall see, a chi-square test 
may be thought of as a more formal comparison of a histogram with the fi tted den-
sity or mass function (see the frequency comparison in Sec. 6.6.1).

To compute the chi-square test statistic in either the continuous or discrete case, 
we must fi rst divide the entire range of the fi tted distribution into k adjacent intervals 

FIGURE 6.43
P–P plot for exponential distribution and interarrival-time data.

0.998

0.025
0.025 0.998Observed probabilities

E
x
p
o
n
en

ti
al

 p
ro

b
ab

il
it

ie
s

Law01323_ch06_324-392.indd Page 345  06/11/13  8:33 AM f-500 Law01323_ch06_324-392.indd Page 345  06/11/13  8:33 AM f-500 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



346 selecting input probability distributions

[a0, a1), [a1, a2), . . . , [ak21, ak), where it could be that a0 5 2`, in which case the 
fi rst interval is (2`, a1), or ak 5 1`, or both. Then we tally

 Nj 5 number of Xi’s in the jth interval [aj21, aj)

for j 5 1, 2, . . . , k. (Note that Ok
j51 Nj 5 n.) Next, we compute the expected propor-

tion pj of the Xi’s that would fall in the jth interval if we were sampling from the 
fi tted distribution. In the continuous case,

 pj 5 #
aj

aj21

f̂ (x) dx

where f̂  is the density of the fi tted distribution. For discrete data,

 pj 5 ^
aj21#xi,aj

p̂(xi)

where p̂ is the mass function of the fi tted distribution. Finally, the test statistic is

 x2 5 ^
k

j51

(Nj 2 npj)
2

npj
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FIGURE 6.44
P–P plot for geometric distribution and demand-size data.

Law01323_ch06_324-392.indd Page 346  11/2/13  5:59 PM f-494 Law01323_ch06_324-392.indd Page 346  11/2/13  5:59 PM f-494 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



chapter six 347

Since npj is the expected number of the n Xi’s that would fall in the jth interval if H0 
were true (see Prob. 6.17), we would expect x2 to be small if the fi t were good. There-
fore, we reject H0 if x

2 is too large. The precise form of the test depends on whether we 
have estimated any of the parameters of the fi tted distribution from our data.

First, suppose that all parameters of the fi tted distribution are known; that is, we 
specifi ed the fi tted distribution without making use of the data in any way. [This all-
parameters-known case might appear to be of little practical use, but there are at 
least two applications for it in simulation: (1) In the Poisson-process test (later in 
this section), we test to see whether times of arrival can be regarded as being IID 
U(0, T ) random variables, where T is a constant independent of the data; and (2) in 
empirical testing of random-number generators (Sec. 7.4.1), we test for a U(0, 1) 
distribution.] Then if H0 is true, x2 converges in distribution (as n S `) to a chi-
square distribution with k 2 1 df, which is the same as the gamma[(k 2 1)y2, 2] 
distribution. Thus, for large n, a test with approximate level a is obtained by reject-
ing H0 if x

2 . x2
k21,12a (see Fig. 6.45), where x2

k21,12a is the upper 1 2 a critical 
point for a chi-square distribution with k 2 1 df. (Values for x2

k21,12a can be found 
in Table T.2 at the end of the book.) Note that the chi-square test is only valid, i.e., 
is of level a, asymptotically as n S `.

0 �2
k � 1, 1 � �

x

f (x)

Chi-square density with k � 1 df

Shaded area � � 

Do not reject Reject

FIGURE 6.45
The chi-square test when all parameters are known.
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Second, suppose that in order to specify the fi tted distribution, we had to esti-
mate m parameters (m $ 1) from the data. When MLEs are used, Chernoff and 
Lehmann (1954) showed that if H0 is true, then as n S ` the distribution function 
of x2 converges to a distribution function that lies between the distribution functions 
of chi-square distributions with k 2 1 and k 2 m 2 1 df. (See Fig. 6.46, where 
Fk21 and Fk2m21 represent the distribution functions of chi-square distributions with 
k 2 1 and k 2 m 2 1 df, respectively, and the dotted distribution function is the 
one to which the distribution function of x2 converges as n S `.) If we let x2

12a be 
the upper 1 2 a critical point of the asymptotic distribution of x2, then

 x2
k2m21,12a # x2

12a # x2
k21,12a

as shown in Fig. 6.46; unfortunately, the value of x2
12a will not be known in general. 

It is clear that we should reject H0 if x
2 . x2

k21,12a and we should not reject H0 if 
x2 , x2

k2m21,12a; an ambiguous situation occurs when

 x2
k2m21,12a # x2 # x2

k21,12a

It is often recommended that we reject H0 only if x2 . x2
k21,12a, since this is con-

servative; that is, the actual probability a9 of committing a Type I error [rejecting 
H0 when it is true (see Sec. 4.5)] is at least as small as the stated probability a (see 
Fig. 6.46). This choice, however, will entail loss of power (probability of rejecting 
a false H0) of the test. Usually, m will be no more than 2, and if k is fairly large, the 

1
1 � ��
1 � �

0

Reject

�2
1 � � �2

k � 1, 1 � �
�2

k � m � 1, 1 � �

Do not reject

x

Asymptotic distribution
function of �2 if H0
is true

Fk � m � 1(x)

Fk � 1(x)

FIGURE 6.46
The chi-square test when m parameters are estimated by their MLEs.
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difference between x2
k2m21,12a and x2

k21,12a will not be too great. Thus, we reject H0 
if (and only if ) x2 . x2

k21,12a, as in the all-parameters-known case. The rejection 
region for x2 is indicated in Fig. 6.46.

The most troublesome aspect of carrying out a chi-square test is choosing the 
number and size of the intervals. This is a diffi cult problem, and no defi nitive 
prescription can be given that is guaranteed to produce good results in terms of 
validity (actual level of the test close to the desired level a) and high power for all 
alternative distributions and all sample sizes. There are, however, a few guidelines 
that are often followed. First, some of the ambiguity in interval selection is elimi-
nated if the intervals are chosen so that p1 5 p2 5 . . . 5 pk, which is called the 
equiprobable approach. In the continuous case, this might be inconvenient to do 
for some distributions since the distribution function of the fi tted distribution 
must be inverted (see Example 6.15 below). Furthermore, for discrete distribu-
tions, we will generally be able to make the pj’s only approximately equal (see 
Example 6.16).

We now discuss how to choose the intervals to ensure “validity” of the test. Let 
a 5 min

1# j#k
 npj, and let y(5) be the number of npj’s less than 5. Based on extensive 

theoretical and empirical investigations (for the all-parameters-known case), Yarnold 
(1970) states that the chi-square test will be approximately valid if k $ 3 and 
a $ 5y(5)yk. For equiprobable intervals, these conditions will be satisfi ed if k $ 3 
and npj $ 5 for all j.

We now turn our attention to the power of the chi-square test. A test is said to 
be unbiased if it is more likely to reject H0 when it is false than when it is true or, in 
other words, power is greater than the probability of a Type I error. A test without 
this property would certainly be undesirable. It can be shown that the chi-square test 
is always unbiased for the equiprobable approach [see Kendall and Stuart (1979, 
pp. 455–461)]. If the npj’s are not equal (and many are small), it is possible to obtain 
a valid test that is highly biased [see Haberman (1988)].

In general, there is no rule for choosing the intervals so that high power is ob-
tained for all alternative distributions. For a particular null distribution, a fi xed sam-
ple size n, and the equiprobable approach, Kallenberg, Oosterhoff, and Schriever 
(1985) showed empirically that power is an increasing function of the number of 
intervals k for some alternative distributions, and a decreasing function of k for 
other alternative distributions. Surprisingly, they also found in certain cases that the 
power was greater when the npj’s were smaller in the tails (see Prob. 6.18).

In the absence of a defi nitive guideline for choosing the intervals, we recom-
mend the equiprobable approach and npj $ 5 for all j in the continuous case. This 
guarantees a valid and unbiased test. In the discrete case, we suggest making the 
npj’s approximately equal and all at least 5. The lack of a clear prescription for 
 interval selection is the major drawback of the chi-square test. In some situations 
entirely different conclusions can be reached from the same data set depending on 
how the intervals are specifi ed, as illustrated in Example 6.17. The chi-square test 
nevertheless remains in wide use, since it can be applied to any hypothesized distri-
bution; as we shall see below, other goodness-of-fi t tests do not enjoy such a wide 
range of applicability.
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E X A M P L E  6 . 1 5 .  We now use a chi-square test to compare the n 5 219 interarrival 
times of Table 6.7 with the fi tted exponential distribution having distribution function 
F̂(x) 5 1 2 e2xy0.399 for x $ 0. If we form, say, k 5 20 intervals with pj 5 1yk 5 0.05 
for j 5 1, 2, . . . , 20, then npj 5 (219)(0.05) 5 10.950, so that this satisfi es the 
 guidelines that the intervals be chosen with equal pj’s and npj $ 5. In this case, it is 
easy to fi nd the aj’s, since F̂ can be inverted. That is, we set a0 5 0 and a20 5 `, and 
for j 5 1, 2, . . . , 19 we want aj to satisfy F̂(aj) 5 jy20; this is equivalent to setting 
aj 5 20.399 ln (1 2 jy20) for j 5 1, 2, . . . , 19 since aj 5 F̂21( jy20). (For continuous 
 distributions such as the normal, gamma, and beta, the inverse of the distribution func-
tion does not have a simple closed form. In these cases, however, F21 can be evaluated 
by numerical methods; consult the references given in Table 6.11.) The computations 
for the test are given in Table 6.12, and the value of the test statistic is x2 5 22.188. Re-
ferring to Table T.2, we see that x2

19,0.90 5 27.204, which is not exceeded by x2, so we 
would not reject H0 at the a 5 0.10 level. (Note that we would also not reject H0 for 
certain larger values of a such as 0.25.) Thus, this test gives us no reason to conclude 
that our data are poorly fi tted by the expo(0.399) distribution.

E X A M P L E  6 . 1 6 .  As an illustration of the chi-square test in the discrete case, we test 
how well the fi tted geom(0.346) distribution agrees with the demand-size data of 
Table 6.9. As is usually the case for discrete distributions, we cannot make the pj’s 
 exactly equal, but by grouping together adjacent points on which the mass function p̂(x) 
is defi ned (here, the nonnegative integers), we can defi ne intervals that make the pj’s 
roughly the same. One way to do this is to note that the mode of the fi tted distribution is 0; 
thus, p̂(0) 5 0.346 is the largest value of the mass function. The large value for the 

TABLE 6.12

A chi-square goodness-of-fi t test for the interarrival-time data

 j Interval Nj npj 
(Nj 2 npj)

2

npj

 1 [0, 0.020) 8 10.950 0.795
 2 [0.020, 0.042) 11 10.950 0.000
 3 [0.042, 0.065) 14 10.950 0.850
 4 [0.065, 0.089) 14 10.950 0.850
 5 [0.089, 0.115) 16 10.950 2.329
 6 [0.115, 0.142) 10 10.950 0.082
 7 [0.142, 0.172) 7 10.950 1.425
 8 [0.172, 0.204) 5 10.950 3.233
 9 [0.204, 0.239) 13 10.950 0.384
10 [0.239, 0.277) 12 10.950 0.101
11 [0.277, 0.319) 7 10.950 1.425
12 [0.319, 0.366) 7 10.950 1.425
13 [0.366, 0.419) 12 10.950 0.101
14 [0.419, 0.480) 10 10.950 0.082
15 [0.480, 0.553) 20 10.950 7.480
16 [0.553, 0.642) 9 10.950 0.347
17 [0.642, 0.757) 11 10.950 0.000
18 [0.757, 0.919) 9 10.950 0.347
19 [0.919, 1.195) 14 10.950 0.850
20 [1.195, `) 10 10.950 0.082
    x2 5 22.188
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mode limits our choice of intervals, and we end up with the three intervals given in 
Table 6.13, where the calculations for the chi-square test are also presented. In particu-
lar, x2 5 1.930, which is less than the critical value x2

2,0.90 5 4.605. Thus, we would not 
reject H0 at the a 5 0.10 level, and we have no reason to believe that the demand-size 
data are not fi tted well by a geom(0.346) distribution.

E X A M P L E  6 . 1 7 .  If we fi t the log-logistic distribution to the 856 ship-loading times 
of Fig. 6.3, then we obtain the MLEs â 5 8.841 and b̂ 5 0.822 for the shape and 
scale parameters, respectively. We now perform a chi-square test at level a 5 0.1 
using k 5 10, 20, and 40 equiprobable intervals, with the results given in Table 6.14. 
(Note that all three choices for k satisfy the recommendation that npj $ 5.) We see 
that the log-logistic distribution is rejected for 20 intervals, but is not rejected for 
10 or 40 intervals.

Kolmogorov-Smirnov Tests

As we just saw, chi-square tests can be thought of as a more formal comparison 
of a histogram of the data with the density or mass function of the fi tted distribu-
tion. We also identifi ed a real diffi culty in using a chi-square test in the continuous 
case, namely, that of deciding how to specify the intervals. Kolmogorov-
Smirnov (K-S) tests for goodness of fi t, on the other hand, compare an empirical 
distribution function with the distribution function F̂ of the hypothesized 
 distribution. As we shall see, K-S tests do not require us to group the data in any 
way, so no information is lost; this also eliminates the troublesome problem 
of   interval specifi cation. Another advantage of K-S tests is that they are valid 
(exactly) for any sample size n (in the all-parameters-known case), whereas 
 chi-square tests are valid only in an asymptotic sense. Finally, K-S tests tend to 
be more powerful than chi-square tests against many alternative distributions; 
see, for example, Stephens (1974).

TABLE 6.13

A chi-square goodness-of-fi t test for the demand-size data

 j Interval Nj npj 
(Nj 2 npj)

2

npj

1 {0} 59 53.960 0.471
2 {1, 2} 50 58.382 1.203
3 {3, 4, . . .} 47 43.658 0.256
    x2 5 1.930

TABLE 6.14

Chi-square goodness-of-fi t tests for the ship-loading data

 k Statistic Critical value Result of test

 10 11.383 14.684 Do not reject
 20 27.645 27.204 Reject
 40 50.542 50.660 Do not reject
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Nevertheless, K-S tests do have some drawbacks, at least at present. Most seri-
ously, their range of applicability is more limited than that for chi-square tests. First, 
for discrete data, the required critical values are not readily available and must be 
computed using a complicated set of formulas [see Conover (1999, pp. 435–437), 
Gleser (1985), and Pettitt and Stephens (1977)]. Second, the original form of the 
K-S test is valid only if all the parameters of the hypothesized distribution are known 
and the distribution is continuous; i.e., the parameters cannot have been estimated 
from the data. However, the K-S test has been extended to allow for estimation of 
the parameters in the cases of normal (lognormal), exponential, Weibull, and log-
logistic distributions. Although the K-S test in its original (all-parameters-known) 
form has often been applied directly for any continuous distribution with estimated 
parameters and for discrete distributions, this will, in fact, produce a conservative 
test [see Conover (1999, pp. 432, 442)]. That is, the probability of a Type I error will 
be smaller than specifi ed, with a corresponding loss of power.

To defi ne the K-S statistic, we will use the empirical distribution function 
Fn(x) defi ned by Eq. (6.5), which is a (right-continuous) step function such that 
Fn(X(i)) 5 iyn for i 5 1, 2, . . . , n (see Prob. 6.19). If F̂(x) is the fi tted distribution 
function, a natural assessment of goodness of fi t is some kind of measure of the 
closeness between the functions Fn and F̂. The K-S test statistic Dn is simply the 
largest (vertical) distance between Fn(x) and F̂(x) for all values of x and is defi ned 
formally by

 Dn 5 sup
x

{ 0Fn(x) 2 F̂(x) 0}

[The “sup” of a set of numbers A is the smallest value that is greater than or equal 
to all members of A. The “sup” is used here instead of the more familiar “max” since, 
in some cases, the maximum may not be well defi ned. For example, if A 5 (0, 1), 
there is no maximum but the “sup” is 1.] The statistic Dn can be computed by 
calculating

 Dn
1 5 max

1# i#n
e

i
n

2 F̂(X(i)) f ,  Dn
2 5 max

1# i#n
e F̂(X(i)) 2

i 2 1
n
f

and fi nally letting

 Dn 5 max {Dn
1, Dn

2}

An example is given in Fig. 6.47 for n 5 4, where Dn 5 Dn
1. [Beware! Incorrect 

computational formulas are often given for Dn. In particular, one sometimes sees

 D¿n 5 max
1# i#n

e `
i
n

2 F̂(X(i)) ` f

as a “formula” for Dn. For the situation of Fig. 6.47, it is true that D9n 5 Dn. Con-
sider, however, Fig. 6.48, where D¿n 5 F̂(X(2)) 2 2

4 but the correct value for Dn is 
F̂(X(2)) 2 1

4, which occurs just before x 5 X(2). Clearly, D9n fi Dn in this case.] Direct 
computation of Dn

1 and Dn
2 requires sorting the data to obtain the X(i)’s. However, 

Gonzalez, Sahni, and Franta (1977) provide an algorithm for computing Dn
1 and 

Dn
2 without sorting.
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Clearly, a large value of Dn indicates a poor fi t, so that the form of the test is 
to reject the null hypothesis H0 if Dn exceeds some constant dn,12a, where a is the 
 specifi ed level of the test. The numerical value of the critical point dn,12a depends 
on how the hypothesized distribution was specifi ed, and we must distinguish 
several cases.

Case 1

If all parameters of F̂ are known, i.e., none of the parameters of F̂ is estimated 
in any way from the data, the distribution of Dn does not depend on F̂, assuming (of 
course) that F̂ is continuous. This rather remarkable fact means that a single table of 
values for dn,12a will suffi ce for all continuous distribution forms; these tables are 
widely available [see, for example, Owen (1962)]. Stephens (1974) devised an 

1

3
4

1
2

1
4

0 X(1) X(2) X(3) X(4)
x

�D4 � D4
�

�

D4
�

F̂(x)

F4(x)

FIGURE 6.47
Geometric meaning of the K-S test statistic Dn for n 5 4.

1

3
4

1
2

1
4

0 X(1) X(2) X(3) X(4)
x

�

�

D4

D�4

F̂(x)

F4(x)

FIGURE 6.48
An example in which the K-S test statistic Dn is not equal to D¿n.
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354 selecting input probability distributions

 accurate approximation that eliminates the need for all but a tiny table; instead of 
testing for Dn . dn,12a, we reject H0 if

 a1n 1 0.12 1
0.11

1n
b Dn . c12a

where values for c12a (which do not depend on n) are given in the all-parameters-
known row of Table 6.15. This all-parameters-known case is the original form of the 
K-S test.

Case 2

Suppose that the hypothesized distribution is N(m, s2) with both m and s2 un-
known. We can estimate m and s2 by X(n) and S2(n), respectively, and defi ne the 
distribution function F̂ to be that of the N(X(n), S2(n)) distribution; i.e., let F̂(x) 5 
£{[x 2 X(n)]y2S2(n)}, where F is the distribution function of the standard 
 normal distribution. Using this F̂ (which has estimated parameters), Dn is computed in 
the same way, but different critical points must be used. Lilliefors (1967) estimated (via 
Monte Carlo simulation) the critical points of Dn as a function of n and 1 2 a. 
 Stephens (1974) performed further Monte Carlo simulations and provided an accu-
rate approximation that obviates the need for large tables; namely, we reject H0 if

 a1n 2 0.01 1
0.85

1n
b Dn . c¿12a

where values for c¿12a are given in the N(X(n), S2(n)) row of Table 6.15. (This case 
includes a K-S test for the lognormal distribution if the Xi’s are the logarithms of 
the basic data points we have hypothesized to have a lognormal distribution; see 
Sec. 6.2.2.)

Case 3

Suppose the hypothesized distribution is expo(b) with b unknown. Now b is 
estimated by its MLE X(n), and we defi ne F̂ to be the expo(X(n)) distribution func-
tion; that is, F̂(x) 5 1 2 e2xyX(n) for x $ 0. In this case, critical points for Dn were 
originally estimated by Lilliefors (1969) in a Monte Carlo study, and exact tables 

TABLE 6.15

Modifi ed critical values c12A, c912A, and c012A for adjusted K-S test statistics

 1 2 A

Case Adjusted test statistic 0.850 0.900 0.950 0.975 0.990

All parameters  a1n 1 0.12 1
0.11

1n
b Dn 1.138 1.224 1.358 1.480 1.628

 known

N(X(n), S2(n)) a1n 2 0.01 1
0.85

1n
b Dn 0.775 0.819 0.895 0.955 1.035

expo(X(n)) aDn 2
0.2

n
b a1n 1 0.26 1

0.5

2n
b 0.926 0.990 1.094 1.190 1.308
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were later obtained by Durbin (1975) [see also Margolin and Maurer (1976)]. 
 Stephens’s (1974) approximation in this case is to reject H0 if

 aDn 2
0.2
n
b a1n 1 0.26 1

0.5

1n
b . c–12a

where c–12a can be found in the expo(X(n)) row of Table 6.15.

Case 4

Suppose the hypothesized distribution is Weibull with both shape parameter a 
and scale parameter b unknown; we estimate these parameters by their respective 
MLEs â and b̂. (See the discussion of the Weibull MLEs in Sec. 6.2.2.) And F̂ is 
taken to be the Weibull(â, b̂) distribution function F̂(x) 5 1 2 exp[2(xyb̂)â] for 
x $ 0, and Dn is computed in the usual fashion. Then H0 is rejected if the adjusted 
K-S statistic 1nDn is greater than the modifi ed critical value c*12a [see Chandra, 
Singpurwalla, and Stephens (1981)] given in Table 6.16. Note that critical values 
are available only for certain sample sizes n, and that the critical values for n 5 50 
and ̀  (an extremely large sample size) are, fortunately, very similar. [Critical values 
for other n less than 50 are given by Littell, McClave, and Offen (1979).]

Case 5

Suppose that the hypothesized distribution is log-logistic with both shape pa-
rameter a and scale parameter b unknown. Let the Xi’s here be the logarithms of the 
basic data points. Estimate the parameters by their respective MLEs â and b̂ based 
on the Xi’s (see Sec. 6.2.2). Also F̂(x) is taken to be the logistic distribution function

 F̂(x) 5 (1 1 e[2(x2 ln b̂ )]â)21  for 2` , x , `

and Dn is computed in the usual fashion. Then H0 is rejected if the adjusted K-S 
statistic 1nDn is greater than the modifi ed critical value c†

12a [see Stephens (1979)] 
given in Table 6.17. Note that the critical values are available only for certain  sample 
sizes n, and that the critical values for n 5 50 and ` are, fortunately, very similar.

E X A M P L E  6 . 1 8 .  In Example 6.15 we used a chi-square test to check the goodness of 
fi t of the fi tted expo(0.399) distribution for the interarrival-time data of Table 6.7. We 
can also apply a K-S test with F̂(x) 5 1 2 e2xy0.399 for x $ 0, by using Case 3 above. 

TABLE 6.16

Modifi ed critical values c*12A for the K-S test for the 
Weibull distribution

 1 2 A

n 0.900 0.950 0.975 0.990

10 0.760 0.819 0.880 0.944
20 0.779 0.843 0.907 0.973
50 0.790 0.856 0.922 0.988
` 0.803 0.874 0.939 1.007
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Using the formulas for D1
219 and D2

219, we found that D219 5 0.047, so that the adjusted 
test statistic is

 aD219 2
0.2

219
b a1219 1 0.26 1

0.5

1219
b 5 0.696

Since 0.696 is less than 0.990 5 c–0.90 (from the last row of Table 6.15), we do not reject 
H0 at the a 5 0.10 level.

Note that critical values for the K-S test in the case of the gamma distribution 
with estimated parameters have been published by Tadikamalla (1990), but, unfor-
tunately, the largest sample size considered is 40.

Anderson-Darling Tests*

One possible drawback of K-S tests is that they give the same weight to the dif-
ference 0Fn(x) 2 F̂(x) 0  for every value of x, whereas many distributions of interest 
differ primarily in their tails. The Anderson-Darling (A-D) test [see Anderson and 
Darling (1954)], on the other hand, is designed to detect discrepancies in the tails 
and has higher power than the K-S test against many alternative distributions [see 
Stephens (1974)]. The A-D statistic A2

n is defi ned by

 A2
n 5 n #

`

2`
[Fn(x) 2 F̂(x) ]2 c(x) f̂ (x) dx

where the weight function c(x) 5 1y{F̂(x)[1 2 F̂(x)]}. Thus, A2
n is just the 

weighted average of the squared differences [Fn(x) 2 F̂(x)]2, and the weights are 
the largest for F̂(x) close to 1 (right tail) and F̂(x) close to 0 (left tail). If we let 
Zi 5 F̂(X(i)) for i 5 1, 2, . . . , n, then it can be shown that

 A2
n 5 a2 e ^

n

i51

(2i 2 1)[ln Zi 1 ln (1 2 Zn112 i)] f Nnb 2 n

which is the form of the statistic used for actual computations. Since A2
n is a 

“weighted distance,” the form of the test is to reject the null hypothesis H0 if A
2
n 

exceeds some critical value an,12a, where a is the level of the test.

TABLE 6.17

Modifi ed critical values c†
12A for the K-S test for the 

log-logistic distribution

 1 2 A

n 0.900 0.950 0.975 0.990

10 0.679 0.730 0.774 0.823
20 0.698 0.755 0.800 0.854
50 0.708 0.770 0.817 0.873
` 0.715 0.780 0.827 0.886

*Skip this section on the fi rst reading.
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Critical values an,12a are available for the A-D test for the same fi ve continuous 
distributions [see Stephens (1974, 1976, 1977, 1979) and D’Agostino and Stephens 
(1986, p. 134)] as for the K-S test. [See Gleser (1985) for a discussion of the discrete 
case.] Furthermore, F̂(x) is computed in the same manner as before; see Example 
6.19 below. Performance of the A-D test is facilitated by the use of adjusted test 
statistics (except for the all-parameters-known case) and modifi ed critical values, 
which are given in Table 6.18. If the adjusted test statistic is greater than the modi-
fi ed critical value, then H0 is rejected.

D’Agostino and Stephens (1986, pp. 151–156) give a procedure for performing 
an A-D test for the gamma distribution, where the critical values are obtained by 
interpolating in a table. An A-D test can also be performed for the Pearson type V 
distribution by using the fact that if X has a Pearson type V distribution, then 1yX 
has a gamma distribution (see Sec. 6.2.2). Cheng and Currie (2009) show how boot-
strapping can be used to estimate critical values for the A-D test in the case of 
 distributions with no published tables.

E X A M P L E  6 . 1 9 .  We can use Case 3 of the A-D test to see whether the fi tted exponen-
tial distribution F̂(x) 5 1 2 e2xy0.399 provides a good model for the interarrival-time 
data at level a 5 0.10. We found that A2

219 5 0.558, so that the adjusted test statistic is

 a1 1
0.6

219
b A2

219 5 0.560

Since 0.560 is less than the modifi ed critical value 1.062 (from the third row of 
Table 6.18), we do not reject H0 at level 0.10.

Poisson-Process Tests*

Suppose that we observe a Poisson process (see Sec. 6.12.1) for a fi xed interval 
of time [0, T ], where T is a constant that is decided upon before we start our 

*Skip this section on the fi rst reading.

TABLE 6.18

Modifi ed critical values for adjusted A-D test statistics

1 2 A

Case Adjusted test statistic 0.900 0.950 0.975 0.990

All parameters known A2
n for n $ 5 1.933 2.492 3.070 3.857

N(X(n), S2(n)) a1 1
4

n
2

25

n2
b A2

n 0.632 0.751 0.870 1.029

Expo(X(n)) a1 1
0.6

n
b A2

n 1.062 1.321 1.591 1.959

Weibull(â, b̂) a1 1
0.2

1n
b A2

n 0.637 0.757 0.877 1.038

Log-logistic(â, b̂) a1 1
0.25

1n
b A2

n 0.563 0.660 0.769 0.906
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 observation. Let n be the number of events we observe in the interval [0, T ], and let 
ti be the time of the ith event for i 5 1, 2, . . . , n. {Thus, 0 # t1 # t2 # . . . # tn # T. 
If tn , T, then no events occurred in the interval (tn, T ].} Then the joint distribu-
tion of t1, t2, . . . , tn is related to the U(0, T ) distribution in the following way. 
 Assume that Y1, Y2, . . . , Yn (the same n as above) are IID random variables with 
the U(0, T ) distribution, and let Y(1), Y(2), . . . , Y(n) be their corresponding order 
statistics (see Sec. 6.2.4). Then a property of the Poisson process is that t1, t2, . . . , tn 
have the same joint distribution as Y(1), Y(2), . . . , Y(n). [See Ross (2003, p. 303) for 
a proof.]

One way of interpreting this property is that if someone simply showed us 
the values of t1, t2, . . . , tn without telling us that ti was obtained as the time of the 
ith event in some sequence of events, it would appear (in a statistical sense) that 
these n numbers had been obtained by taking a sample of n IID random values 
from the U(0, T ) distribution and then sorting them into increasing order. Alter-
natively, one could think of this property as saying that if we consider t1, t2, . . . , tn 
as unordered random variables, they are IID with the U(0, T ) distribution. This is 
why we sometimes see a Poisson process described as one in which events occur 
“at random,” since the instants at which events occur are uniformly  distributed 
over time.

In any case, this property provides us with a different way of testing the null 
hypothesis that an observed sequence of events was generated by a Poisson process. 
(We have already seen one way this hypothesis can be tested, namely, testing 
whether the interevent times appear to be IID exponential random variables; see 
Sec. 6.12.1 and Examples 6.15, 6.18, and 6.19.) We simply test whether the event 
times t1, t2, . . . , tn appear to be IID U(0, T ) random variables using any applicable 
testing procedure.

E X A M P L E  6 . 2 0 .  The interarrival-time data of Table 6.7 were collected over a fi xed 
90-minute period, and n 5 220 arrivals were recorded during this interval. (It was 
decided beforehand to start observing the process at exactly 5 p.m., rather than at the 
fi rst time after 5:00 when an arrival happened to take place. Also, data collection 
terminated promptly at 6:30 p.m., regardless of any arrivals that occurred later. It is 
important for the validity of this test that the data collection be designed in this way, 
i.e., independent of the actual event times.) The times of arrivals were t1 5 1.53, t2 5 
1.98, . . . , t220 5 88.91 (in minutes after 5 p.m.). To test whether these numbers can 
be regarded as being independent with the U(0,90) distribution, we used the all- 
parameters-known cases of the chi-square and K-S tests. [The density and distribu-
tion functions of the fitted distribution are, respectively, f̂ (x) 5 1y90 and 
F̂(x) 5 xy90, for 0 # x # 90. Note also that our “data” points are already sorted, 
conveniently.] We carried out a chi-square test with the k 5 17 equal-size intervals 
[0, 5.294), [5.294, 10.588), . . . , [84.706, 90], so that npj 5 220y17 5 12.941 for 
j 5 1, 2, . . . , 17. The resulting value of x2 was 13.827, and since x2

16,0.90 5 23.542, 
we cannot reject the null hypothesis that the arrivals occurred in accordance with a 
Poisson process at level 0.10. The K-S test resulted in D220 5 0.045, and the value of 
the adjusted test statistic from the all-parameters-known row of Table 6.15 is thus 
0.673. Since this is well below c0.90 5 1.224, once again we cannot reject the null 
 hypothesis at level 0.10.
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6.7 
THE ExpertFit SOFTWARE AND AN EXTENDED EXAMPLE

Performing the statistical procedures discussed in this chapter can, in some cases, 
be diffi cult, time-consuming, and prone to error. For example, the chi-square test 
with equiprobable intervals requires the availability of the inverse of the distribution 
function, which is not available in closed form for some distributions (e.g., normal 
and gamma). Thus, in these cases a numerical approximation to the inverse of the 
distribution function would have to be obtained and programmed. Also, the K-S test 
is often misstated or misapplied in textbooks and software packages. These consid-
erations led to the development of the ExpertFit distribution-fi tting software.

The commercial versions of ExpertFit [see Averill M. Law & Associates 
(2013)] will automatically and accurately determine which of 40 probability distri-
butions best represents a data set. The selected distribution is then put into the 
proper format for direct input to a large number of different simulation packages. 
ExpertFit contains the following four modules that are used sequentially to deter-
mine the best distribution:

• “Data” reads or imports data into ExpertFit, displays summary statistics, and 
makes histograms; makes correlation plots and scatter diagrams; and performs 
the Kruskal-Wallis test for homogeneity of data sets (see Sec. 6.13).

• “Models” fi ts distributions to the data by using the method of maximum likeli-
hood, ranks the distributions in terms of quality of fi t, and determines whether the 
“best” distribution is actually good enough to use in a simulation model. (Other-
wise, it recommends the use of an empirical distribution.)

• “Comparisons” compares the best distribution(s) to the data to further determine 
the quality of fi t, using density-histogram plots, distribution-function-differences 
plots, probability plots, goodness-of-fi t tests, etc.

• “Applications” displays and computes characteristics of a fi tted distribution such 
as the density function, moments, probabilities, and quantiles; it also puts the 
 selected distribution into the proper format for a chosen simulation package.

ExpertFit has the following documentation:

• Context-sensitive help for all menus and all results tables and graphs
• Online feature index and tutorials (see the “Help” pull-down menu in the Menu 

Bar at the top of the screen)
• User’s Guide with eight complete examples

There is a Student Version of ExpertFit on the book’s website, www.mhhe.com/
law, that can be used to analyze most data sets corresponding to the examples and 
problems in this chapter. It cannot, however, be used to analyze your own data sets.

We now use ExpertFit to perform a comprehensive analysis of the n 5 200 ser-
vice times of Example 6.1. However, for  expository convenience we limit our analy-
sis to the exponential, gamma, Weibull, lognormal, log-logistic, Pearson type V, 
Pearson type VI, and normal distributions. In Table 6.19 we present the “Data Sum-
mary” (i.e., summary statistics) for the  service times, and Fig. 6.49 is a correspond-
ing histogram based on k 5 12 intervals of width Db 5 0.2. (The interval width was 
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TABLE 6.19

Data summary for the service-time data

Data characteristic Value

Source fi le EXAMPLE61

Observation type Real valued

Number of observations 200

Minimum observation 0.054

Maximum observation 2.131

Mean 0.888

Median 0.849

Variance 0.210

Coeffi cient of variation 0.515

Skewness 0.513

FIGURE 6.49
Histogram of 200 service times with Db 5 0.2.

determined by trial and error.) The shape of the histogram strongly suggests that the 
underlying distribution is skewed to the right, which tends to rule out the normal 
distribution. This is supported by noting that X(200) 5 0.888 . 0.849 5 x̂0.5(200) 
and n̂(200) 5 0.513 . 0. Furthermore, cv̂(200) 5 0.515 makes it fairly unlikely 
that the true distribution could be exponential, which has a coeffi cient of variation 
of 1; this conclusion is supported by the shape of the histogram.
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The “Automated Fitting” option, which is in the Models module, was then used 
to fi t, rank, and evaluate the specifi ed distributions other than the normal distribu-
tion automatically. The normal distribution was not automatically fi t to the data, 
since it can take on negative values that are inconsistent with the range of service 
times. (If desired, the normal distribution could be fi t to this data set manually by 
using “Fit Individual Models” in the Models module.) The resulting ExpertFit 
results screen is shown in Fig. 6.50. From the “Relative Evaluation of Candidate 
Models,” it can be seen that the Weibull distribution is ranked fi rst and received a 
“Relative Score” (see below) of 100.00 followed by the gamma distribution and 
the log-logistic distribution with Relative Scores of 83.33 and 62.50, respectively. 
The maximum-likelihood estimates for the best-fi tting Weibull distribution are 
â 5 2.045 and b̂ 5 1.003.

Even if a distribution is ranked fi rst, this does not necessarily mean that it is 
good enough to use in a simulation. However, since the “Absolute Evaluation” is 
“Good,” there is no current evidence for not using the Weibull distribution. On the 
other hand, it is prudent to obtain further confi rmation using the Comparisons mod-
ule. If the highest-ranked distribution receives an Absolute Evaluation of “Bad,” 

FIGURE 6.50
ExpertFit results screen for the service-time data.
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then it is not suitable for use in a simulation model and ExpertFit will recommend 
the use of an empirical distribution (see Sec. 6.2.4).

The ExpertFit ranking and evaluation algorithm was developed as follows. We had 
15 heuristics that were thought to have some ability to discriminate between a good-
fi tting and bad-fi tting distribution. (The chi-square statistic was not considered because 
it depends on an arbitrary choice of intervals.) To determine which of these heuristics 
was actually the best, a random sample of size n was generated from a known “parent” 
distribution, and each of the 15 heuristics was applied to see if it could, in fact, choose 
the correct distribution. This was repeated for 200 independent samples, giving an 
estimated probability that each heuristic would pick the parent distribution for the 
specifi ed sample size. This whole process was repeated for 175 parent distribution/
sample-size pairs, resulting in several heuristics that appeared to be superior. These 
heuristics were combined to give the overall algorithm for ranking the fi tted distribu-
tions and for computing the relative scores. The 35,000 generated data sets were also 
used to develop the rules for determining the Absolute Evaluations.

The ranking screen also shows that the error in the mean of the Weibull distribu-
tion relative to the sample mean is only 0.07 percent.

As suggested by the Absolute Evaluation, we will now try to obtain additional 
confi rmation for the Weibull distribution by using graphical plots and goodness-of-
fi t tests. In Fig. 6.51 we give density-histogram plots for the Weibull and gamma 

FIGURE 6.51
Density-histogram plots for the service-time data and the Weibull and gamma 
distributions.
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distributions (see also the Color Plates). It can be seen that the Weibull distribution 
matches the histogram well and that the gamma distribution is clearly inferior. 
 Figure 6.52 gives distribution-function-differences plots for the two distributions 
and, once again, the superiority of the Weibull distribution can be seen (see the 
Color Plates). The P–P plots in Fig. 6.53 also show that the Weibull distribution is 
preferable.

We next performed an equiprobable chi-square test for the Weibull distribution 
at level a 5 0.05 using k 5 20 intervals. The chi-square statistic was 15.6, which is 
less than the critical value 30.144; therefore, this particular chi-square test gives us 
no reason to reject the Weibull distribution. The adjusted test statistic for the K-S 
test was 0.428, which is less than the a 5 0.05 modifi ed critical value 0.874. Once 
again we have no reason to reject the Weibull distribution. Finally, the test statistic 
for the A-D test was 0.264, which is less than the a 5 0.05 critical value 0.746, giv-
ing us no reason to reject the Weibull distribution.

Thus, based on the Absolute Evaluation, the graphical plots, and the goodness-
of-fi t tests, there is no reason to think that the Weibull distribution is not a good 
representation for the service-time data.

FIGURE 6.52
Distribution-function-differences plots for the service-time data and the 
Weibull and gamma distributions.
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6.8 
SHIFTED AND TRUNCATED DISTRIBUTIONS

The exponential, gamma, Weibull, lognormal, Pearson type V, Pearson type VI, and 
log-logistic distributions, discussed in Sec. 6.2.2, have range [0, `). Thus, if the 
random variable X has any of these distributions, it can take on arbitrarily small pos-
itive values. However, frequently in practice if X represents the time to complete 
some task (such as customer service), it is simply impossible for X to be less 
than some fi xed positive number. For example, in a bank it is probably not possible 
to serve anyone in less than, say, 30 seconds; this will be refl ected in the service-
time data we might collect on the bank’s operation. Thus, in reality P(X , 
30  seconds) 5 0; however, for a fi tted gamma distribution, for instance, there is a 
pos itive probability of generating a random value that is less than 30 seconds. Thus, 
it would appear that a modifi cation of these distribution forms would provide a 
more realistic model and might result in a better fi t in some cases.

This change can be effected by shifting the distribution some distance to 
the  right. What this really amounts to is generalizing the density function of 
the  distribution in question to include a location parameter (see Sec. 6.2.1). 

FIGURE 6.53
P–P plots for the service-time data and the Weibull and gamma distributions.
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For example, the gamma distribution shifted to the right by an amount g . 0 
has density

 f (x) 5 •

b2a (x 2 g)a21 e2(x2g)yb

G(a)

0

if x . g

otherwise

which has the same shape and scale parameters as the gamma (a, b) distribution but 
is shifted g units to the right. (This is often called the three-parameter gamma dis-
tribution.) Shifted versions of the other distributions discussed above are defi ned 
similarly, by replacing x by x 2 g in the density functions and their domains of defi -
nition. The range of these shifted distributions is [g, `).

With these shifted distributions, we then have to estimate g as well as the other 
parameters. In theory, this can be done by fi nding the MLE for g in addition to the 
MLEs for the original parameters. For the shifted exponential, ĝ and b̂ are relatively 
easy to fi nd (see Prob. 6.12). However, fi nding MLEs for the three-parameter 
 distributions is considerably more problematic. For example, in the case of the 
gamma, Weibull, and lognormal distributions, it is known that (global) MLEs are 
not well defi ned [see Cheng and Amin (1983), Cohen and Whitten (1980), and 
Zanakis (1979a)]. That is, the likelihood function L can be made infi nite by choos-
ing ĝ 5 X(1) (the smallest observation in the sample), which results in inadmissible 
values for the other parameters. A simple approach to the three-parameter estima-
tion problem is fi rst to estimate the location parameter g by

 g̃ 5
X(1)X(n) 2 X2

(k)

X(1) 1 X(n) 2 2X(k)

where k is the smallest integer in {2, 3, . . . , n 2 1} such that X(k) . X(1) [see Dubey 
(1967)]. It can be shown that g̃ , X(1) if and only if X(k) , [X(1) 1 X(n)]y2, which is 
very likely to occur; see Prob. 6.23. [Zanakis (1979b) has shown empirically the accu-
racy of g̃ for the Weibull distribution.] Given the value g̃, we next defi ne X9i as follows:

 X¿i 5 Xi 2 g̃ $ 0  for i 5 1, 2, . . . , n

Finally, MLE estimators of the scale and shape parameters are obtained by applying 
the usual two-parameter MLE procedures to the observations X91, X92, . . . , X9n.

E X A M P L E  6 . 2 1 .  In Fig. 6.54, we give a histogram (with Db 5 0.2) of the times (in 
hours) to unload n 5 808 coal trains, each consisting of approximately 110 cars. 
 (Figure 6.54 is actually a density-histogram plot.) The shape of the histogram suggests 
that a fi tted distribution would require a positive location parameter. Since X(1) 5 3.37, 
X(2) 5 3.68, and X(808) 5  6.32, we get ĝ 5 3.329. The values X9i 5 Xi 2  3.329 for 
i 5 1, 2, . . . , 808 were then used to obtain the MLEs â 5 7.451 and b̂ 5 1.271 for the 
 log-logistic distribution, whose density function is also given in Fig. 6.54. In general, 
the agreement between the shifted log-logistic density function and the histogram seems 
quite good.

In some situations a fi tted distribution might provide a good model for observed 
data generally, but other information says that, for instance, no value can be larger 
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than some fi nite constant b . 0. If the range of the fi tted density f is [0, `), this is 
incompatible with the upper limit b, so we might instead use a truncated density

 f *(x) 5 f(x)yF(b) for 0 # x # b (and 0 otherwise), where F(b) 5 #
b

0
f(x) dx , 1.

A method to generate random values from f * is given in Sec. 8.2.1.

E X A M P L E  6 . 2 2 .  If a gamma distribution is found to provide a good model for service 
times in a bank, the density function might be truncated above b 5 15 minutes if larger 
values than this are extremely unlikely.

6.9 
BÉZIER DISTRIBUTIONS

There is a fourth approach [Wagner and Wilson (1996a, 1996b)] for specifying 
a probability distribution that models a set of observed data X1, X2, . . . , Xn (see 
Sec. 6.1 for the other three approaches). If X is a continuous random variable with 
fi nite range [a, b] and a distribution function F(x) having any shape, then F(x) can 
be approximated arbitrarily closely by a Bézier distribution function with suffi -
ciently high degree m. Let {p0, p1, . . . , pm} be a set of control points, where 

h(x), f (x)
0.30

0.25

0.20

0.15

0.10

0.05

0.00
3.40 4.00 4.60 5.20 5.80 6.40 x

FIGURE 6.54
Density-histogram plot for the train-unloading data and the fi tted log-logistic 
distribution.
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pi 5 (yi, zi) (i 5 1, 2, . . . , m 2 1), p0 5 (a, 0), and pm 5 (b, 1). The Bézier dis-
tribution function P(t) is given parametrically by

 P(t) 5 ^
m

i50

Bm,i(t)pi  for t [ [0, 1] (6.6)

where

 Bm,i(t) 5
m!

i!(m 2 i)!
 t i(1 2 t)m2 i

Let y be the vector of yi’s, and let z be the vector of zi’s. Furthermore, let Fn(x) be 
the empirical distribution function defi ned by Eq. (6.5), and let F(x; m, y, z) be the 
Bézier distribution function given by Eq. (6.6). For fi xed m, F(x; m, y, z) is fi t to the Xi’s 
by using a suitable optimization technique (e.g., least-squares estimation) to fi nd the 
minimum distance between Fn(x) and F(x; m, y, z) over all possible y and z, and subject 
to certain constraints. (The optimization determines pi for i 5 1, 2, . . . , m 2 1.)

A Bézier distribution is an alternative to an empirical distribution for modeling 
a data set that is not represented well by a standard theoretical distribution. Further-
more, a software package for fi tting Bézier distributions has been developed by 
Wagner and Wilson. There is, however, a diffi culty in using Bézier distributions, at 
least at present. Bézier distributions are not implemented in most simulation pack-
ages, and doing so on one’s own could be diffi cult in some software.

6.10 
SPECIFYING MULTIVARIATE DISTRIBUTIONS, 
CORRELATIONS, AND STOCHASTIC PROCESSES

So far in this chapter we have considered only the specifi cation and estimation of 
the distribution of a single, univariate random variable at a time. If the simulation 
model needs input of only such scalar random variables, and if they are all indepen-
dent of each other across the model, then repeated application to each input of the 
methods we’ve discussed up to now in this chapter will suffi ce. Indeed, this is the 
standard mode of operation in most simulation projects, and it is the one supported 
by most simulation packages.

There are systems, however, in which the input random variables are statisti-
cally related to each other in some way:

• Some of the input random variables together form a random vector with some 
multivariate (or joint) probability distribution (see Sec. 4.2) to be specifi ed by the 
modeler.

• In other cases we may not want (or be able) to go quite so far as to specify the 
complete multivariate distribution, but nonetheless suspect that there could be 
correlation between different input random variables having their own individual, 
or marginal, distributions, without knowledge or specifi cation of the complete 
multivariate distribution. We would like our inputs to refl ect this correlation even 
if we can’t specify the entire multivariate distribution.
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• In yet other cases, we may want to specify an entire input stochastic process (see 
Sec. 4.3) in which the marginal distribution of the individual random variables 
composing the process is to be specifi ed, as well as the autocorrelations between 
them out through some desired lag. This could be regarded as an infi nite-dimensional 
input random vector.

It is easy to think of physical situations where such input might occur:

• Consider a maintenance shop that can be modeled as a tandem queue with two 
service stations. At the fi rst station, incoming parts are inspected, and any defects 
are marked for repair at the second station. Since a badly damaged part would 
probably require above-average times for both inspection and repair, we might 
expect the two service times for a given part to be positively correlated. Mitchell 
et al. (1977) found that ignoring this correlation in modeling a system can lead to 
serious inaccuracies in simulation results.

• In a model of a communications system, the sizes of (and perhaps interarrival 
times between) arriving messages could form a stochastic process with some 
 stationary marginal univariate distribution of message size, as well as some 
kind of correlation out through several lags. For instance, it could be that 
large messages tend to come in groups, as do small messages, resulting in posi-
tive auto correlation within the message-size input process. Livny et al. (1993) 
show that autocorrelation in either the service-time or interarrival-time input 
process of a simple M/M/1 queue can have a major effect on the output perfor-
mance measures.

• In a model of an inventory or production system, the stream of incoming orders 
could display negative lag-one autocorrelation if a large order in one period tends 
to be followed by a small order in the next period, and vice versa.

Thus, if the modeler has evidence of some kind of statistical relationship between a 
simulation’s various scalar input random variables, or if an input stream is a process 
over time that exhibits autocorrelation within itself, then consideration might be 
given to modeling these relationships and generating them during the simulation to 
avoid possible problems with model validity.

In the remainder of this section we briefl y discuss some of these issues with 
regard to specifi cation and estimation [see the book chapter by Biller and Ghosh 
(2006) for a comprehensive discussion], and in Sec. 8.5 we discuss generating the 
corresponding observations for input to the simulation as it runs. In Sec. 6.12 we 
take up the related issue of modeling arrival processes; in Sec. 8.6 we discuss gen-
eration methods for such processes. Many of these issues are discussed in Leemis 
(2004) and in Sec. 5 of Nelson and Yamnitsky (1998).

6.10.1 Specifying Multivariate Distributions

Let X 5 (X1, X2, . . . , Xd)
T be an input random vector of dimension d (AT denotes 

the transpose of a vector or matrix A, so that X is a d 3 1 column vector). For 
instance, in the maintenance-shop example above, d 5 2 (in which case X is 
called bivariate), X1 is the inspection time of a part, and X2 is the subsequent 
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 repair time of that same part. Let Xk 5 (X1k, X2k, . . . , Xdk)
T be the kth of n IID 

observations on this d-dimensional random vector; in the maintenance shop we 
would have n pairs

 a
X11

X21

b, a
X12

X22

b, . . . , a
X1n

X2n

b

of observed data corresponding to the inspection and repair times of n different 
parts, and we would further want to be able to generate such a sequence of 2-vectors 
as input to the simulation.

Note that while we allow correlation within the components of a specifi c Xk, we 
are assuming here that the component random variables across different Xk’s are 
independent, i.e., that the random vectors X1, X2, . . . , Xn are independent of each 
other. In the maintenance-shop situation this means that while the inspection and 
repair times of a given part may be related, there is no relation between either of 
these times across different parts—the parts are assumed to behave independently 
of each other. [In Sec. 6.10.3, we allow autocorrelation in the {X1, X2, . . .}  sequence, 
but mostly in the univariate (scalar) case d 5 1.]

The multivariate (or joint) distribution function of the random vector X is 
 defi ned as

 F(x) 5 P(X # x) 5 P(X1 # x1, X2 # x2, . . . , Xd # xd)

for any fi xed d-vector x 5 (x1, x2, . . . , xd)
T. This includes all the cases of continu-

ous, discrete, or mixed individual marginal distributions. In addition to implying the 
marginal distributions, all the information about relationships between the  individual 
component random variables is embodied in the multivariate distribution function, 
including their correlations.

As with univariate scalar random variables, there are a variety of multivariate 
distributions that have been developed and parameterized in various ways and into 
various families; see Chap. XI of Devroye (1986), Johnson (1987), Johnson et al. 
(1997), and Kotz et al. (2000). However, it may be diffi cult or impractical to esti-
mate the entire multivariate distribution of a random vector from observed data, 
particularly if the sample size n is not large. Thus, we restrict ourselves in the re-
mainder of this subsection to certain special cases of multivariate-distribution esti-
mation that have been found useful in simulation, and we discuss in Sec. 6.10.2 
what can be done if our estimation goals are more modest than that of specifying the 
entire multivariate distribution. And since our interest is ultimately in simulation 
input, we must also pay attention to how realizations of such random vectors can be 
generated, as discussed in Sec. 8.5.

Multivariate Normal

This is probably the best-known special case of a multivariate distribution. 
While this distribution might have somewhat limited direct utility as a simulation-
input model since all its marginal distributions are symmetric and have infi nite tails 
in both directions, it does serve as a springboard to other more useful input- modeling 
distributions.
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370 selecting input probability distributions

The multivariate normal density function (see Sec. 4.2) is defi ned as

 f (x) 5 (2p)2ny2
 0S 021y2 exp c2

(x 2 m)T S21
 (x 2 m)

2
d

for any vector x in d-dimensional real space. Here, m 5 (m1, m2, . . . , md)
T is the 

mean vector, S is the covariance matrix with (i, j)th entry sij 5 sji 5 Cov(Xi, Xj)
(so S is symmetric and positive defi nite), 0S 0 is the determinant of S, and S21 is the 
matrix inverse of S. The marginal distribution of Xi is N(mi, sii). We denote the mul-
tivariate normal distribution as Nd(m, S).

The correlation coeffi cient between Xi and Xj is rij 5 sijy1siisjj 5 rji, which is 
always between 21 and 11. Thus, since sij 5 sji 5 rij1siisjj, an alternative pa-
rameterization of the multivariate normal distribution would be to replace S by the 
parameters sii and rij for i 5 1, 2, . . . , d and j 5 i 1 1, i 1 2, . . . , d.

Note that in the multivariate-normal case, the entire joint distribution is 
uniquely determined by the marginal distributions and the correlation coeffi cients. 
This is generally not true for other, non-normal multivariate distributions; i.e., there 
could be several different joint distributions that result in the same set of marginal 
distributions and correlations.

To fi t a multivariate normal distribution to observed d-dimensional data X1, 
X2, . . . , Xn, the mean vector m is estimated by the MLE

 m̂ 5 X 5 (X1, X2 , . . . , Xd)T (6.7)

where Xi 5 On
k51 Xikyn, and the covariance matrix S is estimated by the d 3 d 

 matrix Ŝ whose (i, j)th entry is

 ŝij 5

^
n

k51

(Xik 2 Xi) (Xjk 2 Xj)

n
 (6.8)

The correlation coeffi cient rij is estimated by the MLE

 r̂ij 5
ŝij

1ŝiiŝjj

5 r̂ji (6.9)

With a multivariate normal distribution so estimated, generation from it is pos-
sible by methods given in Sec. 8.5.2.

Multivariate Lognormal

This multivariate distribution affords the modeler positively skewed marginal 
distributions on [0, `) with the possibility of correlation between them.

Rather than giving the explicit defi nition of its full joint density function, it is 
more useful for simulation purposes to describe the multivariate lognormal in terms 
of its transformational relation to the multivariate normal. We say that X 5 
(X1, X2, . . . , Xd)

T has a multivariate lognormal distribution if and only if

 Y 5 (Y1, Y2, . . . , Yd)T 5 (ln X1, ln X2, . . . , ln Xd)T
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has a multivariate normal distribution Nd(m, S); see Jones and Miller (1966) and 
Johnson and Ramberg (1978). Put another way, the multivariate lognormal random 
vector X can be represented as

 X 5 (eY1, eY2, . . . , eYd)T

where Y is multivariate normal Nd(m, S). The marginal distribution of Xi is uni-
variate lognormal LN(mi, sii) where mi is the ith element of m and sii is the ith 
 diagonal entry in S.

Since the multivariate normal random vector Y in the above logarithmic trans-
formation of X has mean vector m 5 (m1, m2, . . . , md)

T and covariance matrix S 
with (i, j)th entry sij (so the correlation coeffi cients are rij 5 sijy1sii sjj), it turns 
out that
 E(Xi) 5 emi1siiy2 (6.10)

 Var(Xi) 5 e2mi1sii(esii 2 1) (6.11)
and

 Cov(Xi, Xj) 5 (esij 2 1)exp ami 1 mj 1
sii 1 sjj

2
b (6.12)

This implies that the correlation coeffi cient between Xi and Xj is

 Cor(Xi, Xj) 5
esij 2 1

2(esii 2 1)(esjj 2 1)
 (6.13)

Note that m and S are not the mean vector and covariance matrix of the multivariate 
lognormal random vector X, but rather are the mean and covariance of the corre-
sponding multivariate normal random vector Y. The mean vector and covariance 
matrix (and correlations) of X are given by Eqs. (6.10) through (6.13) above.

To fi t a multivariate lognormal distribution to a sample X1, X2, . . . , Xn of 
 d-dimensional vectors, take the natural logarithm of each component scalar obser-
vation in each observed data vector to get the data vectors Y1, Y2, . . . , Yn; treat 
these Yk’s as multivariate normal with unknown mean vector m and covariance 
matrix S; and estimate m and S, respectively, by Eqs. (6.7) and (6.8) above.

Generation from a fi tted multivariate lognormal distribution is discussed in 
Sec. 8.5.2.

Multivariate Johnson Translation System

The univariate Johnson translation system, which includes the normal, lognor-
mal, Johnson SB (see Sec. 6.2.2), and Johnson SU distributions, affords considerable 
fl exibility in terms of range and shape of fi tted distributions. This family of distri-
butions has been extended to the multivariate case; see Chap. 5 of Johnson (1987), 
Stanfi eld et al. (1996), and Wilson (1997).

As in the univariate case, the multivariate Johnson translation system permits 
great fl exibility in terms of range and shape to obtain good fi ts to a wide variety of 
observed multivariate data vectors, certainly far more fl exibility than given by the 
multivariate normal or lognormal distributions discussed above. In particular, in the 
method developed by Stanfi eld et al. (1996), the fi rst four moments of the marginal 
distributions from the fi tted multivariate distribution match those of the observed 
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372 selecting input probability distributions

data, and the correlation structure in the fi tted distribution matches the empirical 
correlations as well. Fitting such a distribution to observed data involves several 
steps and uses methods to fi t univariate Johnson distributions; for details on this fi t-
ting procedure, as well as generating random vectors from the fi tted multivariate 
Johnson distribution, see Stanfi eld et al. (1996).

Bivariate Bézier

Univariate Bézier distributions, as described in Sec. 6.9, have been extended to the 
bivariate case (d 5 2 dimensions) by Wagner and Wilson (1995). Software is also de-
scribed there that allows graphical interactive adjustment of the fi tted distribution; in 
addition, generating random vectors is discussed there. Further results and methods 
concerning bivariate Bézier distributions can be found in Wagner and Wilson (1996a).

Extension of Bézier distributions to three or more dimensions is described by 
Wagner and Wilson (1995) as “feasible but cumbersome.”

6.10.2 Specifying Arbitrary Marginal Distributions and Correlations

In Sec. 6.10.1 we discussed several cases where a complete multivariate distri-
bution might be specifi ed to model the joint behavior of d possibly related input ran-
dom variables that together compose an input random vector. In each of these cases, 
the fi tted member of the multivariate distribution family involved (normal, 
 lognormal, Johnson, or Bézier) determined the correlation between pairs of the 
component random variables in the vector, as well as their marginal distributions; it 
also imposed a more general and complete description of the joint variation of the 
component random variables as embodied in the joint density function itself.

Sometimes we need greater fl exibility than that. We may want to allow for pos-
sible correlation between various pairs of input random variables to our simulation 
model, yet not impose an overall multivariate distribution forcing the fi tted marginal 
distributions all to be members of the same family. In other words, we would like to 
be free to specify arbitrary univariate distributions to model the input random vari-
ables separately, as described in Secs. 6.1 through 6.9, yet also estimate correlations 
between them quite apart from their marginal distributions. In fact, we might even 
want some of the component input random variables to be continuous, others to be 
discrete, and still others to be mixed continuous-discrete, yet still allowing for cor-
relations between them.

A very simple, and fairly obvious, procedure for doing this is just to fi t distribu-
tions to each of the univariate random variables involved, one at a time and in isola-
tion from the others, and then to estimate suspected correlations between pairs of 
input random variables by Eq. (6.9) above. Gather these random variables together 
into an input random vector, which then by construction has the desired univariate 
marginal distributions and desired correlation structure. However, it is important to 
note that this procedure does not specify, or “control,” the resulting joint distribution 
of the random vector as a whole—in fact, we generally won’t even know what this 
joint distribution is. Thus, the suggested procedure allows for greater fl exibility on 
the marginal distributions and correlations, but exerts less overall control. Another 
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caution is that the form and parameters of the marginal distributions can impose 
restrictions on what correlations are possible; see Whitt (1976).

While specifi cation of such a situation seems, at least in principle, relatively 
straightforward, we need to make sure that whatever we specify here can be gener-
ated from during the simulation. We discuss this in Sec. 8.5.5, based on work in Hill 
and Reilly (1994) and Cario et al. (2002).

6.10.3 Specifying Stochastic Processes

As mentioned earlier, there are situations in which a sequence of input random vari-
ables on the same phenomenon are appropriately modeled as being draws from the 
same (marginal) distribution, yet might exhibit some autocorrelation between 
 themselves within the sequence. For instance, if {X1, X2, . . .} denote the sizes of 
successive messages arriving to a communications node, the Xi’s might be from the 
same (stationary) distribution, but Cor(Xi, Xi1l) could be nonzero for lags l 5 1, 
2, . . . , p, where the longest autocorrelation lag p would be specifi ed as part of the 
modeling activity. In this case, the Xi’s are identically distributed, but they are not inde-
pendent and so form a stationary stochastic process with possible autocorrelation out 
through lag p. As mentioned earlier, such autocorrelation in an input stream can have a 
major impact on a simulation’s results, as demonstrated by Livny et al. (1993).

In this subsection we briefl y describe some models for this situation, and in 
Sec. 8.5.6 we discuss how realizations from such models can be generated as input 
to the simulation. Except for VARTA processes, we consider only the case where 
the points Xi in the process are univariate (scalar) random variables, rather than 
being themselves multivariate random vectors.

AR and ARMA Processes

Standard autoregressive (AR) or autoregressive moving-average (ARMA) 
models, developed in Box et al. (2008) for time-series data analysis, might fi rst 
come to mind for modeling an input time series. While there are many different 
parameterizations of these processes in the literature, one version of a stationary 
AR(p) model with mean m is

 Xi 5 m 1 f1(Xi21 2 m) 1 f2(Xi22 2 m) 1 . . . 1 fp(Xi2p 2 m) 1 ei (6.14)

where the ei’s are IID normal random variables with mean 0 and variance chosen to 
control Var(Xi), and the fi’s are constants that must obey a condition for the Xi’s to 
have a stationary marginal distribution. The defi nition of ARMA models adds 
weighted proportions of past values of the ei’s to the above recursion [see Box et al. 
(2008) for complete details].

To fi t such models to observed data, a linear-regression approach is taken to 
estimate the unknown parameters of the process. The marginal distribution of the 
Xi’s is generally restricted to being normal, however, making this model of limited 
direct use in simulation-input modeling since the range is infi nite in both directions. 
AR processes do serve, however, as “base” processes for ARTA models discussed 
below, which are more fl exible and useful as simulation input process models.
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374 selecting input probability distributions

Gamma Processes

These processes, developed by Lewis et al. (1989), yield marginal distributions 
having a gamma distribution, as well as autocorrelation between points within the 
process. They are constructed by a kind of autoregressive operation, similar in spirit 
to the normal AR processes described in Eq. (6.14) above. This includes the case of 
exponential marginals, known as exponential autoregressive (EAR) processes.

ARTA Processes

Cario and Nelson (1996) developed autoregressive-to-anything (ARTA) pro-
cesses, which seek to model any stationary marginal distribution and any autocor-
relation structure. ARTA processes can exactly match the desired autocorrelation 
structure out to a specifi ed lag p, as well as the desired stationary marginal distribu-
tion; in addition, they are specifi ed by an automated procedure requiring no subjec-
tive interactive manipulation.

To defi ne an ARTA process, start by specifying a standard stationary AR pro-
cess {Zi} with N(0, 1) marginal distribution ({Zi} is called the base process). Then 
defi ne the fi nal input process to the simulation as

 Xi 5 F21[£ (Zi)] (6.15)

where F 21 is the inverse of the desired stationary marginal distribution F and F 
denotes the N(0, 1) distribution function. Since F(Zi) has a U(0, 1) distribution by 
a basic result known as the probability integral transform [see, e.g., Mood, Graybill, 
and Boes (1974, pp. 202–203)], applying F 21 to this U(0, 1) random variable 
results in one that has distribution function F. Thus, it is clear that the marginal dis-
tribution of Xi will be the desired F.

The principal work in specifying the desired ARTA process, however, is to 
specify the autocorrelation structure of the base process {Zi} so that the resulting 
fi nal input process {Xi} will exhibit the autocorrelation structure desired. Cario and 
Nelson (1998) developed numerical methods to do so, as well as a software package 
to carry out the calculations. The software assumes that the marginal distribution 
and the autocorrelations for the {Xi} process are given, although it will compute 
sample autocorrelations from a set of observed time-series data if desired.

Biller and Nelson (2005, 2008) present a statistical methodology and software 
for fi tting an ARTA process with marginal distributions from the Johnson transla-
tion system (see Sec. 6.10.1) to a set of observed univariate time-series data.

VARTA Processes

Biller and Nelson (2003) provided a methodology for modeling and generating 
stationary multivariate stochastic processes {X1, X2, . . .}, which they call vector-
autoregressive-to-anything (VARTA) processes. Let Xi 5 (X1i, X2i, . . . , Xd,i)

T be the 
input random vector of dimension d at time i, for i 5 1, 2, . . . . Let Fj be the distri-
bution function of Xj,i for j 5 1, 2, . . . , d and i 5 1, 2, . . . . Also, let rj,k,l(X) 5 
Cor(Xj,i, Xk,i1l) for j,k 5 1, 2, . . . , d and lag l 5 0, 1, . . . , p, where rj, j,0(X) 5 1. 
Their methodology assumes that Fj is a given member of the Johnson translation 
system and that the correlations rj,k,l(X) are specifi ed. (In general, Fj will be differ-
ent for each value of j.)
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The principal work in specifying the desired VARTA process is to specify the auto-
correlation structure of a Gaussian vector-autoregressive base process {Zi} so that the 
resulting fi nal input process {Xi} will exhibit the autocorrelation structure desired.

Biller (2009) generalizes VARTA processes using copula theory to allow repre-
senting dependence structures that arise in situations where extreme component 
realizations occur together.

6.11 
SELECTING A DISTRIBUTION IN THE ABSENCE OF DATA

In some simulation studies it may not be possible to collect data on the random 
variables of interest, so the techniques of Secs. 6.4 through 6.6 are not applicable to 
the problem of selecting corresponding probability distributions. For example, if the 
system being studied does not currently exist in some form, then collecting data 
from the system is obviously not possible. This diffi culty can also arise for existing 
systems, if the number of required probability distributions is large and the time 
available for the simulation study prohibits the necessary data collection and analy-
sis. Also, sometimes data are collected by an automated data-collection system, 
which doesn’t provide the data in a suitable format. In this section we discuss four 
heuristic procedures for choosing a distribution in the absence of data.

Let us assume that the random quantity of interest is a continuous random vari-
able X. It will also be useful to think of this random variable as being the time to per-
form some task, e.g., the time required to repair a piece of equipment when it fails. The 
fi rst step in using the triangular-distribution or beta-distribution approaches is to iden-
tify an interval [a, b] (where a and b are real numbers such that a , b) in which it is felt 
that X will lie with probability close to 1; that is, P(a # X # b) < 1. To obtain subjec-
tive estimates of a and b, subject-matter experts (SMEs) are asked for their most opti-
mistic and pessimistic estimates, respectively, of the time to perform the task. Once an 
interval [a, b] has been identifi ed subjectively, the next step is to place a probability 
density function on [a, b] that is thought to be representative of X.

In the triangular-distribution approach, the SMEs are also asked for their subjec-
tive estimate of the most-likely time to perform the task. This most-likely value m is the 
mode of the distribution of X. Given a, b, and m, the random variable X is then consid-
ered to have a triangular distribution (see Sec. 6.2.2) on the interval [a, b] with mode m. 
A graph of a triangular density function is given in Fig. 6.17. Furthermore, an algo-
rithm for generating a triangular random variate is given in Sec. 8.3.15.

One diffi culty with the triangular approach is that it requires subjective esti-
mates of the absolute minimum and maximum possible values a and b, which can 
be problematic. For example, is the value b the maximum over the next 3 months or 
the maximum over a lifetime? A second major problem with the triangular distribu-
tion is that it cannot have a long right tail, as is often the case with density functions 
for the time to perform some task. [Alternative triangular distributions are discussed 
in Keefer and Bodily (1983).]

A second approach to placing a density function on [a, b] is to assume that the 
random variable X has a beta distribution (see Sec. 6.2.2) on this interval with shape 
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parameters a1 and a2. This approach offers greater modeling fl exibility because of 
the variety of shapes that the beta density function can assume (see Fig. 6.11). On 
the other hand, it is not clear how to choose the parameters a1 and a2 so as to spec-
ify the distribution completely. We can suggest several possible ideas. If one is will-
ing to assume that X is equally likely to take on any value between a and b, choose 
a1 5 a2 5 1, which results in the U(a, b) distribution (see Fig. 6.11). (This model 
might be used if very little is known about the random variable X other than its 
range [a, b].) An alternative idea, which we feel is generally more realistic, is to as-
sume that the density function of X is skewed to the right. (Our experience with real-
world data indicates that density functions corresponding to a task time usually 
have this shape.) This density shape corresponds to a2 . a1 . 1 in the beta 
 distribution (see Fig. 6.11). Furthermore, such a beta distribution has a mean m and 
a mode m, given by

 m 5 a 1
a1(b 2 a)

a1 1 a2

  and  m 5 a 1
(a1 2 1)(b 2 a)

a1 1 a2 2 2

Given subjective estimates of m and m, these equations can be solved to obtain the 
following estimates of a1 and a2:

 ã1 5
(m 2 a)(2m 2 a 2 b)

(m 2 m)(b 2 a)
  and  ã2 5

(b 2 m)ã1

m 2 a

Note, however, that m must be greater than m for the density to be skewed to the 
right; if m , m, it will be skewed to the left. Algorithms for generating a beta ran-
dom variate are given in Sec. 8.3.8.

A diffi culty with the second idea for specifying a beta distribution is that some 
SMEs will have trouble differentiating between the mean and the mode of a distri-
bution. Keefer and Bodily (1983) suggest alternative ways of specifying the param-
eters of a beta distribution.

People sometimes use the triangular or beta distribution to model a source of 
randomness even when it is feasible to collect and analyze the necessary data. This 
might be done just because the analyst doesn’t want to be bothered collecting data, 
or because the analyst doesn’t understand the importance of choosing an appropri-
ate distribution. Example 6.23 shows that the cavalier use of the triangular (or beta) 
distribution can sometimes result in very erroneous results.

E X A M P L E  6 . 2 3 .  Consider a single-server queueing system with exponential interar-
rival times with mean 1 and lognormal service times with mean 0.9 and variance 1.39 
(m 5 20.605 and s2 5 1), as shown in Fig. 6.55. However, the service-time distribution 
is actually unknown to the analyst, and he fi rst tries to approximate this distribution by 
a triangular distribution with a 5 0, m 5 0.2, and b 5 1.97 (the 0.9-quantile for the 
lognormal distribution). Note that a and m have been guessed correctly. Using the for-
mula for the steady-state average delay in queue d for an M/G/1 queue in App. 1B, it can 
be shown that d 5 11.02 for the lognormal distribution, but d 5 1.30 for this triangular 
distribution. Thus, approximating the lognormal distribution by this triangular distribu-
tion results in an 88.2 percent error (see Table 6.20 and Fig. 6.55).
 Alternatively, suppose the analyst tries to approximate the unknown lognormal dis-
tribution by a triangular distribution with a 5 0, m 5 0.2, and a mean of 0.9 (correct), 
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which results in b 5 2.5. [The mean of a triangular distribution is (a 1 b 1 m)y3.] In 
this case, d 5 5.66, which is still an error of 48.7 percent.
 Finally, suppose that the analyst tries to approximate the lognormal distribution by 
a beta distribution with a 5 0, b 5 2.5, m 5 0.9, and m 5 0.2 (the same as for the second 
triangular distribution), resulting in ã1 5 1.08 and ã2 5 1.92. In this case, d 5 5.85, 
which is a 46.7 percent error.
 In summary, we have seen that approximating an unknown distribution by a trian-
gular or beta distribution can result in a large error in the simulation output.

*Because of the shortcomings of the triangular and beta approaches, we now 
develop two new models for representing a task time in the absence of data that are 

lognormal(�0.605, 1) (correct distribution)

triangular(0, 1.97, 0.2)

triangular(0, 2.5, 0.2)

2.5 beta(1.08, 1.92)

x2.502.252.001.751.501.251.000.750.500.250.00
0.00

f(x)

1.00

1.25

0.75

0.50

0.25

FIGURE 6.55
Lognormal distribution and approximating triangular and beta distributions.

TABLE 6.20

Approximating a lognormal distribution by triangular or beta 
distributions

Service-time  Steady-state average Percent
distribution delay in queue, d error

Lognormal(20.605, 1) 11.02 0
Triangular(0, 1.97, 0.2) 1.30 88.2
Triangular(0, 2.5, 0.2) 5.66 48.7
2.5 Beta(1.08, 1.92) 5.85 46.9

*Skip the remainder of this section on the fi rst reading.
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based on the lognormal and Weibull distributions. These models require subjective 
estimates of the location parameter g, the most-likely task time m, and the q-quantile 
(100qth percentile) xq, of the task-time distribution. The location parameter g plays 
a role similar to that played by the minimum value a above, but now X must be 
greater than g. We also assume that 0 # g , m , xq , `.

We begin with the lognormal distribution. If Y has normal distribution with 
mean m and variance s2, then V 5 eY has a (two-parameter) lognormal distribution 
with scale parameter em (em . 0) (see Sec. 6.2.2) and shape parameter s (s . 0). If 
X 5 V 1 g, then X has a three-parameter lognormal distribution (see Sec. 6.8) with 
location parameter g, scale parameter em, and shape parameter s, denoted by 
LN(g, m, s2). It follows from the discussion of the lognormal distribution in 
Sec. 6.2.2 that the mode of X is given by

 m 5 g 1 em2s2
 (6.16)

Furthermore, it can be shown that (see Prob. 6.28)

 xq 5 g 1 em1zqs (6.17)

where zq is the q-quantile of a N(0,1) random variable.
If we substitute em from Eq. (6.16) into Eq. (6.17), then we get the following 

quadratic equation in s:
 s2 1 zqs 1 c 5 0

where c 5 ln[(m 2 g)y(xq 2 g)] , 0. Solving this equation for s gives the follow-
ing expression for s:

 s 5
2zq 6 2z2

q 2 4c

2

Since s must be positive, we take the “1” root and get the following estimate s̃ for 
the shape parameter s:

 s̃ 5
2zq 1 2z2

q 2 4c

2
 (6.18)

Substituting s̃ into (6.16), we get the following estimate m̃ for m:

 m̃ 5 ln(m 2 g) 1 (s̃)2 (6.19)

E X A M P L E  6 . 2 4 .  Suppose that we want a lognormal distribution with a location pa-
rameter of g 5 1, a most-likely value of m 5 4, and a 0.9-quantile (90th percentile) of 
x0.9 5 10. From Eqs. (6.18) and (6.19), we get s̃ 5 0.588 and m̃ 5 1.444, and the 
 resulting lognormal density function is shown in Fig. 6.56.

We now consider the Weibull distribution. Suppose that the random variable Y 
has a (two-parameter) Weibull distribution with shape parameter a (a . 0) and 
scale parameter b (b . 0). We will further assume that a . 1, so that the mode is 
greater than zero. If X 5 Y 1 g, then X has a three-parameter Weibull distribution 
(see Sec. 6.8) with location parameter g, shape parameter a, and scale parameter b, 
denoted by Weibull(g, a, b). The mode of X is given by (see Sec. 6.2.2)

 m 5 g 1 b a
a 2 1
a
b

1/a
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which can be rewritten as

 b 5
m 2 g

[(a 2 1)ya]1/a (6.20)

Furthermore, the distribution function of X evaluated at xq, FX(xq), is given by (see 
Sec. 6.8)
 FX(xq) 5 1 2 e2[(xq2g)yb]

a

5 q

which can be rewritten as

 b 5
xq 2 g

{ln[1y(1 2 q)]}1/a  (6.21)

Equating Eqs. (6.20) and (6.21) gives the following expression in a:

 
m 2 g

xq 2 g
5 e

a 2 1

a ln[1y(1 2 q)]
f

1/a

 (6.22)

This equation cannot be solved in closed form, but can be solved iteratively by using 
Newton’s method [see, e.g., Press et al. (2007)] to obtain an estimate ã of the shape 
parameter a (see Prob. 6.29). Then ã can be substituted into Eq. (6.20) to get an 
estimate b̃ of the scale parameter b:

 b̃ 5
m 2 g

[ (ã 2 1)yã]1/ã  (6.23)

0.100
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0.150

0.175

0.075

0.000
1.0 3.5 6.0 8.5 13.5 18.5

f (x)

x

0.050

0.025

11.0 16.0

LN(1, 1.444, 0.345)

Weibull(1, 1.627, 5.390)

FIGURE 6.56
Specifi ed lognormal and Weibull distributions.
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380 selecting input probability distributions

E X A M P L E  6 . 2 5 .  Suppose that we want a Weibull distribution with a location param-
eter of g 5 1, a most-likely value of m 5 4, and a 0.9-quantile of x0.9 5 10. From 
Eqs.  (6.22) and (6.23), we get ã 5 1.627 and b̃ 5 5.390, and the resulting Weibull 
density function is also shown in Fig. 6.56. Note that the calculation of the estimates 
a~  and b

~
 was done using ExpertFit (see Sec. 6.7).

The lognormal and Weibull distributions can take on arbitrary large values, 
 albeit with a very small probability. Thus, if it is known that the corresponding 
 random variable can never take on values larger than b (b . xq), then it might be 
desirable to truncate the distribution at b (see Sec. 6.8).

Note that it is also possible to specify a triangular distribution based on subjec-
tive estimates of a (the minimum value), m, and xq (see Prob. 6.30).

6.12 
MODELS OF ARRIVAL PROCESSES

In many simulations we need to generate a sequence of random points in time 
0 5  t0 # t1 # t2 # . . . , such that the ith event of some kind occurs at time ti 
(i 5 1, 2, . . .) and the distribution of the event times {ti} follows some specifi ed 
form. Let N(t) 5 max{i: ti # t} be the number of events to occur at or before time t 
for t $ 0. We call the stochastic process {N(t), t $ 0} an arrival process since, for 
our purposes, the events of interest are usually arrivals of customers to a service 
facility of some kind. In what follows, we call Ai 5 ti 2 ti21 (where i 5 1, 2, . . .) 
the interarrival time between the (i 2 1)st and ith customers.

In Sec. 6.12.1 we discuss the Poisson process, which is an arrival process for 
which the Ai’s are IID exponential random variables. The Poisson process is prob-
ably the most commonly used model for the arrival process of customers to a queue-
ing system. Section 6.12.2 discusses the nonstationary Poisson process, which is 
often used as a model of the arrival process to a system when the arrival rate varies 
with time. Finally, in Sec. 6.12.3 we describe an approach to modeling arrival pro-
cesses where each event is really the arrival of a “batch” of customers.

A general reference for this section is Çinlar (1975, Chap. 4).

6.12.1 Poisson Processes

In this section we defi ne a Poisson process, state some of its important properties, 
and in the course of doing so explain why the interarrival times for many real-world 
systems closely resemble IID exponential random variables.

The stochastic process {N(t), t $ 0} is said to be a Poisson process if:

1. Customers arrive one at a time.
2. N(t 1 s) 2 N(t) (the number of arrivals in the time interval (t, t 1 s]) is inde-

pendent of {N(u), 0 # u # t}.
3. The distribution of N(t 1 s) 2 N(t) is independent of t for all t, s $ 0.

Properties 1 and 2 are characteristic of many actual arrival processes. Property 1 
would not hold if customers arrived in batches; see Sec. 6.12.3. Property 2 says that 
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the number of arrivals in the interval (t, t 1 s] is independent of the number of  arrivals 
in the earlier time interval [0, t] and also of the times at which these arrivals occur. This 
property could be violated if, for example, a large number of arrivals in [0, t] caused 
some customers arriving in (t, t 1 s] to balk, i.e., to go away  immediately without being 
served, because they fi nd the system highly congested. Property 3, on the other hand, 
will be violated by many real-life arrival processes since it implies that the arrival rate 
of customers does not depend on the time of day, etc. If, however, the time period of 
interest for the system is relatively short, say, a 1- or 2-hour period of peak demand, we 
have found that for many systems (but certainly not all) the arrival rate is reasonably 
constant over this interval and the Poisson process is a good model for the process dur-
ing this interval. (See Theorem 6.2 below and then Example 6.4.)

The following theorem, proved in Çinlar (1975, pp. 74–76), explains where the 
Poisson process gets its name.

T H E O R E M  6 . 1 .  If {N(t), t $ 0} is a Poisson process, then the number of arrivals in 
any time interval of length s is a Poisson random variable with parameter ls (where l is 
a positive real number). That is,

 P[N(t 1 s) 2 N(t) 5 k] 5
e2ls(ls)k

k!
  for k 5 0, 1, 2, . . . and t, s $ 0

Therefore, E[N(s)] 5 ls (see Sec. 6.2.3) and, in particular, E[N(1)] 5 l. Thus, l is 
the expected number of arrivals in any interval of length 1. We call l the rate of the 
process.

We now see that the interarrival times for a Poisson process are IID exponential 
random variables; see Çinlar (1975, pp. 79–80).

T H E O R E M  6 . 2 .  If {N(t), t $ 0} is a Poisson process with rate l, then its correspond-
ing interarrival times A1, A2, . . . are IID exponential random variables with mean 1yl.

This result together with our above discussion explains why we have found that 
interarrival times during a restricted time period are often approximately IID expo-
nential random variables. For example, recall that the interarrival times of cars for 
the drive-up bank of Example 6.4 were found to be approximately exponential dur-
ing a 90-minute period.

The converse of Theorem 6.2 is also true. Namely, if the interarrival times 
A1, A2, . . . for an arrival process {N(t), t $ 0} are IID exponential random variables 
with mean 1yl, then {N(t), t $ 0} is a Poisson process with rate l [Çinlar (1975, 
p. 80)].

6.12.2 Nonstationary Poisson Processes

Let l(t) be the arrival rate of customers to some system at time t. [See below for 
some insight into the meaning of l(t).] If customers arrive at the system in accor-
dance with a Poisson process with constant rate l, then l(t) 5 l for all t $ 0. 
 However, for many real-world systems, l(t) is actually a function of t. For exam-
ple, the arrival rate of customers to a fast-food restaurant will be larger during the 
noon rush hour than in the middle of the afternoon. Also, traffi c on a freeway will 
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be heavier during the morning and evening rush hours. If the arrival rate l(t) does 
in fact change with time, then the interarrival times A1, A2, . . . are not identically 
distributed; thus, it is not appropriate to fi t a single probability distribution to the 
Ai’s by using the techniques discussed in Secs. 6.4 through 6.6. In this section we 
discuss a commonly used model for arrival processes with time-varying arrival 
rates.

The stochastic process {N(t), t $ 0} is said to be a nonstationary Poisson 
 process if:

1. Customers arrive one at a time.
2. N(t 1 s) 2 N(t) is independent of {N(u), 0 # u # t}.

Thus, for a nonstationary Poisson process, customers must still arrive one at a time, 
and the numbers of arrivals in disjoint intervals are independent, but now the arrival 
rate l(t) is allowed to be a function of time.

Let L(t) 5 E[N(t)] for all t $ 0. If L(t) is differentiable for a particular value 
of t, we formally defi ne l(t) as

 l(t) 5
d

dt
 L(t)

Intuitively, l(t) will be large in intervals for which the expected number of arrivals 
is large. We call L(t) and l(t) the expectation function and the rate function, re-
spectively, for the nonstationary Poisson process.

The following theorem shows that the number of arrivals in the interval 
(t, t 1 s] for a nonstationary Poisson process is a Poisson random variable whose 
parameter depends on both t and s.

T H E O R E M  6 . 3 .  If {N(t), t $ 0} is a nonstationary Poisson process with continuous 
expectation function L(t), then

 P[N(t 1 s) 2 N(t) 5 k] 5
e2b(t,s)[b(t, s)]k

k!
  for k 5 0, 1, 2, . . . and t, s $ 0

where b(t, s) 5 L(t 1 s) 2 L(t) 5 et1s
t l(y)dy, the last equality holding if dL(t)ydt is 

bounded on [t, t 1 s] and if dL(t)ydt exists and is continuous for all but fi nitely many 
points in [t, t 1 s] (see Prob. 6.25).

We have not yet addressed the question of how to estimate l(t) [or L(t)] from a 
set of observations on an arrival process of interest. The following example gives a 
heuristic but practical approach, and other approaches are briefl y discussed after the 
example.

E X A M P L E  6 . 2 6 .  A simulation model was developed for a xerographic copy shop, and 
data were collected on the times of arrival of customers between 11 a.m. and 1 p.m. for 
eight different days. From observing the characteristics of the arriving customers, it was 
felt that properties 1 and 2 for the nonstationary Poisson process were applicable and, in 
addition, that l(t) varied over the 2-hour interval. To obtain an estimate of l(t), the 
2-hour interval was divided into the following 12 subintervals:

 [11:00, 11:10), [11:10, 11:20), . . . , [12:40, 12:50), [12:50, 1:00)
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For each day, the number of arrivals in each of these subintervals was determined. Then, 
for each subinterval, the average number of arrivals in that subinterval over the 8 days 
was computed. These 12 averages are estimates of the expected numbers of arrivals in 
the corresponding subintervals. Finally, for each subinterval, the average number of 
 arrivals in that subinterval was divided by the subinterval length, 10 minutes, to obtain 
an estimate of the arrival rate for that subinterval. The estimated arrival rate l̂(t) (in 
customers per minute) is plotted in Fig. 6.57. Note that the estimated arrival rate varies 
substantially over the 2-hour period.
 One might legitimately ask how we decided on these subintervals of length 10 min-
utes. Actually, we computed estimates of l(t) in the above manner for subintervals of 
length 5, 10, and 15 minutes. The estimate of l(t) based on subintervals of length 5 min-
utes was rejected because it was felt that the corresponding plot of l̂(t) was too ragged; 
i.e., a subinterval length of 5 minutes was too small. On the other hand, the estimate of 
l(t) based on subintervals of length 15 minutes was not chosen because the corre-
sponding plot of l̂(t) seemed too “smooth,” meaning that information on the true nature 
of l(t) was being lost. In general, the problem of choosing a subinterval length here is 
similar to that of choosing the interval width for a histogram (see Sec. 6.4.2).

While the piecewise-constant method of specifying l(t) in Example 6.26 is cer-
tainly quite simple and fairly fl exible, it does require somewhat arbitrary judgment 
about the boundaries and widths of the constant-rate time intervals. Other methods 

�̂(t)

0.5

0
11:00 A.M. 12:00 noon 1:00 P.M. t

FIGURE 6.57
Plot of the estimated rate function l̂(t) in customers per minute for the 
arrival process to a copy shop between 11 a.m. and 1 p.m.
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for specifying and estimating l(t) [or, alternatively, L(t)] have been developed, 
which we briefl y mention here:

• Several authors have proposed procedures where the estimated rate function l̂(t) 
is specifi ed to be a generalization of what was done in Example 6.26, in terms of 
allowing for piecewise-linear or piecewise-polynomial forms. These include Kao 
and Chang (1988), Lewis and Shedler (1976), and Klein and Roberts (1984).

• Leemis (1991) developed an intuitive and simple nonparametric method to spec-
ify a piecewise-linear estimate of the expectation function L(t), where the break-
points are determined by the observed arrival times in a superposition of several 
realizations of the process. He shows that the estimator converges, with probabil-
ity 1, to the true underlying expectation function as the number of observed real-
izations increases, and also derives a confi dence band around the true L(t) that 
could be useful in input-specifi cation sensitivity analysis. Since the estimated 
L(t) is piecewise linear, generating observations (see Sec. 8.6.2) is simple and 
effi cient. A generalization of this method is given in Arkin and Leemis (2000).

• A different approach to specifying and estimating the rate function l(t) is to as-
sume that it has some specifi c parametric (functional) form that is general enough 
in structure and has a suffi cient number of parameters to allow it to fi t observed 
data well. The parametric form should allow for trends and cycles, and should 
admit rigorous statistical methods for parameter estimation, such as maximum-
likelihood or least-squares methods. Such functions, together with software for 
estimation and generation, are developed in Lee et al. (1991), Johnson et al. 
(1994a, 1994b), Kuhl, Damerji, and Wilson (1997), Kuhl, Wilson, and Johnson 
(1997), and Kuhl and Wilson (2000).

• Kuhl and Wilson (2001) and Kuhl et al. (2006) give a combined nonparametric/
parametric approach and software for estimating an expectation function L(t) of 
a nonstationary Poisson process with a long-run trend or cyclic effects that may 
exhibit nontrigonometric characteristics.

• Gerhardt and Nelson (2009) provide methodologies for modeling nonstationary 
arrival processes that are more or less variable than a nonstationary Poisson 
process.

6.12.3 Batch Arrivals

For some real-world systems, customers arrive in batches, or groups, so that prop-
erty 1 of the Poisson process and of the nonstationary Poisson process is violated. 
For example, people arriving at a sporting event or at a cafeteria often come in 
batches. We now consider how one might model such an arrival process.

Let N(t) now be the number of batches of individual customers that have 
 arrived by time t. By applying the techniques discussed previously in this chapter to 
the times of arrivals of the successive batches, we can develop a model for the 
 process {N(t), t $ 0}. For example, if the interarrival times of batches appear to be 
approximately IID exponential random variables, {N(t), t $ 0} can be modeled as a 
Poisson process. Next, we fi t a discrete distribution to the sizes of the successive 
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batches; the batch sizes will be positive integers. Thus, for the original arrival pro-
cess, it is assumed that batches of customers arrive in accordance with the arrival 
process {N(t), t $ 0} and that the number of customers in each batch is a random 
variable with the fi tted discrete distribution.

The above informal discussion can be made more precise. If X(t) is the total 
number of individual customers to arrive by time t, and if Bi is the number of cus-
tomers in the ith batch, then X(t) is given by

 X(t) 5 ^
N(t)

i51

Bi  for t $ 0

If the Bi’s are assumed to be IID random variables that are also independent of 
{N(t), t $ 0}, and if {N(t), t $ 0} is a Poisson process, then the stochastic process 
{X(t), t $ 0} is said to be a compound Poisson process.

6.13 
ASSESSING THE HOMOGENEITY OF DIFFERENT 
DATA SETS

Sometimes an analyst collects k sets of observations on a random phenomenon in-
dependently and would like to know whether these data sets are homogeneous and 
thus can be merged. For example, it might be of interest to know whether service 
times of customers in a bank collected on different days are homogeneous. If they 
are, then the service times from the different days can be merged and the combined 
sample used to fi nd the service-time distribution. Otherwise, more than one service-
time distribution is needed. In this section, we discuss the Kruskal-Wallis hypothe-
sis test for homogeneity. It is a nonparametric test since no assumptions are made 
about the distributions of the data.

Suppose that we have k independent samples of possibly different sizes, and 
that the samples themselves are independent. Denote the ith sample of size ni by Xi1, 
Xi2, . . . , Xini

 for i 5 1, 2, . . . , k; and let n denote the total number of observations

 n 5 ^
k

i51

ni

Then we would like to test the null hypothesis

H0: All the population distribution functions are identical 

against the alternative hypothesis

H1:  At least one of the populations tends to yield larger observations than at 
least one of the other populations

To construct the Kruskal-Wallis (K-W) statistic, assign rank 1 to the smallest 
of the n observations, rank 2 to the second smallest, and so on to the largest of the 
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n observations, which receives rank n. Let R(Xij) represent the rank assigned to Xij, 
and let Ri be the sum of the ranks assigned to the ith sample, that is,

 Ri 5 ^
ni

j51

R(Xij)  for i 5 1, 2, . . . , k

Then the K-W test statistic T is defi ned as

 T 5
12

n(n 1 1)
 ^

k

i51

R 2
i

ni
2 3(n 1 1)

We reject the null hypothesis H0 at level a if T . x2
k21,12a, where x2

k21,12a is the 
upper 1 2 a critical value for a chi-square distribution with k 2 1 degrees of free-
dom. The above expression for T assumes that no two observations are equal. If this 
is not the case, then a different expression for T must be used [see Conover (1999, 
pp. 288–290)].

E X A M P L E  6 . 2 7 .  A simulation model was developed for the hub operations of an 
overnight air-delivery service for the purpose of determining the amount of unloading 
equipment required. The model included provision for the fact that planes may arrive 
before or after their scheduled arrival times. Data were available on the actual times of 
arrival for two different incoming fl ight numbers (each corresponding to a different 
 origin city) for 57 different days. (Each fl ight number arrives once a day, 5 days a 
week.) Let Xij be the scheduled time of arrival minus the actual time of arrival (in min-
utes) for day j and fl ight number i, for j 5 1, 2, . . . , 57 and i 5 1, 2. If Xij , 0, then 
fl ight number i was late on day j. We want to perform a K-W test to determine whether 
the X1j’s and X2j’s are homogeneous, i.e., whether the arrival patterns for the two fl ight 
numbers are similar. We computed the K-W statistic and obtained T 5 4.317, which is 
greater than the critical value 2.706 5 x2

1,0.90. Therefore, we rejected the null hypothesis 
at level a 5 0.10, and the arrival patterns for the two fl ight numbers had to be modeled 
separately. The observed differences were to a large extent due to different weather con-
ditions in the two origin cities.

APPENDIX 6A 
TABLES OF MLEs FOR 
THE GAMMA AND BETA DISTRIBUTIONS

TABLE 6.21

Â as a function of T, gamma distribution

T Â T Â T Â T Â

0.01 0.010 1.40 0.827 5.00 2.655 13.00 6.662
0.02 0.019 1.50 0.879 5.20 2.755 13.50 6.912
0.03 0.027 1.60 0.931 5.40 2.856 14.00 7.163
0.04 0.036 1.70 0.983 5.60 2.956 14.50 7.413
0.05 0.044 1.80 1.035 5.80 3.057 15.00 7.663
0.06 0.052 1.90 1.086 6.00 3.157 15.50 7.913
0.07 0.060 2.00 1.138 6.20 3.257 16.00 8.163

(continued)
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0.08 0.068 2.10 1.189 6.40 3.357 16.50 8.413
0.09 0.076 2.20 1.240 6.60 3.458 17.00 8.663
0.10 0.083 2.30 1.291 6.80 3.558 17.50 8.913
0.11 0.090 2.40 1.342 7.00 3.658 18.00 9.163
0.12 0.098 2.50 1.393 7.20 3.759 18.50 9.414
0.13 0.105 2.60 1.444 7.40 3.859 19.00 9.664
0.14 0.112 2.70 1.495 7.60 3.959 19.50 9.914
0.15 0.119 2.80 1.546 7.80 4.059 20.00 10.164
0.16 0.126 2.90 1.596 8.00 4.159 20.50 10.414
0.17 0.133 3.00 1.647 8.20 4.260 21.00 10.664
0.18 0.140 3.10 1.698 8.40 4.360 21.50 10.914
0.19 0.147 3.20 1.748 8.60 4.460 22.00 11.164
0.20 0.153 3.30 1.799 8.80 4.560 22.50 11.414
0.30 0.218 3.40 1.849 9.00 4.660 23.00 11.664
0.40 0.279 3.50 1.900 9.20 4.760 23.50 11.914
0.50 0.338 3.60 1.950 9.40 4.860 24.00 12.164
0.60 0.396 3.70 2.001 9.60 4.961 24.50 12.414
0.70 0.452 3.80 2.051 9.80 5.061 25.00 12.664
0.80 0.507 3.90 2.101 10.00 5.161 30.00 15.165
0.90 0.562 4.00 2.152 10.50 5.411 35.00 17.665
1.00 0.616 4.20 2.253 11.00 5.661 40.00 20.165
1.10 0.669 4.40 2.353 11.50 5.912 45.00 22.665
1.20 0.722 4.60 2.454 12.00 6.162 50.00 25.166
1.30 0.775 4.80 2.554 12.50 6.412

TABLE 6.21 (continued)

T Â T Â T Â T Â

TABLE 6.22

Â1 and Â2 as functions of G1 and G2, beta distribution
If G1 # G2, use the fi rst line of labels; if G2 # G1, use the second line of labels

G1 G2 Â1 Â2 G1 G2 Â1 Â2
G2 G1 Â2 Â1 G2 G1 Â2 Â1

0.01 0.01 0.112 0.112 0.15 0.35 0.405 0.563
0.01 0.05 0.126 0.157 0.15 0.40 0.432 0.653
0.01 0.10 0.135 0.192 0.15 0.45 0.464 0.762
0.01 0.15 0.141 0.223 0.15 0.50 0.502 0.903
0.01 0.20 0.147 0.254 0.15 0.55 0.550 1.090
0.01 0.25 0.152 0.285 0.15 0.60 0.612 1.353
0.01 0.30 0.157 0.318 0.15 0.65 0.701 1.752
0.01 0.35 0.163 0.354 0.15 0.70 0.842 2.429
0.01 0.40 0.168 0.395 0.15 0.75 1.111 3.810
0.01 0.45 0.173 0.441 0.15 0.80 1.884 8.026
0.01 0.50 0.179 0.495 0.15 0.84 7.908 42.014

(continued)
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0.01 0.55 0.185 0.559 0.20 0.20 0.395 0.395
0.01 0.60 0.192 0.639 0.20 0.25 0.424 0.461
0.01 0.65 0.200 0.741 0.20 0.30 0.456 0.537
0.01 0.70 0.210 0.877 0.20 0.35 0.491 0.626
0.01 0.75 0.221 1.072 0.20 0.40 0.531 0.735
0.01 0.80 0.237 1.376 0.20 0.45 0.579 0.873
0.01 0.85 0.259 1.920 0.20 0.50 0.640 1.057
0.01 0.90 0.299 3.162 0.20 0.55 0.720 1.314
0.01 0.95 0.407 8.232 0.20 0.60 0.834 1.701
0.01 0.98 0.850 42.126 0.20 0.65 1.016 2.352
0.05 0.05 0.180 0.180 0.20 0.70 1.367 3.669
0.05 0.10 0.195 0.223 0.20 0.75 2.388 7.654
0.05 0.15 0.207 0.263 0.20 0.79 10.407 39.649
0.05 0.20 0.217 0.302 0.25 0.25 0.500 0.500
0.05 0.25 0.228 0.343 0.25 0.30 0.543 0.588
0.05 0.30 0.238 0.387 0.25 0.35 0.592 0.695
0.05 0.35 0.248 0.437 0.25 0.40 0.651 0.830
0.05 0.40 0.259 0.494 0.25 0.45 0.724 1.007
0.05 0.45 0.271 0.560 0.25 0.50 0.822 1.254
0.05 0.50 0.284 0.640 0.25 0.55 0.962 1.624
0.05 0.55 0.299 0.739 0.25 0.60 1.186 2.243
0.05 0.60 0.317 0.867 0.25 0.65 1.620 3.486
0.05 0.65 0.338 1.037 0.25 0.70 2.889 7.230
0.05 0.70 0.366 1.280 0.25 0.74 12.905 37.229
0.05 0.75 0.403 1.655 0.30 0.30 0.647 0.647
0.05 0.80 0.461 2.305 0.30 0.35 0.717 0.777
0.05 0.85 0.566 3.682 0.30 0.40 0.804 0.947
0.05 0.90 0.849 8.130 0.30 0.45 0.920 1.182
0.05 0.94 2.898 45.901 0.30 0.50 1.086 1.532
0.10 0.10 0.245 0.245 0.30 0.55 1.352 2.115
0.10 0.15 0.262 0.291 0.30 0.60 1.869 3.280
0.10 0.20 0.278 0.337 0.30 0.65 3.387 6.779
0.10 0.25 0.294 0.386 0.30 0.69 15.402 34.780
0.10 0.30 0.310 0.441 0.35 0.35 0.879 0.879
0.10 0.35 0.327 0.503 0.35 0.40 1.013 1.101
0.10 0.40 0.345 0.576 0.35 0.45 1.205 1.430
0.10 0.45 0.365 0.663 0.35 0.50 1.514 1.975
0.10 0.50 0.389 0.770 0.35 0.55 2.115 3.060
0.10 0.55 0.417 0.909 0.35 0.60 3.883 6.313
0.10 0.60 0.451 1.093 0.35 0.64 17.897 32.315
0.10 0.65 0.497 1.356 0.40 0.40 1.320 1.320
0.10 0.70 0.560 1.756 0.40 0.45 1.673 1.827
0.10 0.75 0.660 2.443 0.40 0.50 2.358 2.832
0.10 0.80 0.846 3.864 0.40 0.55 4.376 5.837
0.10 0.85 1.374 8.277 0.40 0.59 20.391 29.841
0.10 0.89 5.406 44.239 0.45 0.45 2.597 2.597
0.15 0.15 0.314 0.314 0.45 0.50 4.867 5.354
0.15 0.20 0.335 0.367 0.45 0.54 22.882 27.359
0.15 0.25 0.357 0.424 0.49 0.49 12.620 12.620
0.15 0.30 0.380 0.489 0.49 0.50 24.873 25.371

TABLE 6.22 (continued)

G1 G2 Â1 Â2 G1 G2 Â1 Â2
G2 G1 Â2 Â1 G2 G1 Â2 Â1
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PROBLEMS

 6.1. Suppose that a man’s job is to install 98 rivets in the right wing of an airplane under 
construction. If the random variable T is the total time required for one airplane, then 
what is the approximate distribution of T?

 6.2. Prove comment 2 for the Weibull distribution in Table 6.3.

 6.3. Prove comment 2 for the Pearson type VI distribution in Table 6.3.

 6.4. Consider a four-parameter Pearson type VI distribution with shape parameters a1 and 
a2, scale parameter b, and location parameter g. If a1 5 1, g 5 b 5 c . 0, then the 
resulting density is

 f(x) 5 a2 x2(a211)ca2  for x . c

 which is the density function of a Pareto distribution with parameters c and a2,  
denoted Pareto(c, a2). Show that X , Pareto(c, a2) if and only if Y 5 ln X , 
expo(ln c, 1ya2), an exponential distribution with location parameter ln c and scale 
parameter 1ya2.

 6.5. For the empirical distribution given by F(x) in Sec. 6.2.4, discuss the merit of defi ning 
F(X(i)) 5 iyn for i 5 1, 2, . . . , n, which seems like an intuitive defi nition. In this case, 
how would you defi ne F(x) for 0 # x , X(1)?

 6.6. Compute the expectation of the empirical distribution given by F(x) in Sec. 6.2.4.

 6.7. For discrete distributions, prove that the histogram (Sec. 6.4.2) is an unbiased estima-
tor of the (unknown) mass function; i.e., show that E(hj) 5 p(xj) for all j. Hint: For j 
fi xed, defi ne

 Yi 5 e
1

0
  

if Xi 5 xj

otherwise
  for i 5 1, 2, . . . , n

 6.8. Suppose that the histogram of your observed data has several local modes (see 
Fig. 6.31), but that it is not possible to break the data into natural groups with a differ-
ent probability distribution fi tting each group. Describe an alternative approach for 
modeling your data.

 6.9. For a geometric distribution with parameter p, explain why the MLE p̂ 5
1y[X(n) 1 1] is intuitive.

6.10. For each of the following distributions, derive formulas for the MLEs of the indicated 
parameters. Assume that we have IID data X1, X2, . . . , Xn from the distribution in 
question.
(a) U(0, b), MLE for b
(b) U(a, 0), MLE for a
(c) U(a, b), joint MLEs for a and b
(d) N(m, s2), joint MLEs for m and s
(e) LN(m, s2), joint MLEs for m and s
( f ) Bernoulli(p), MLE for p
(g) DU(i, j), joint MLEs for i and j
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(h) bin(t, p), MLE for p assuming that t is known
(i) negbin(s, p), MLE for p assuming that s is known
( j) U(u 2 0.5, u 1 0.5), MLE for u

6.11. For a Poisson distribution with parameter l, derive an approximate 100(1 2 a)  percent 
confi dence interval for l given the data X1, X2, . . . , Xn. Use the asymptotic normality 
of the MLE l̂.

6.12. Consider the shifted (two-parameter) exponential distribution, which has density 
function

 f(x) 5 •

1

b
 e2(x2g)yb

0

if x $ g

otherwise

 for b . 0 and any real number g. Given a sample X1, X2, . . . , Xn of IID random val-
ues from this distribution, fi nd formulas for the joint MLEs ĝ and b̂. Hint: Remember 
that g cannot exceed any Xi.

6.13. For a frequency comparison, show that rj as given by Eq. (6.4) is actually the expected 
proportion of the n observations that would fall in the jth interval if the fi tted distribu-
tion were in fact the true one.

6.14. For Q–Q plots, why it is inconvenient to have an empirical distribution function F̃n(x) 
such that F̃n(X(n)) 5 1?

6.15. What diffi culty arises when you try to defi ne a Q–Q plot for a discrete distribution?

6.16. Suppose that the true distribution function F(x) and the fi tted distribution function 
F̂(x) are the same. For what distribution F(x) will the Q–Q and P–P plots be essen-
tially the same if the sample size n is large?

6.17. Suppose that the random variable Mj is the number of the n Xi’s that would fall in the 
jth interval [aj21, aj) for a chi-square test if the fi tted distribution were in fact the true 
one. What is the distribution of Mj, and what is its mean?

6.18. For the chi-square test, explain intuitively why Kallenberg, Oosterhoff, and Schriever 
(1985) found in certain cases that power was greater when the npj’s were smaller in the 
tails rather than all being equal.

6.19. Let Fn(x) be the empirical distribution function used for the K-S test. Show that 
Fn(x) S F(x) as n S ` (w.p. 1) for all x, where F(x) is the true underlying distribution 
function.

6.20. Assume for the following analyses that each data set consists of IID observations from a 
continuous distribution. Use the Student Version of ExpertFit (see www.mhhe.com/law) 
to analyze these data (included in ExpertFit), following the steps in Sec. 6.7 (i.e., 
data summary, histogram, fi tting and ranking distributions, density-histogram plot, 
distribution-function-differences plot, P–P plot, chi-square test, K-S test, and A-D 
test). Use a level of a 5 0.05 for the tests.
(a) 91 laboratory-processing times
(b) 1000 paper-roll yardages (use second-best model so tests are applicable)
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(c) 218 post-offi ce service times (use second-best model so tests are applicable)
(d) 1592 times at an automated-teller machine (ATM)
(e) 694 machine-repair times
( f ) 3035 post-anesthesia recovery times

6.21. Assume for the following analyses that each data set consists of IID observations from 
a discrete distribution. Use the Student Version of ExpertFit to analyze these data, 
performing the following steps: data summary, histogram, fi tting and ranking distribu-
tions, frequency-comparison plot, distribution-function-differences plot, P–P plot, 
and chi-square test. (K-S and A-D tests are not applicable to discrete data.) Use a level 
of a 5 0.05 for the test.
(a) 369 university test scores
(b) 200 deaths per corps per year by horse kick in the Prussian army in the late 1800s

6.22. There are two sets of IID machine-repair times named PROB622a and PROB622b. 
(The machines are from the same vendor.) Use the Student Version of ExpertFit (with 
“Advanced Mode”) to perform the Kruskal-Wallis test (see Sec. 6.13) at level a 5 0.05 
to determine whether the data sets are homogeneous.

6.23. For the location parameter estimator g̃ in Sec. 6.8, show that g̃ , X(1) if and only if 
X(k) , [X(1) 1 X(n)]y2.

6.24. Let LN(g, m, s2) denote the shifted (three-parameter) lognormal distribution, which 
has density

 f(x) 5 •

1

(x 2 g)22ps2
 exp 

2[ln (x 2 g) 2 m]2

2s2

0

if x . g

otherwise

 for s . 0 and any real numbers g and m. [Thus, LN(0, m, s2) is the original 
LN(m, s2) distribution.]
(a) Verify that X , LN(g, m, s2) if and only if X 2 g , LN(m, s2).
(b)  Show that for a fi xed, known value of g, the MLEs of m and s in the LN(g, m, s2) 

distribution are

 m̂ 5

^
n

i51

ln(Xi 2 g)

n
  and  ŝ 5 •

^
n

i51

[ln(Xi 2 g) 2 m̂]2

n
¶

1y2

 i.e., we simply shift the data by an amount 2g and then treat them as being (un-
shifted) lognormal data.

6.25. For Theorem 6.3 in Sec. 6.12.2, explain intuitively why the expected number of 
 arrivals in the interval (t, t 1 s], b(t, s), should be equal to e t1s

t l(y) dy.

6.26. Provide an intuitive motivation for the defi nition of MLEs in the continuous case (see 
Sec. 6.5) by going through steps (a) through (c) below. As before, the observed data 
are X1, X2, . . . , Xn, and are IID realizations of a random variable X with density fu. 
Bear in mind that the Xi’s have already been observed, so are to be regarded as fi xed 
numbers rather than variables.
(a) Let e be a small (but strictly positive) real number, and defi ne the phrase “getting 

a value of X near Xi” to be the event {Xi 2 e , X , Xi 1 e}. Use the mean-value 
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theorem from calculus to argue that P(getting a value of X near Xi) < 2e fu(Xi), for 
any i 5 1, 2, . . . , n.

(b) Defi ne the phrase “getting a sample of n IID values of X near the observed data” to 
be the event (getting a value of X near X1, getting a value of X near X2, . . . , getting 
a value of X near Xn). Show that P(getting a sample of n IID values of X near the 
observed data) < (2e)nfu(X1) fu(X2) . . . fu(Xn), and note that this is proportional to 
the likelihood function L(u).

(c) Argue that the MLE û is the value of u that maximizes the approximate probability 
of getting a sample of n IID values of X near the observed data, and in this sense 
“best explains” the data that were actually observed.

6.27. Why is the average delay in queue approximately equal to the corresponding average 
number in queue in Table 6.2?

6.28. Show that Eq. (6.17) in Sec. 6.11 is correct.

6.29. Develop the general recursive formula for Newton’s method to estimate the shape 
parameter a for the Weibull distribution in Sec. 6.11 [see Eq. (6.22)]. The formula 
should be of the following form:

 ãk11 5 ãk 2
f (ãk)

f ¿(ãk)

 where f 9 denotes the derivative of f.

6.30. In the absence of data (Sec. 6.11), show how to specify a triangular distribution based 
on subjective estimates of a, m, and xq.

6.31. In the absence of data (Sec. 6.11), is it possible, in general, to specify a triangular 
distribution using a, b, and m, rather than a, b, and m?
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C H A P T E R  7

Random-Number Generators

Recommended sections for a fi rst reading: 7.1, 7.2, 7.3.1, 7.3.2, 7.4.1, 7.4.3

7.1
INTRODUCTION

A simulation of any system or process in which there are inherently random com-
ponents requires a method of generating or obtaining numbers that are random, in 
some sense. For example, the queueing and inventory models of Chaps. 1 and 2 
required interarrival times, service times, demand sizes, etc., that were “drawn” 
from some specifi ed distribution, such as exponential or Erlang. In this and the next 
chapter, we discuss how random values can be conveniently and effi ciently gener-
ated from a desired probability distribution for use in executing simulation models. 
So as to avoid speaking of “generating random variables,” which would not be 
strictly correct since a random variable is defi ned in mathematical probability the-
ory as a function satisfying certain conditions, we will adopt more precise termi-
nology and speak of “generating random variates.”

This entire chapter is devoted to methods of generating random variates from 
the uniform distribution on the interval [0, 1]; this distribution was denoted by U(0, 1) 
in Chap. 6. Random variates generated from the U(0, 1) distribution will be called 
random numbers. Although this is the simplest continuous distribution of all, it is 
extremely important that we be able to obtain such independent random numbers. 
This prominent role of the U(0, 1) distribution stems from the fact that random vari-
ates from all other distributions (normal, gamma, binomial, etc.) and realizations of 
various random processes (e.g., a nonstationary Poisson process) can be obtained by 
transforming IID random numbers in a way determined by the desired distribution 
or process. This chapter discusses ways to obtain independent random numbers, and 
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394 random-number generators

the following chapter treats methods of transforming them to obtain variates from 
other distributions, and realizations of various processes.

The methodology of generating random numbers has a long and interesting his-
tory; see Hull and Dobell (1962), Morgan (1984, pp. 51–56), and Dudewicz (1975) 
for entertaining accounts. The earliest methods were essentially carried out by hand, 
such as casting lots (Matthew 27 : 35), throwing dice, dealing out cards, or drawing 
numbered balls from a “well-stirred urn.” Many lotteries are still operated in this 
way, as is well known by American males who were of draft age in the late 1960s 
and early 1970s. In the early twentieth century, statisticians joined gamblers in their 
interest in random numbers, and mechanized devices were built to generate random 
numbers more quickly; in the late 1930s, Kendall and Babington-Smith (1938) used 
a rapidly spinning disk to prepare a table of 100,000 random digits. Some time later, 
electric circuits based on randomly pulsating vacuum tubes were developed that 
delivered random digits at rates of up to 50 per second. One such random-number 
machine, the Electronic Random Number Indicator Equipment (ERNIE), was used 
by the British General Post Offi ce to pick the winners in the Premium Savings Bond 
lottery [see Thomson (1959)]. Another electronic device was used by the Rand 
 Corporation (1955) to generate a table of a million random digits. Many other schemes 
have been contrived, such as picking numbers “randomly” out of phone books or 
census reports, or using digits in an expansion of p to 100,000 decimal places. 
There has been more recent interest in building and testing physical random- 
number “machines”; for example, Miyatake et al. (1983) describe a device based on 
counting gamma rays.

As computers (and simulation) became more widely used, increasing attention 
was paid to methods of random-number generation compatible with the way com-
puters work. One possibility would be to hook up an electronic random-number 
machine, such as ERNIE, directly to the computer. This has several disadvantages, 
chiefl y that we could not reproduce a previously generated random-number stream 
exactly. (The desirability of being able to do this is discussed later in this section.) 
Another alternative would be to read in a table, such as the Rand Corporation table, 
but this would entail either large memory requirements or a lot of time for relatively 
slow input operations. (Also, it is not at all uncommon for a modern large-scale 
simulation to use far more than a million random numbers, each of which would 
require several individual random digits.) Therefore, research in the 1940s and 
1950s turned to numerical or arithmetic ways to generate “random” numbers. These 
methods are sequential, with each new number being determined by one or several 
of its predecessors according to a fi xed mathematical formula. The fi rst such arith-
metic generator, proposed by von Neumann and Metropolis in the 1940s, is the 
famous midsquare method, an example of which follows.

E X A M P L E  7 . 1 .  Start with a four-digit positive integer Z0 and square it to obtain an 
integer with up to eight digits; if necessary, append zeros to the left to make it exactly 
eight digits. Take the middle four digits of this eight-digit number as the next four-digit 
number, Z1. Place a decimal point at the left of Z1 to obtain the fi rst “U(0, 1) random 
number,” U1. Then let Z2 be the middle four digits of Z2

1 and let U2 be Z2 with a decimal 
point at the left, and so on. Table 7.1 lists the fi rst few Zi’s and Ui’s for Z0 5 7182 (the 
fi rst four digits to the right of the decimal point in the number e).
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Intuitively the midsquare method seems to provide a good scrambling of one 
number to obtain the next, and so we might think that such a haphazard rule would 
provide a fairly good way of generating random numbers. In fact, it does not work 
very well at all. One serious problem (among others) is that it has a strong tendency 
to degenerate fairly rapidly to zero, where it will stay forever. (Continue Table 7.1 
for just a few more steps, or try Z0 5 1009, the fi rst four digits from the Rand 
 Corporation tables.) This illustrates the danger in assuming that a good random-
number generator will always be obtained by doing something strange and  nefarious 
to one number to obtain the next.

A more fundamental objection to the midsquare method is that it is not “random” 
at all, in the sense of being unpredictable. Indeed, if we know one number, the next 
is completely determined since the rule to obtain it is fi xed; actually, when Z0 is 
specifi ed, the whole sequence of Zi’s and Ui’s is determined. This objection applies 
to all arithmetic generators (the only kind we consider in the rest of this chapter), 
and arguing about it usually leads one quickly into mystical discussions about the 
true nature of truly random numbers. (Sometimes arithmetic generators are called 
pseudorandom, an awkward term that we avoid, even though it is probably more 
accurate.) Indeed, in an oft-quoted quip, John von Neumann (1951) declared that:

Any one who considers arithmetical methods of producing random digits is, of course, 
in a state of sin. For, as has been pointed out several times, there is no such thing as a 
random number—there are only methods to produce random numbers, and a strict arith-
metic procedure of course is not such a method. . . . We are here dealing with mere 
“cooking recipes” for making digits. . . .

It is seldom stated, however, that von Neumann goes on in the same paragraph to 
say, less gloomily, that these “recipes”

. . . probably . . . can not be justifi ed, but should merely be judged by their results. Some 
statistical study of the digits generated by a given recipe should be made, but exhaustive 
tests are impractical. If the digits work well on one problem, they seem usually to be 
successful with others of the same type.

This more practical attitude was shared by Lehmer (1951), who developed 
what is probably still the most widely used class of techniques for random-number 

TABLE 7.1

The midsquare method

 i Zi Ui  Z2
i

0 7182 — 51,581,124
1 5811 0.5811 33,767,721
2 7677 0.7677 58,936,329
3 9363 0.9363 87,665,769
4 6657 0.6657 44,315,649
5 3156 0.3156 09,960,336
. . . .
. . . .
. . . .
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generation (discussed in Sec. 7.2); he viewed the idea of an arithmetic random-
number generator as

. . . a vague notion embodying the idea of a sequence in which each term is unpredictable 
to the uninitiated and whose digits pass a certain number of tests traditional with statisti-
cians and depending somewhat on the use to which the sequence is to be put.

More formal defi nitions of “randomness” in an axiomatic sense are cited by 
Ripley (1987, p. 19); Niederreiter (1978) argues that statistical randomness may not 
even be desirable, and that other properties of the generated numbers, such as “even-
ness” of the distribution of points, are more important in some applications, such as 
Monte Carlo integration. We agree with most writers that arithmetic generators, if 
designed carefully, can produce numbers that appear to be independent draws from 
the U(0, 1) distribution, in that they pass a series of statistical tests (see Sec. 7.4). 
This is a useful defi nition of “random numbers,” to which we subscribe.

A “good” arithmetic random-number generator should possess several 
 properties:

1. Above all, the numbers produced should appear to be distributed uniformly on 
[0, 1] and should not exhibit any correlation with each other; otherwise, the 
simulation’s results may be completely invalid.

2. From a practical standpoint, we would naturally like the generator to be fast and 
avoid the need for a lot of storage.

3. We would like to be able to reproduce a given stream of random numbers ex-
actly, for at least two reasons. First, this can sometimes make debugging or veri-
fi cation of the computer program easier. More important, we might want to use 
identical random numbers in simulating different systems in order to obtain a 
more precise comparison; Sec. 11.2 discusses this in detail.

4. There should be provision in the generator for easily producing separate 
“streams” of random numbers. As we shall see, a stream is simply a subsegment 
of the numbers produced by the generator, with one stream beginning where the 
previous stream ends. We can think of the different streams as being separate and 
independent generators (provided that we do not use up a whole stream, whose 
length is typically chosen to be a very large number). Thus, the user can  “dedicate” 
a particular stream to a particular source of randomness in the simulation. We did 
this, for example, in the single-server queueing model of Sec. 2.4, where stream 1 
was used for generating interarrival times and stream 2 for generating service 
times. Using separate streams for separate purposes facilitates reproducibility 
and comparability of simulation results. While this idea has obvious intuitive 
appeal, there is probabilistic foundation in support of it as well, as discussed in 
Sec. 11.2. Further advantages of having streams available are discussed in other 
parts of Chap. 11. The ability to create separate streams for a generator is facilitated 
if there is an effi cient way to jump from the ith random number to the (i 1 k)th 
random number for large values of k.

5. We would like the generator to be portable, i.e., to produce the same sequence of 
random numbers (at least up to machine accuracy) for all standard compilers and 
computers (see Sec. 7.2.2).
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Most of the commonly used generators are quite fast, require very little storage, 
and can easily reproduce a given sequence of random numbers, so that points 2 and 
3 above are almost universally met. Furthermore, most generators now have the 
 facility for multiple streams in some way, especially those generators included in 
modern simulation packages, satisfying point 4. Unfortunately, there are also some 
generators that fail to satisfy the uniformity and independence criteria of point 1 
above, which are absolutely necessary if one hopes to obtain correct simulation 
results. For example, L’Ecuyer and Simard (2007) report several instances of pub-
lished generators’ displaying very poor performance.

In Sec. 7.2 we discuss the most common kind of generator, while Sec. 7.3 dis-
cusses some alternative methods. Section 7.4 discusses how one can test a given 
random-number generator for the desired statistical properties. Finally, Apps. 7A and 
7B contain portable computer code for two random-number generators in C. The fi rst 
generator was used for the examples in Chaps. 1 and 2. The second generator is known 
to have better statistical properties and is recommended for real-world applications.

The subject of random-number generation is a complicated one, involving such 
disparate disciplines as abstract algebra and number theory, on one hand, and 
 systems programming and computer hardware engineering, on the other. General 
references on random-number generators are the books by Fishman (1996, 2001, 
2006), Gentle (2010), Knuth (1998a), and Tezuka (1995) and, in addition, the book 
chapters by L’Ecuyer (2006, 2012).

7.2
LINEAR CONGRUENTIAL GENERATORS

Many random-number generators in use today are linear congruential generators 
(LCGs), introduced by Lehmer (1951). A sequence of integers Z1, Z2, . . . is defi ned 
by the recursive formula

 Zi 5 (aZi21 1 c)(mod m) (7.1)

where m (the modulus), a (the multiplier), c (the increment), and Z0 (the seed) are 
nonnegative integers. Thus, Eq. (7.1) says that to obtain Zi, divide aZi21 1 c by m and 
let Zi be the remainder of this division. Therefore, 0 # Zi # m 2 1, and to obtain the 
desired random numbers Ui (for i 5 1, 2, . . . ) on [0, 1], we let Ui 5 Ziym. We shall 
concentrate our attention for the most part on the Zi’s, although the precise nature of 
the division of Zi by m should be paid attention to due to differences in the way various 
computers and compilers handle fl oating-point arithmetic. In addition to nonnega-
tivity, the integers m, a, c, and Z0 should satisfy 0 , m, a , m, c , m, and Z0 , m.

Immediately, two objections could be raised against LCGs. The fi rst objection 
is one common to all (pseudo) random-number generators, namely, that the Zi’s 
defi ned by Eq. (7.1) are not really random at all. In fact, one can show by mathemat-
ical induction that for i 5 1, 2, . . . ,

 Zi 5 caiZ0 1
c(ai 2 1)

a 2 1
d  (mod m)
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so that every Zi is completely determined by m, a, c, and Z0. However, by careful 
choice of these four parameters we try to induce behavior in the Zi’s that makes the 
corresponding Ui’s appear to be IID U(0, 1) random variates when subjected to a 
variety of tests (see Sec. 7.4).

The second objection to LCGs might be that the Ui’s can take on only the ratio-
nal values 0, 1ym, 2ym, . . . , (m 2 1)ym; in fact, the Ui’s might actually take on only 
a fraction of these values, depending on the specifi cation of the constants m, a, c, 
and Z0, as well as on the nature of the fl oating-point division by m. Thus there is no 
possibility of getting a value of Ui between, say, 0.1ym and 0.9ym, whereas this 
should occur with probability 0.8ym . 0. As we shall see, the modulus m is usually 
chosen to be very large, say 109 or more, so that the points in [0, 1] where the Ui’s 
can fall are very dense; for m $ 109, there are at least a billion possible values.

E X A M P L E  7 . 2 .  Consider the LCG defi ned by m 5 16, a 5 5, c 5 3, and Z0 5 7. 
Table 7.2 gives Zi and Ui (to three decimal places) for i 5 1, 2, . . . , 19. Note that Z17 5 
Z1 5 6, Z18 5 Z2 5 1, and so on. That is, from i 5 17 through 32, we shall obtain exactly 
the same values of Zi (and hence Ui) that we did from i 5 1 through 16, and in exactly the 
same order. (We do not seriously suggest that anyone use this generator since m is so 
small; it only illustrates the arithmetic of LCGs.)

The “looping” behavior of the LCG in Example 7.2 is inevitable. By the defi ni-
tion in Eq. (7.1), whenever Zi takes on a value it has had previously, exactly the same 
sequence of values is generated, and this cycle repeats itself endlessly. The length of 
a cycle is called the period of a generator. For LCGs, Zi depends only on the previ-
ous integer Zi21, and since 0 # Zi # m 2 1, it is clear that the period is at most m; 
if it is in fact m, the LCG is said to have full period. (The LCG in Example 7.2 has 
full period.) Clearly, if a generator is full-period, any choice of the initial seed Z0 
from {0, 1, . . . , m 2 1} will produce the entire cycle in some order. If, however, a 
generator has less than full period, the cycle length could in fact depend on the par-
ticular value of Z0 chosen, in which case we should really refer to the period of the 
seed for this generator.

Since large-scale simulation projects can use millions of random numbers, it is 
manifestly desirable to have LCGs with long periods. Furthermore, it is comforting 
to have full-period LCGs, since we are assured that every integer between 0 and 
m 2 1 will occur exactly once in each cycle, which should contribute to the unifor-
mity of the Ui’s. (Even full-period LCGs, however, can exhibit nonuniform behavior 
in segments within a cycle. For example, if we generate only my2 consecutive Zi’s, 

TABLE 7.2

The LCG Zi 5 (5Zi21 1 3)(mod 16) with Z0 5 7

i Zi Ui i Zi Ui i Zi Ui i Zi Ui

0  7 — 5 10 0.625 10  9 0.563 15 4 0.250
1  6 0.375 6  5 0.313 11  0 0.000 16 7 0.438
2  1 0.063 7 12 0.750 12  3 0.188 17 6 0.375
3  8 0.500 8 15 0.938 13  2 0.125 18 1 0.063
4 11 0.688 9 14 0.875 14 13 0.813 19 8 0.500
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they may leave large gaps in the sequence 0, 1, . . . , m 2 1 of possible values.) 
Thus, it is useful to know how to choose m, a, and c so that the corresponding LCG 
will have full period. The following theorem, proved by Hull and Dobell (1962), 
gives such a characterization.

T H E O R E M  7 . 1 .  The LCG defi ned in Eq. (7.1) has full period if and only if the follow-
ing three conditions hold:
(a) The only positive integer that (exactly) divides both m and c is 1.
(b)  If q is a prime number (divisible by only itself and 1) that divides m, then q divides 

a 2 1.
(c) If 4 divides m, then 4 divides a 2 1.

[Condition (a) in Theorem 7.1 is often stated as “c is relatively prime to m.”]
Obtaining a full (or at least a long) period is just one desirable property for a 

good LCG; as indicated in Sec. 7.1, we also want good statistical properties (such 
as apparent independence), computational and storage effi ciency, reproducibility, 
facilities for separate streams, and portability (see Sec. 7.2.2). Reproducibility is 
simple, for we must only remember the initial seed used, Z0, and initiate the genera-
tor with this value again to obtain the same sequence of Ui’s exactly. Also, we can 
easily resume generating the Zi’s at any point in the sequence by saving the fi nal Zi 
obtained previously and using it as the new seed; this is a common way to obtain 
nonoverlapping, “independent” sequences of random numbers.

Streams are typically set up in a LCG by simply specifying the initial seed for 
each stream. For example, if we want streams of length 1,000,000 each, we set Z0 
for the fi rst stream to some value, then use Z1,000,000 as the seed for the second stream, 
Z2,000,000 as the seed for the third stream, and so on. Thus, we see that streams are 
actually nonoverlapping adjacent subsequences of the single sequence of random 
numbers being generated; if we were to use more than 1,000,000 random numbers 
from one stream in the above example, we would be encroaching on the beginning 
of the next stream, which might already have been used for something else, result-
ing in unwanted correlation.

In the remainder of this section we consider the choice of parameters for obtain-
ing good LCGs and identify some poor LCGs that are still in use. Because of condi-
tion (a) in Theorem 7.1, LCGs tend to behave differently for c . 0 (called mixed 
LCGs) than for c 5 0 (called multiplicative LCGs).

7.2.1 Mixed Generators

For c . 0, condition (a) in Theorem 7.1 is possible, so we might be able to obtain 
full period m, as we now discuss. For a large period and high density of the Ui’s on 
[0, 1], we want m to be large. Furthermore, in the early days of computer simulation 
when computers were relatively slow, dividing by m to obtain the remainder in 
Eq. (7.1) was a relatively slow arithmetic operation, and it was desirable to avoid 
having to do this division explicitly. A choice of m that is good in all these respects 
is m 5 2b, where b is the number of bits (binary digits) in a word on the computer 
being used that are available for actual data storage. For example, most computers 
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and compilers have 32-bit words, the leftmost bit being a sign bit, so b 5 31 and 
m 5 231 . 2.1 billion. Furthermore, choosing m 5 2b does allow us to avoid explicit 
division by m on most computers by taking advantage of integer overfl ow. The larg-
est integer that can be represented is 2b 2 1, and any attempt to store a larger integer W 
(with, say, h . b bits) will result in loss of the left (most signifi cant) h 2 b bits of 
this oversized integer. What remains in the retained b bits is precisely W(mod 2b).

With the choice of m 5 2b, Theorem 7.1 says that we shall obtain a full period 
if c is odd and a 2 1 is divisible by 4. Furthermore, Z0 can be any integer between 
0 and m 2 1 without affecting the period. We will, however, focus on multiplicative 
LCGs in the remainder of Sec. 7.2, because they are much more widely used.

7.2.2 Multiplicative Generators

Multiplicative LCGs are advantageous in that the addition of c is not needed, but 
they cannot have full period since condition (a) of Theorem 7.1 cannot be satisfi ed 
(because, for example, m is positive and divides both m and c 5 0). As we shall see, 
however, it is possible to obtain period m 2 1 if m and a are chosen carefully.

As with mixed generators, it’s still computationally effi cient to choose m 5 2b 
and thus avoid explicit division. However, it can be shown [see, for example, Knuth 
(1998a, p. 20)] that in this case the period is at most 2b22, that is, only one-fourth of 
the integers 0 through m 2 1 can be obtained as values for the Zi’s. (In fact, the period 
is 2b22 if Z0 is odd and a is of the form 8k 1 3 or 8k 1 5 for some k 5 0, 1, . . . .) 
Furthermore, we generally shall not know where these my4 integers will fall; 
i.e., there might be unacceptably large gaps in the Zi’s obtained. Additionally, if we 
choose a to be of the form 2l 1 j (so that the multiplication of Zi21 by a is replaced 
by a shift and j adds), poor statistical properties can be induced. The generator 
usually known as RANDU is of this form (m 5 231, a 5 216 1 3 5 65,539, c 5 0) 
and has been shown to have very undesirable statistical properties (see Sec. 7.4). 
Even if one does not choose a 5 2l 1 j, using m 5 2b in multiplicative LCGs is 
probably not a good idea, if only because of the shorter period of my4 and the result-
ing possibility of gaps.

Because of these diffi culties associated with choosing m 5 2b in multiplicative 
LCGs, attention was paid to fi nding other ways of specifying m. Such a method, 
which has proved to be quite successful, was reported by Hutchinson (1966), who 
attributed the idea to Lehmer. Instead of letting m 5 2b, it was proposed that m 
be the largest prime number that is less than 2b. For example, in the case of b 5 31, 
the largest prime that is less than 231 is, very agreeably, 231 2 1 5 2,147,483,647. 
Now for m prime, it can be shown that the period is m 2 1 if a is a primitive ele-
ment modulo m; that is, the smallest integer l for which al 2 1 is divisible by m is 
l 5 m 2 1; see Knuth (1998a, p. 20). With m and a chosen in this way, we obtain 
each integer 1, 2, . . . , m 2 1 exactly once in each cycle, so that Z0 can be any inte-
ger from 1 through m 2 1 and a period of m 2 1 will still result. These are called 
prime modulus multiplicative LCGs (PMMLCGs).

Two issues immediately arise concerning PMMLCGs: (1) How does one obtain 
a primitive element modulo m? Although Knuth (1998a, pp. 20–21) gives some 
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characterizations, the task is quite complicated from a computational standpoint. We 
shall, in essence, fi nesse this point by discussing below two widely used PMMLCGs. 
(2) Since we are not choosing m 5 2b, we can no longer use the integer overfl ow 
mechanism directly to effect division modulo m. A technique for avoiding explicit 
division in this case, which also uses a type of overfl ow, was given by Payne, 
Rabung, and Bogyo (1969) and has been called simulated division. Marse and 
Roberts’ portable generator, which we discuss below, uses simulated division.

Considerable work has been directed toward identifying good multipliers a for 
PMMLCGs that are primitive elements modulo m* 5 231 2 1, which result in a 
period of m* 2 1. In an important set of papers, Fishman and Moore (1982, 1986) 
evaluated all multipliers a that are primitive elements modulo m*, numbering some 
534 million. They used both empirical and theoretical tests (see Sec. 7.4 below), and 
they identifi ed several multipliers that perform well according to a number of fairly 
stringent criteria.

Two particular values of a that have been widely used for the modulus m* are 
a1 5 75 5 16,807 and a2 5 630,360,016, both of which are primitive elements 
modulo m*. [However, neither value of a was found by Fishman and Moore to be 
among the best (see Sec. 7.4.2).] The multiplier a1 was originally suggested by 
Lewis, Goodman, and Miller (1969), and it was used by Schrage (1979) in a clever 
FORTRAN implementation using simulated division. The importance of Schrage’s 
code was that it provided at that time a reasonably good and portable random-number 
generator.

The multiplier a2, suggested originally by Payne, Rabung, and Bogyo (1969), 
was found by Fishman and Moore to yield statistical performance better than does a1 
(see Sec. 7.4.2). Marse and Roberts (1983) provided a highly portable FORTRAN 
routine for this multiplier, and a C version of this generator is given in App. 7A. This 
is the generator that we used for all the examples in Chaps. 1 and 2, and it is the one 
built into the simlib package in Chap. 2.

The PMMLCG with m 5 m* 5 231 2 1 and a 5 a2 5 630,360,016 may pro-
vide acceptable results for some applications, particularly if the required number 
of random numbers is not too large. However, many experts [see, e.g., L’Ecuyer, 
Simard, Chen, and Kelton (2002) and Gentle (2010, p. 21)] recommend that LCGs 
with a modulus of around 231 should no longer be used as the random-number 
 generator in a general-purpose software package (e.g., for discrete-event simula-
tion). Not only can the period of the generator be exhausted in a few minutes on 
many computers, but, more importantly, the relatively poor statistical properties of 
these generators can bias simulation results for sample sizes that are much smaller 
than the period of the generator. For example, L’Ecuyer and Simard (2001) found 
using the birthday spacings test that the PMMLCGs with modulus m* and multipli-
ers a1 or a2 exhibit a certain departure from what would be expected in a sample of 
independent observations from the U(0, 1) distribution if the number of observa-
tions in the sample is approximately 8 times the cube root of the period of the 
generator. (As the sample size gets larger, the power of the test increases, eventually 
detecting the fact that the Ui’s are not truly uniformly distributed.) Thus, the “safe 
sample size” of these generators is actually approximately 10,000 [see also L’Ecuyer 
et al. (2000)].
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If a random-number generator with a larger period and better statistical prop-
erties is desired, then the combined multiple recursive generator of L’Ecuyer 
(Sec. 7.3.2), the Mersenne twister (Sec. 7.3.3), or the WELL generator (Sec. 7.3.3) 
should be considered.

7.3
OTHER KINDS OF GENERATORS

Although LCGs are probably the most widely used and best understood kind of 
random-number generator, there are many alternative types. (We have already seen 
one alternative in Sec. 7.1, the midsquare method, which is not recommended.) 
Most of these other generators have been developed in an attempt to obtain longer 
periods and better statistical properties. Our treatment in this section is meant not to 
be an exhaustive compendium of all kinds of generators, but only to indicate some 
of the main alternatives to LCGs.

7.3.1 More General Congruences

LCGs can be thought of as a special case of generators defi ned by

 Zi 5 g(Zi21, Zi22, . . .)(mod m) (7.2)

where g is a fi xed deterministic function of previous Zj’s. As with LCGs, the Zi’s 
defi ned by Eq. (7.2) lie between 0 and m 2 1, and the U(0, 1) random numbers are 
given by Ui 5 Ziym. [For LCGs, the function g is, of course, g(Zi21, Zi22, . . .) 5 
aZi21 1 c.] Here we briefl y discuss a few of these kinds of generators and refer 
the  reader to Knuth (1998a, pp. 26–36) or L’Ecuyer (2012) for a more detailed 
discussion.

One obvious generalization of LCGs would be to let g(Zi21, Zi22, . . .) 5 
a9Z2

i21 1 aZi21 1 c, which produces a quadratic congruential generator. A special 
case that has received some attention is when a95 a 5 1, c 5 0, and m is a power 
of 2; although this particular generator turns out to be a close relative of the 
 mid-square method (see Sec. 7.1), it has better statistical properties. Since Zi still 
depends only on Zi21 (and not on earlier Zj’s), and since 0 # Zi # m 2 1, the period 
of quadratic congruential generators is at most m, as for LCGs.

A different choice of the function g is to maintain linearity but to use earlier 
Zj’s; this gives rise to generators called multiple recursive generators (MRGs) and 
defi ned by

 g(Zi21, Zi22, . . .) 5 a1Zi21 1 a2Zi22 1 . . . 1 aq 
Zi2q (7.3)

where a1, a2, . . . , aq are constants. A period as large as mq 2 1 then becomes 
 possible if the parameters are chosen properly [see Knuth (1998a, pp. 29–30)]. 
L’Ecuyer, Blouin, and Couture (1993) investigated such generators, and included 
a generalization of the spectral test (see Sec. 7.4.2) for their evaluation; they also 
identifi ed several specifi c generators of this type that perform well, and give portable 
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implementations. Additional attention to generators with g of the form in Eq. (7.3) 
used in Eq. (7.2) has focused on g’s defi ned as Zi21 1 Zi2q, which includes the old 
 Fibonacci generator

 Zi 5 (Zi21 1 Zi22)(mod m)

This generator tends to have a period in excess of m but is completely unacceptable 
from a statistical standpoint; see Prob. 7.12.

7.3.2 Composite Generators

Several researchers have developed methods that take two or more separate genera-
tors and combine them in some way to generate the fi nal random numbers. It is 
hoped that this composite generator will exhibit a longer period and better statistical 
behavior than any of the simple generators composing it. The disadvantage in using 
a composite generator is, of course, that the cost of obtaining each Ui is more than 
that of using one of the simple generators alone.

Perhaps the earliest kind of composite generators used a second LCG to shuffl e 
the output from the fi rst LCG; they were developed by MacLaren and Marsaglia 
(1965) and extended by Marsaglia and Bray (1968), Grosenbaugh (1969), and 
Nance and Overstreet (1975). Initially, a vector V 5 (V1, V2, . . . , Vk) is fi lled 
 sequentially with the fi rst k Ui’s from the fi rst LCG (k 5 128 was originally sug-
gested). Then the second LCG is used to generate a random integer I distributed 
uniformly on the integers 1, 2, . . . , k (see Sec. 8.4.2), and VI is returned as the fi rst 
U(0, 1) variate; the fi rst LCG then replaces this Ith location in V with its next Ui, and 
the second LCG randomly chooses the next returned random number from this 
 updated V, etc. Shuffl ing has a natural intuitive appeal, especially since we would 
expect it to break up any correlation and greatly extend the period. Indeed,  MacLaren 
and Marsaglia obtained a shuffl ing generator with very good statistical behavior 
even though the two individual LCGs were quite poor. In a subsequent evaluation of 
shuffl ing, Nance and Overstreet (1978) confi rm that shuffl ing one bad LCG by 
 another bad LCG can result in a good composite generator, e.g., by extending the 
period when used on computers with short word lengths, but that little is accom-
plished by shuffl ing a good LCG. In addition, they found that a vector of length 
k 5 2 works as well as much larger vectors.

Several variations on this shuffl ing scheme have been considered; Bays and 
Durham (1976) and Gebhardt (1967) propose shuffl ing a generator by itself rather 
than by another generator. Atkinson (1980) also reported that simply applying a 
fi xed permutation (rather than a random shuffl ing) of the output of LCGs 
“. . .  removes the effect of all but the worst generators, and very appreciably allevi-
ates the damage that even a dreadful generator can cause.”

Despite these apparent advantages of rearranging a simple generator’s output in 
some way, there is not as much known about shuffl ed generators; for example, one 
cannot jump into an arbitrary point of a shuffl ed generator’s output sequence with-
out generating all the intermediate values, whereas this is possible for LCGs.
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404 random-number generators

Another way to combine two generators is discussed and evaluated by L’Ecuyer 
(1988) [see also L’Ecuyer and Tezuka (1991)]. In simplifi ed form, the idea is to let 
{Z1i} and {Z2i} denote the integer sequences generated by two different LCGs with 
different moduli, then let Zi 5 (Z1i 2 Z2i)(mod m) for some integer m, and fi nally set 
Ui 5 Ziym. This idea could clearly be extended to more than two generators, and has 
several advantages; the period is very long (at least 1018 in one example given by 
L’Ecuyer), the multipliers in each of the component generators can be small (thus 
promoting portability and usability on virtually any computer), the resulting genera-
tor is quite fast, and the statistical properties of these generators also appear to be 
very good.

One very appealing class of generators is obtained by combining MRGs (dis-
cussed in Sec. 7.3.1) in a particular way, and was developed and studied by L’Ecuyer 
(1996a, 1999a). In general, J different MRGs [using the function g from Eq. (7.3) 
in the recursion (7.2)] are implemented simultaneously to form the sequences {Z1,i}, 
{Z2,i}, . . . , {ZJ,i}. Letting m1 be the modulus m from Eq. (7.2) used in the fi rst of 
these MRGs, and letting d1, d2, . . . , dJ be specifi ed constants, we defi ne

 Yi 5 (d1Z1,i 1 d2Z2,i 1 . . . 1 dJZJ,i)(mod m1)

and fi nally return Ui 5 Yiym1 as the ith random number for use in the simulation. 
Although the parameters for these kinds of generators must be chosen very care-
fully, extremely long periods and exceptionally good statistical properties are pos-
sible. L’Ecuyer (1999a) carried out an extensive search for good parameter settings 
and supplied small, portable, and fast C code for several recommended cases; the 
simplest of these cases, where J 5 2 MRGs are combined, is defi ned by

  Z1,i 5 (1,403,580Z1,i22 2 810,728Z1,i23)[mod (232 2 209)]

  Z2,i 5 (527,612Z2,i21 2 1,370,589Z2,i23)[mod (232 2 22,853)]

  Yi 5 (Z1,i 2 Z2,i)[mod (232 2 209)]

  Ui 5
Yi

232 2 209

and has a period of approximately 2191 (which is about 3.1 3 1057) as well as excel-
lent statistical properties through dimension 45 (see Sec. 7.4.2). (This generator is 
denoted by MRG32k3a in the literature.) Note that for this generator, the seed is 
actually a 6-vector (Z1,0, Z1,1, Z1,2, Z2,0, Z2,1, Z2,2) and the fi rst returned random num-
ber would be indexed as U3. In App. 7B we give a portable C-code implementation 
for this particular generator, which supports a large number of streams spaced very 
far apart.

This generator with many large streams and substreams is implemented in the 
Arena [Kelton et al. (2010, p. 518)], AutoMod [Banks (2004, p. 367)], and WITNESS 
[Lanner (2013)] simulation packages. (Substreams are nonoverlapping adjacent 
subsequences of the random numbers in a stream.) If one is making multiple repli-
cations of their simulation model, these packages will automatically move to the 
beginning of the next substream for each stream at the beginning of replications 
2, 3, . . . . This can help synchronize the random numbers across the different  system 
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confi gurations of interest when using the variance-reduction technique called com-
mon random numbers (see Sec. 11.2.3).

Wichmann and Hill (1982) proposed the following idea for combining three 
generators, again striving for long period, portability, speed, and usability on small 
computers (as well as statistical adequacy). If U1i, U2i, and U3i are the ith random 
numbers produced by three separate generators, then let Ui be the fractional part 
(i.e., ignore any digits to the left of the decimal point) of U1i 1 U2i 1 U3i; see 
Prob. 7.13 for the underlying motivation. This indeed produces a very long period 
[although not as long as claimed in the original paper; see Wichmann and Hill 
(1984)] and is highly portable and effi cient. It was later pointed out by McLeod 
(1985), however, that their code may have numerical diffi culties in some computer 
architectures. Zeisel (1986) subsequently showed that this generator is identical to 
a multiplicative LCG, but that this equivalent LCG has a very large modulus and 
multiplier; thus, the Wichmann-Hill generator turned out to be a way to implement 
a multiplicative LCG with very large parameters on even the smallest computers. 
The Wichmann-Hill generator is implemented in Microsoft Excel 2010.

There are many conceivable ways to combine individual random-number genera-
tors, some of which we have reviewed above. Others are discussed by Collins (1987), 
Fishman (1996, pp. 634–645), Gentle (2010, pp. 46–51), and L’Ecuyer (1994b).

7.3.3 Feedback Shift Register Generators

Several interesting kinds of generators have been developed on the basis of a paper 
by Tausworthe (1965). These generators, which are related to cryptographic methods, 
operate directly on bits to form random numbers.

Defi ne a sequence b1, b2, . . . of binary digits by the recurrence

 bi 5 (c1bi21 1 c2bi22 1 . . . 1 cqbi2q)(mod 2) (7.4)

where c1, c2, . . . , cq21 are constants that are equal to 0 or 1 and cq 5 1. Note the 
similarity between the recurrence for bi and Eq. (7.3). In most applications of 
 Tausworthe generators, only two of the cj coeffi cients are nonzero for computa-
tional simplicity, in which case Eq. (7.4) becomes

 bi 5 (bi2r 1 bi2q)(mod 2) (7.5)

for integers r and q satisfying 0 , r , q. Execution of Eq. (7.5) is expedited by 
 noting that addition modulo 2 is equivalent to the exclusive-or instruction on bits. 
That is, Eq. (7.5) can be expressed as

 bi 5 e
0  if bi2r 5 bi2q

1  if bi2r fi bi2q

which is denoted by bi 5 bi2r % bi2q. To initialize the {bi} sequence, b1, b2, . . . , bq 
must be specifi ed somehow; this is akin to specifying the seed Z0 for LCGs.

To form a sequence of binary integers W1, W2, . . . , we string together l con-
secutive bi’s and consider this as a number in base 2. That is,

 W1 5 b1b2 . . . bl
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and

 Wi 5 b(i21)l11b(i21)l12 . . . bil  for i 5 2, 3, . . .

Note that the recurrence for the Wi’s is the same as the recurrence for the bi’s given 
by Eq. (7.5), namely

 Wi 5 Wi2r % Wi2q (7.6)

where the exclusive-or operation is performed bitwise. The ith U(0, 1) random 
 number Ui is then defi ned by

 Ui 5
Wi

2l  for i 5 1, 2, . . .

The maximum period of the {bi} sequence is 2q 2 1, since bi21, bi22, . . . , bi2q 
can take on 2q different possible states and the occurrence of the q-tuple 0, 0, . . . , 0 
would cause the {bi} sequence to stay in that state forever. Let

 f (x) 5 x  

q 1 c1x  

q21 1 . . . 1 cq21x 1 1

be the characteristic polynomial of the recurrence given by Eq. (7.4). Tausworthe 
(1965) showed that the period of the bi’s is, in fact, 2q 2 1 if and only if the poly-
nomial f(x) is primitive [see Knuth (1998a, pp. 29–30)] over the Galois fi eld f2, 
which is the set {0, 1} on which the binary operations of addition and multipli-
cation modulo 2 are defi ned. If l is relatively prime to 2q 2 1, then the period of 
the Wi’s (and the Ui’s) will also be 2q 2 1. Thus, for a computer with 31 bits for 
actual data storage, the maximum period is 231 2 1, which is the same as that for 
a LCG.

E X A M P L E  7 . 3 .  Let r 5 3 and q 5 5 in Eq. (7.5), and let b1 5 b2 5 . . . 5 b5 5 1. 
Thus, for i $ 6, bi is the “exclusive-or” of bi23 with bi25. In this case, f(x) is the trino-
mial x5 1 x2 1 1, which is, in fact, primitive over f2. The fi rst 40 bi’s are then

 1111100011011101010000100101100111110001

Note that the period of the bits is 31 5 25 2 1, since b32 through b36 are the same as b1 
through b5. If l 5 4 (which is relatively prime to 31), then the following sequence of 
Wi’s is obtained:

 15, 8, 13, 13, 4, 2, 5, 9, 15, 1, . . .

which also has a period of 31 (see Prob. 7.15). The corresponding Ui’s are obtained by 
dividing the Wi’s by 16 5 24.

The original motivation for suggesting that the bi’s be used as a source of U(0, 1) 
random numbers came from the observation that the recurrence given by Eq. (7.4) 
can be implemented on a binary computer using a switching circuit called a linear 
feedback shift register (LFSR). This is an array of q bits that is shifted, say, to the 
left one position at a time, with the bit shifted out on the left combined with other 
bits in the array to form the new rightmost bit. Because of the relationship between 
the recurrence (7.4) and a feedback shift register, Tausworthe generators are also 
called LFSR generators.
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E X A M P L E  7 . 4 .  The generator discussed in Example 7.3 can be represented by the 
LFSR shown in Fig. 7.1. The bits bi23 and bi25 are combined using the exclusive-or 
operation to produce a new bit that goes into the rightmost location (i.e., the one that 
previously contained bit bi21) of the array. The bit that was in the leftmost location of 
the array (i.e., bi25) is removed from the array. The values of bi25, bi24, bi23, bi22, and 
bi21 for i 5 6, 7, . . . , 15 are given in Table 7.3.

Unfortunately, LFSR generators are known to have statistical defi ciencies, as 
discussed by Matsumoto and Kurita (1996) and Tezuka (1995). However, L’Ecuyer 
(1996b, 1999b) considered combined LFSR generators, which have better statisti-
cal properties and a larger period.

Lewis and Payne (1973) introduced a modifi cation of the LFSR generator that 
they called a generalized feedback shift register (GFSR) generator. To obtain a se-
quence of l-bit binary integers Y1, Y2, . . . , the sequence of bits b1, b2, . . . produced 
by Eq. (7.5) is used to fi ll the fi rst (leftmost) binary position of the integers being 
formed. Then the same sequence of bits, but with a delay of d, is used to fi ll the 
second binary position of the integers. That is, the bits b11d, b21d, . . . are used for 
the second binary position. Finally, bits b11(l21)d, b21(l21)d, . . . are used to fi ll the lth 
binary position of the integers. The period of the Yi’s will be 2q 2 1 if Y1, Y2, . . . , Yq 

bi�3 � bi�5

bi�5 bi�4 bi�3 bi�2 bi�1

FIGURE 7.1
A LFSR corresponding to the recurrence (7.5) with r 5 3 
and q 5 5.

TABLE 7.3

Successive states of the LFSR for r 5 3 and q 5 5

 i b†
i25 bi24 b†

i23 bi22 bi21

 6 1 1 1 1 1
 7 1 1 1 1 0
 8 1 1 1 0 0
 9 1 1 0 0 0
10 1 0 0 0 1
11 0 0 0 1 1
12 0 0 1 1 0
13 0 1 1 0 1
14 1 1 0 1 1
15 1 0 1 0 1

†Source of bits.
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are linearly independent; that is, a1Y1 1 a2Y2 1 . . . 1 aqYq 5 0 for aj 5 0 or 1 im-
plies that all aj’s are 0. Note also that the Yi’s satisfy the recurrence

 Yi 5 Yi2r % Yi2q (7.7)

where the exclusive-or operation is performed bitwise.
The following example illustrates in detail how a GFSR generator works.

E X A M P L E  7 . 5 .  For the LFSR generator of Example 7.3, l 5 4, and a delay of d 5 6, 
we give the Yi’s produced by the resulting GFSR generator in Table 7.4. Note that the 
period of the Yi’s is 31, since Y32 through Y36 are the same as Y1 through Y5. Each of the 
integers 1 through 15 occurs twice and 0 occurs once in the period of length 31.

Because of the parallel nature of the binary positions in the Yi’s, a GFSR gen-
erator can have l equal to the word size of the computer, regardless of the relation-
ship between l and q. If l , q, then there will be many repeated Yi’s but the period 
will still be 2q 2 1. Thus, a very long period can be obtained on an l-bit computer 
by taking q very large. For example, Fushimi (1990) considered a variant of a GFSR 
generator that has a period of 2521 2 1.

Matsumoto and Kurita (1992, 1994) introduced the idea of a twisted GFSR 
(TGFSR) generator, where the recurrence (7.7) is replaced by

 Yi 5 Yi2r % AYi2q (7.8)

where the Yi’s are now considered as l 3 1 vectors and A is an l 3 l matrix, both of 
which consist of 0s and 1s. [If A is the identity matrix, then recurrence (7.8) is the 
same as recurrence (7.7).] With suitable choices for r, q, and A, a TGFSR generator 
can have a maximum period of 2ql 2 1 as compared with 2q 2 1 for a GFSR gen-
erator (both require ql bits to store the state of the generator). Matsumoto and Kurita 
(1994) discuss how to choose A so that a TGFSR generator has good statistical 
properties. The Mersenne twister [see Matsumoto and Nishimura (1998)], which 
is denoted by MT19937 in the literature, is a variant of the TGFSR generator 
with an astonishing period of 219,937 2 1 as well as excellent statistical properties 

TABLE 7.4

GFSR generator with r 5 3, q 5 5, l 5 4, and d 5 6

 i Yi i Yi i Yi

 1 1011 5 11 13 1100 5 12 25 0010 5  2
 2 1010 5 10 14 1000 5  8 26 1001 5  9
 3 1010 5 10 15 0011 5  3 27 0101 5  5
 4 1100 5 12 16 1001 5  9 28 1101 5 13
 5 1110 5 14 17 0011 5  3 29 1110 5 14
 6 0001 5  1 18 1111 5 15 30 0111 5  7
 7 0110 5  6 19 0001 5  1 31 0100 5  4
 8 0100 5  4 20 0000 5  0 32 1011 5 11
 9 1101 5 13 21 0110 5  6 33 1010 5 10
10 1000 5  8 22 0010 5  2 34 1010 5 10
11 0101 5  5 23 1111 5 15 35 1100 5 12
12 1011 5 11 24 0111 5  7 36 1110 5 14
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through dimension 623 (see Sec. 7.4.2). It has become quite popular in general, and 
it has also been implemented in the Simio [Simio (2013)] and SIMUL8 [SIMUL8 
(2013)] simulation packages. It is called the Mersenne twister because 219,937 2 1 is 
a Mersenne prime, i.e., a prime number of the form 2p 2 1. (Note that m* 5 231 2 1 
is also a prime number.)

Panneton et al. (2006) showed that if the Mersenne twister happened to start in 
an initial state with only a few bits set to 1, then the average value of the Ui’s pro-
duced over the next few thousand steps is likely to be much less than 0.5. They went 
on to develop a class of similar generators, called well-equidistributed long-period 
linear (WELL), that have a large period (e.g., 219,937), excellent statistical properties, 
and less dependence on a bad initial state. See the survey paper by L’Ecuyer and 
Panneton (2009).

7.4
TESTING RANDOM-NUMBER GENERATORS

As we have seen in Secs. 7.1 through 7.3, all random-number generators currently 
used in computer simulation are actually completely deterministic. Thus, we can 
only hope that the Ui’s generated appear as if they were IID U(0, 1) random vari-
ates. In this section we discuss several tests to which a random-number generator 
can be subjected to ascertain how well the generated Ui’s do (or can) resemble val-
ues of true IID U(0, 1) random variates.

Most computers have a “canned” random-number generator as part of the avail-
able software. Before such a generator is actually used in a simulation, we strongly 
recommend that one identify exactly what kind of generator it is and what its nu-
merical parameters are. Unless a generator is one of the “good” ones identifi ed (and 
tested) somewhere in the literature (or is one of the specifi c generators recom-
mended above), the responsible analyst should subject it (at least) to the empirical 
tests discussed below.

There are two quite different kinds of tests, which we discuss separately in 
Secs. 7.4.1 and 7.4.2. Empirical tests are the usual kinds of statistical tests and are 
based on the actual Ui’s produced by a generator. Theoretical tests are not tests in 
the statistical sense, but use the numerical parameters of a generator to assess it 
globally without actually generating any Ui’s at all.

7.4.1 Empirical Tests

Perhaps the most direct way to test a generator is to use it to generate some Ui’s, which 
are then examined statistically to see how closely they resemble IID U(0, 1) random 
variates. We discuss four such empirical tests; several others are treated in Knuth 
(1998a, pp. 41–75), L’Ecuyer et al. (2000), and L’Ecuyer and Simard (2001, 2007).

The fi rst test is designed to check whether the Ui’s appear to be uniformly dis-
tributed between 0 and 1, and it is a special case of a test we have seen before 
(in Sec. 6.6.2), the chi-square test with all parameters known. We divide [0, 1] 
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into k subintervals of equal length and generate U1, U2, . . . , Un. (As a general rule, 
k should be at least 100 here.) For j 5 1, 2, . . . , k, let fj be the number of the Ui’s 
that are in the jth subinterval, and let

 x2 5
k
n ^

k

j51

a
 
fj 2

n

k
b2

Then for large n, x2 will have an approximate chi-square distribution with k 2 1 df 
under the null hypothesis that the Ui’s are IID U(0, 1) random variables. Thus, we 
reject this hypothesis at level a if x2 . x2

k21,12a, where x2
k21,12a is the upper 1 2 a 

critical point of the chi-square distribution with k 2 1 df. [For the large values of k 
likely to be encountered here, we can use the approximation

 x2
k21,12a < (k 2 1) s1 2

2

9(k 2 1)
1 z12a B

2

9(k 2 1)
t

3

where z12a is the upper 1 2 a critical point of the N(0, 1) distribution.]

E X A M P L E  7 . 6 .  We applied the chi-square test of uniformity to the PMMLCG Zi 5 
630,360,016Zi21(mod 231 2 1), as implemented in App. 7A, using stream 1 with the 
default seed. We took k 5 212 5 4096 (so that the most signifi cant 12 bits of the Ui’s 
are being examined for uniformity) and let n 5 215 5 32,768. We obtained x2 5 4141.0; 
using the above approximation for the critical point, x2

4095,0.95 < 4245.0, so the null 
 hypothesis of uniformity is not rejected at level a 5 0.05. Therefore, these particular 
32,768 Ui’s produced by this generator do not behave in a way that is signifi cantly dif-
ferent from what would be expected from truly IID U(0, 1) random variables, so far as 
this chi-square test can ascertain.

Our second empirical test, the serial test, is really just a generalization of the 
chi-square test to higher dimensions. If the Ui’s were really IID U(0, 1) random 
 variates, the nonoverlapping d-tuples

 U1 5 (U1, U2, . . . , Ud),  U2 5 (Ud11, Ud12, . . . , U2d),  . . .

should be IID random vectors distributed uniformly on the d-dimensional unit 
 hypercube, [0, 1]d. Divide [0, 1] into k subintervals of equal size and generate U1, 
U2, . . . , Un (requiring nd Ui’s). Let fj1j2

 . . . jd be the number of Ui’s having fi rst 
component in subinterval j1, second component in subinterval j2, etc. (It is easier to 
tally the fj1j2

 . . . jd’s than might be expected; see Prob. 7.7.) If we let

 x2(d) 5
kd

n
 ^

k

j151
  ^

k

j251

. . . ^
k

jd51

 afj1j2
 . . . jd 2

n

kdb
2

then x2(d) will have an approximate chi-square distribution with kd 2 1 df. [See 
L’Ecuyer, Simard, and Weggenkittl (2002) for further discussion of the serial test.] 
The test for d-dimensional uniformity is carried out exactly as for the one- 
dimensional chi-square test above.

E X A M P L E  7 . 7 .  For d 5 2, we tested the null hypothesis that the pairs (U1, U2), 
(U3, U4), . . . , (U2n21, U2n) are IID random vectors distributed uniformly over the unit 
square. We used the generator in App. 7A, but starting with stream 2, and generated 
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n 5 32,768 pairs of Ui’s. We took k 5 64, so that the degrees of freedom were again 
4095 5 642 2 1 and the level a 5 0.05 critical value was the same, 4245.0. The value 
of x2(2) was 4016.5, indicating acceptable uniformity in two dimensions for the fi rst 
two-thirds of stream 2 (recall from Sec. 2.3 that the streams are of length 100,000 Ui’s, 
and we used 2n 5 65,536 of them here). For d 5 3, we used stream 3, took k 5 16 
(keeping the degrees of freedom as 4095 5 163 2 1 and the level a 5 0.05 critical value 
at 4245.0), and generated n 5 32,768 nonoverlapping triples of Ui’s. And x2(3) was 
4174.5, again indicating acceptable uniformity in three dimensions.

Why should we care about this kind of uniformity in higher dimensions? If the 
individual Ui’s are correlated, the distribution of the d-vectors Ui will deviate from 
d-dimensional uniformity; thus, the serial test provides an indirect check on the 
 assumption that the individual Ui’s are independent. For example, if adjacent Ui’s 
tend to be positively correlated, the pairs (Ui, Ui11) will tend to cluster around the 
southwest-northeast diagonal in the unit square, and x2(2) should pick this up. 
 Finally, it should be apparent that the serial test for d . 3 could require a lot of 
memory to tally the kd values of fj1j2

 . . . jd. (Choosing k 5 16 in Example 7.7 when 
d 5 3 is probably not a suffi ciently fi ne division of [0, 1].)

The third empirical test we consider, the runs (or runs-up) test, is a more di-
rect test of the independence assumption. (In fact, it is a test of independence 
only; i.e., we are not testing for uniformity in particular.) We examine the Ui se-
quence (or, equivalently, the Zi sequence) for unbroken subsequences of maximal 
length within which the Ui’s increase monotonically; such a subsequence is 
called a run up. For example, consider the following sequence U1, U2, . . . , U10: 
0.86, 0.11, 0.23, 0.03, 0.13, 0.06, 0.55, 0.64, 0.87, 0.10. The sequence starts with 
a run up of length 1 (0.86), followed by a run up of length 2 (0.11, 0.23), then 
another run up of length 2 (0.03, 0.13), then a run up of length 4 (0.06, 0.55, 
0.64, 0.87), and fi nally another run up of length 1 (0.10). From a sequence of n 
Ui’s, we count the number of runs up of length 1, 2, 3, 4, 5, and $ 6, and then 
defi ne

 ri 5 e number of runs up of length i

number of runs up of length $ 6
  

for i 5 1, 2, . . . , 5

for i 5 6

(See Prob. 7.8 for an algorithm to tally the ri’s. For the 10 Ui’s above, r1 5 2, r2 5 2, 
r3 5 0, r4 5 1, r5 5 0, and r6 5 0.) The test statistic is then

 R 5
1
n

 ^
6

i51
^

6

j51

aij(ri 2 nbi)(rj 2 nbj)

where aij is the (i, j)th element of the matrix

 4,529.4 9,044.9 13,568 18,091 22,615 27,892
 9,044.9 18,097 27,139 36,187 45,234 55,789
13,568 27,139 40,721 54,281 67,852 83,685
18,091 36,187 54,281 72,414 90,470 111,580
22,615 45,234 67,852 90,470 113,262 139,476
27,892 55,789 83,685 111,580 139,476 172,860

E U
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412 random-number generators

and the bi’s are given by

 (b1, b2, . . . , b6) 5 (1
6, 

5
24, 

11
120, 

19
720, 

29
5040, 

1
840)

[See Knuth (1998a, pp. 66–69) for derivation of these constants.* The aij’s given 
above are accurate to fi ve signifi cant digits.] For large n (Knuth recommends n $ 
4000), R will have an approximate chi-square distribution with 6 df, under the null 
hypothesis that the Ui’s are IID random variables.

E X A M P L E  7 . 8 .  We subjected stream 4 of the generator in App. 7A to the runs-up test, 
using n 5 5000, and obtained (r1, r2, . . . , r6) 5 (808, 1026, 448, 139, 43, 4), leading to 
a value of R 5 9.3. Since x2

6,0.95 5 12.6, we do not reject the hypothesis of indepen-
dence at level a 5 0.05.

The runs-up test can be reversed in the obvious way to obtain a runs-down test; 
the aij and bi constants are the same. Since runs tests look solely for independence 
(and not specifi cally for uniformity), it would probably be a good idea to apply a 
runs test before performing the chi-square or serial tests, since the last two tests 
implicitly assume independence.

The fi nal type of empirical test we consider is a direct way to assess whether the 
generated Ui’s exhibit discernible correlation: Simply compute an estimate of 
the correlation at lags j 5 1, 2, . . . , l for some value of l. Recall from Sec. 4.3 that 
the correlation at lag j in a sequence X1, X2, . . . of random variables is defi ned as 
rj 5 CjyC0, where

 Cj 5 Cov(Xi, Xi1j) 5 E(XiXi1j) 2 E(Xi)E(Xi1j)

is the covariance between entries in the sequence separated by j; note that 
C0 5 Var(Xi). (It is assumed here that the process is covariance-stationary; see 
Sec. 4.3.) In our case, we are interested in Xi 5 Ui, and under the hypothesis that 
the Ui’s are uniformly distributed on [0, 1], we have E(Ui) 5 1

2 and Var(Ui) 5 1
12, 

so  that Cj 5 E(UiUi1j) 2 1
4 and C0 5 1

12. Thus, rj 5 12E(UiUi1j) 2 3 in this 
case. From a  sequence U1, U2, . . . , Un of generated values, an estimate of rj can 
thus be obtained by estimating E(UiUi1j) directly from U1, U11j, U112j, etc., to 
obtain

 r̂j 5
12

h 1 1
 ^

h

k50

U11kj U11(k11) j 2 3

where h 5 : (n 2 1)yj ; 2 1. Under the further assumption that the Ui’s are indepen-
dent, it turns out [see, for example, Banks et al. (2010, p. 292)] that

 Var(r̂j) 5
13h 1 7

(h 1 1)2

*Knuth, D. E., The Art of Computer Programming, Vol. 2, p. 67, © 1998, 1981 Pearson Education, Inc. 
Reproduced by permission of Pearson Education, Inc. All rights reserved.
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Under the null hypothesis that rj 5 0 and assuming that n is large, it can be shown 
that the test statistic

 Aj 5
r̂j

1Var(r̂j)

has an approximate standard normal distribution. This provides a test of zero lag j 
correlation at level a, by rejecting this hypothesis if 0  Aj 0 . z12ay2. The test should 
probably be carried out for several values of j, since it could be, for instance, that 
there is no appreciable correlation at lags 1 or 2, but there is dependence between 
the Ui’s at lag 3, due to some anomaly of the generator.

E X A M P L E  7 . 9 .  We tested streams 5 through 10 of the generator in App. 7A for correla-
tion at lags 1 through 6, respectively, taking n 5 5000 in each case; i.e., we tested stream 5 
for lag 1 correlation, stream 6 for lag 2 correlation, etc. The values of A1, A2, . . . , A6 were 
0.90, 21.03, 20.12, 21.32, 0.39, and 0.76, respectively, none of which is signifi cantly 
different from 0 in comparison with the N(0, 1) distribution, at level a 5 0.05. Thus, the 
fi rst 5000 values in these streams do not exhibit observable autocorrelation at these lags.

As mentioned above, these are just four of the many possible empirical tests. For 
example, the Kolmogorov-Smirnov test discussed in Sec. 6.6.2 (for the case with all 
parameters known) could be applied instead of the chi-square test for one-dimensional 
uniformity. Also, the birthday spacings test was used by L’Ecuyer and Simard (2001) 
in their testing of LCGs with modulus m 5 231 2 1 and multipliers a1 and a2 (see 
Sec. 7.2.2), and it was found that these generators failed the test for a sample size of 
approximately n 5 10,000. They also applied the test to the generators MRG32k3a 
and MT19937, and uniformity was not rejected for sample sizes up to and including 
n 5 262,144. Several empirical tests have been developed around the idea that the 
generator in question is used to simulate a relatively simple stochastic system with 
known (population) performance measures that the simulation estimates. The simu-
lated results are compared in some way with the known exact “answers,” perhaps by 
means of a chi-square test. A simple application of this idea is seen in Prob. 7.10; 
Rudolph and Hawkins (1976) test several generators by using them to simulate Markov 
processes. In general, we feel that as many empirical tests should be performed as are 
practicable. In this regard, it should be mentioned that there are several comprehen-
sive test suites for evaluating random-number generators. These include DIEHARD 
[Marsaglia (1995)], the NIST Test Suite [Rukhin et al. (2001)], and TestU01 [L’Ecuyer 
and Simard (2007)], with the last package containing more than 100 empirical tests. 
These test suites are also described in Gentle (2010, pp. 79–85).

Lest the reader be left with the impression that the empirical tests we have pre-
sented in this section have no discriminative power at all, we subjected the infamous 
generator RANDU [defi ned by Zi 5 65,539Zi21(mod 231)], with seed Z0 5 123,456,789, 
to the same tests as in Examples 7.6 through 7.9. The test statistics were as follows:

Chi-square test: x2 5 4,202.0
Serial tests: x2(2) 5 4,202.3
 x2(3) 5 16,252.3
Runs-up test: R 5 6.3
Correlation tests: All Aj’s were insignifi cant
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While uniformity appears acceptable on [0, 1] and on the unit square, note the enor-
mous value of the three-dimensional serial test statistic, indicating a severe problem 
for this generator in terms of uniformity on the unit cube. RANDU is a fatally 
fl awed generator, due primarily to its utter failure in three dimensions; we shall see 
why in Sec. 7.4.2.

One potential disadvantage of empirical tests is that they are only local; i.e., 
only that segment of a cycle (for LCGs, for example) that was actually used to 
 generate the Ui’s for the test is examined, so we cannot say anything about how the 
generator might perform in other segments of the cycle. On the other hand, this 
local nature of empirical tests can be advantageous, since it might allow us to exam-
ine the actual random numbers that will be used later in a simulation. (Often we can 
calculate ahead of time how many random numbers will be used in a simulation, or 
at least get a conservative estimate, by analyzing the model’s operation and the 
techniques used for generating the necessary random variates.) Then this entire 
random-number stream can be tested empirically, one would hope without exces-
sive cost. (The tests in Examples 7.6 through 7.9 were all done together in a single 
program that took just a few seconds on an old, modest computer.) A more global 
empirical test could be performed by replicating an entire test several times and 
statistically comparing the observed values of the test statistics against the distribu-
tion under the null hypothesis; Fishman (1978, pp. 371–372) suggests this approach. 
For example, the runs-up test of Example 7.8 could be done, say, 100 times using 
100 separate random-number streams from the same generator, each of length 5000. 
This would result in 100 independent values for R, which could then be compared 
with the chi-square distribution with 6 df using, for example, the K-S test with all 
parameters known.

7.4.2 Theoretical Tests

We now discuss theoretical tests for random-number generators. Since these tests 
are quite sophisticated and mathematically complex, we shall describe them 
somewhat qualitatively; for detailed accounts see Fishman (1996, pp. 607–628), 
Fishman (2006, pp. 119–123, 133–134, 140–141), Knuth (1998a, pp. 80–115), and 
L’Ecuyer (1998, pp. 106–114). As mentioned earlier, theoretical tests do not re-
quire that we generate any Ui’s at all but are a priori in that they indicate how well 
a generator can perform by looking at its structure and defi ning constants. Theo-
retical tests also differ from empirical tests in that they are global; i.e., a genera-
tor’s behavior over its entire cycle is examined. As we mentioned at the end of 
Sec. 7.4.1, it is debatable whether local or global tests are preferable; global tests 
have a natural appeal but do not generally indicate how well a specifi c segment of 
a cycle will behave.

It is sometimes possible to compute the “sample” mean, variance, and correla-
tions over an entire cycle directly from the constants defi ning the generator. Many 
of these results are quoted by Kennedy and Gentle (1980, pp. 139–143). For ex-
ample, in a full-period LCG, the average of the Ui’s, taken over an entire cycle, is 
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1
2 2 1y(2m), which is seen to be very close to the desired 12 if m is one of the large 
values (in the billions) typically used; see Prob. 7.14. Similarly, we can compute the 
“sample” variance of the Ui’s over a full cycle and get 1

12 2 1y(12m2), which is 
close to 1

12, the variance of the U(0, 1) distribution. Kennedy and Gentle also discuss 
“sample” correlations for LCGs. Although such formulas may seem comforting, 
they can be misleading; e.g., the result for the full-period LCG sample lag 1 cor-
relation suggests that, to minimize this value, a be chosen close to 1m, which turns 
out to be a poor choice from the standpoint of other important statistical 
considerations.

The best-known theoretical tests are based on the rather upsetting observation 
by Marsaglia (1968) that “random numbers fall mainly in the planes.” That is, if U1, 
U2, . . . is a sequence of random numbers generated by a LCG, the overlapping 
d-tuples (U1, U2, . . . , Ud), (U2, U3, . . . , Ud11), . . . will all fall on a relatively small 
number of (d 2 1)-dimensional hyperplanes passing through the d-dimensional unit 
hypercube [0, 1]d. For example, if d 5 2, the pairs (U1, U2), (U2, U3), . . . will be 
arranged in a “lattice” fashion along several different families of parallel lines going 
through the unit square. The lines within a family are parallel to each other, but lines 
from different families are not parallel.

In Figs. 7.2 and 7.3, we display all possible pairs (Ui, Ui11) for the full-period 
multiplicative LCGs Zi 5 18Zi21(mod 101) and Zi 5 2Zi21(mod 101), respectively. 

0

1

0 1

FIGURE 7.2
Two-dimensional lattice structure for the full-period LCG with 
m 5 101 and a 5 18.
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(The period is 100 in each case, since the modulus m 5 101 is prime and each value 
of the multiplier a is a primitive element modulo m.) While the apparent regularity 
in Fig. 7.2 certainly does not seem very “random,” it may not be too disturbing since 
the pairs seem to fi ll up the unit square fairly well, or at least as well as could be 
expected with such a small modulus. On the other hand, all 100 pairs in Fig. 7.3 fall 
on just two parallel lines, which is defi nitely anxiety-provoking. Since there are 
large areas of the unit square where we can never realize a pair of Ui’s, a simulation 
using such a generator would almost certainly produce invalid results.

The same diffi culties occur in three dimensions. In Fig. 7.4, 2000 triples 
(Ui, Ui11, Ui12) produced by the infamous multiplicative LCG generator RANDU 
(m 5 231 and a 5 65,539) are displayed, viewed from a particular point outside of 
the unit cube. Note that all triples of Ui’s fall on only 15 parallel planes passing 
through the unit cube. (In general, all the roughly half-billion triples across the pe-
riod fall on these same planes.) This explains the horrifi c performance of RANDU 
on the three-dimensional serial test noted at the end of Sec. 7.4.1.

Among all families of parallel hyperplanes that cover all overlapping d-tuples 
(Ui, Ui11, . . . , Ui1d21), take the one for which adjacent hyperplanes are farthest 
apart and denote this distance by dd(m, a). The idea of computing dd(m, a) was sug-
gested by Coveyou and MacPherson (1967) and is typically called the spectral test. 
If dd(m, a) is small, then we would expect that the corresponding generator would 
be able to uniformly fi ll up the d-dimensional unit hypercube [0, 1]d.

0

1

0 1

FIGURE 7.3
Two-dimensional lattice structure for the full-period LCG with 
m 5 101 and a 5 2.
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For LCGs it is possible to compute a theoretical lower bound d*d(m) on dd(m, a), 
which is given by the following:

 dd(m, a) $ d*d(m) 5
1

gd m1yd
  for all a

where gd is a constant whose exact value is known only for d # 8. We can then 
defi ne the following fi gures of merit for a LCG:

 Sd (m, a) 5
d*d (m)

dd(m, a)

and

 M8(m, a) 5 min2#d#8 Sd(m, a)

These fi gures of merit will be between 0 and 1, with values close to 1 being desir-
able. Methods for performing the spectral test [i.e., for computing dd(m, a)] are 
discussed by Knuth (1998a, pp. 98–104) and L’Ecuyer and Couture (1997).

Ui�1

Ui�2

Ui

FIGURE 7.4
Three-dimensional lattice structure for 2000 triples from the 
 multiplicative LCG RANDU with m 5 231 and a 5 65,539.
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Values of Sd(m, a) and M8(m, a) are given in Table 7.5 for several well-
known LCGs. The LCGs in columns 2 and 3 with multipliers a1 and a2 were 
discussed in Sec. 7.2.2, and it’s seen that the latter generator is superior relative 
to the spectral test. The generator in column 4 with a 5 742,938,285 was found 
by Fishman and Moore (1986) in an exhaustive search to be the best relative to 
the criterion M6(2

31 2 1, a). Finally, in column 5 are the results of the spectral 
test for RANDU; its poor  behavior in d 5 3 dimensions is clearly refl ected in the 
value S3(2

31, 65,539) 5 0.012.

7.4.3 Some General Observations on Testing

The number, variety, and range of complexity of tests for random-number 
 generators are truly bewildering. To make matters worse, there has been (and 
probably always will be) considerable controversy over which tests are best, 
whether theoretical tests are really more defi nitive than empirical tests, and so 
on. Indeed, no amount of testing can ever absolutely convince everyone that 
some particular  generator is absolutely “the best.” One piece of advice that is 
often offered, however, is that a random-number generator should be tested in a 
way that is consistent with its intended use. This would entail, for example, ex-
amining the behavior of pairs of Ui’s (perhaps with the two-dimensional serial 
test) if random numbers are naturally used in pairs in the simulation itself. In a 
broader sense, this advice would imply that one should be more careful in choos-
ing and testing a random-number generator if the simulation in which it will be 
used is very costly, requires high-precision results, or is a particularly critical 
component of a larger study.

TABLE 7.5

The results of the spectral test for some LCGs

 Generator

Figure of  m 5 231 2 1 m 5 231 2 1 m 5 231 2 1 m 5 231

merit a 5 a1 5 16,807 a 5 a2 5 630,360,016 a 5 742,938,285 a 5 65,539

S2(m, a) 0.338 0.821 0.867 0.931
S3(m, a) 0.441 0.432 0.861 0.012
S4(m, a) 0.575 0.783 0.863 0.060
S5(m, a) 0.736 0.802 0.832 0.157
S6(m, a) 0.645 0.570 0.834 0.293
S7(m, a) 0.571 0.676 0.624 0.453
S8(m, a) 0.610 0.721 0.707 0.617

M8(m, a) 0.338 0.432 0.624 0.012

Law01323_ch07_393-425.indd Page 418  10/29/13  4:55 PM f-494 Law01323_ch07_393-425.indd Page 418  10/29/13  4:55 PM f-494 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



chapter seven 419

APPENDIX 7A 
PORTABLE C CODE FOR A PMMLCG

Here we present computer code in C to implement the PMMLCG defi ned by  modulus 
m 5 m* 5 231 2 1 5 2,147,483,647 and multiplier a 5 a2 5 630,360,016, discussed 
at the end of Sec. 7.2.2. The code shown here can be downloaded from www.mhhe
.com/law. This code is based closely on the FORTRAN code of Marse and Roberts 
(1983), and it requires that integers between 2m* and m* be  represented and com-
puted correctly. This generator has 100 different streams that are spaced 100,000 apart.

It is generally not recommended that this generator be used for serious real-
world applications, since the combined MRG in App. 7B has much better statistical 
properties.

Figure 7.5 gives code for an ANSI-standard C (i.e., using function prototyping) 
version of this generator, in three functions, as detailed in the comments. Figure 7.6 
gives a header fi le (lcgrand.h) that the user must #include to declare the functions. 
We have used this code on a variety of computers and compilers, and it was used in 
the C examples in Chaps. 1 and 2.

/* Prime modulus multiplicative linear congruential generator
   Z[i] = (630360016 * Z[i-1]) (mod(pow(2,31) - 1)), based on Marse and Roberts'
   portable FORTRAN random-number generator UNIRAN.  Multiple (100) streams are
   supported, with seeds spaced 100,000 apart.  Throughout, input argument
   "stream" must be an int giving the desired stream number.  The header file
   lcgrand.h must be included in the calling program (#include "lcgrand.h")
   before using these functions.

   Usage: (Three functions)

   1. To obtain the next U(0,1) random number from stream "stream," execute
          u = lcgrand(stream);
      where lcgrand is a float function.   The float variable u will contain the
      next random number.

   2. To set the seed for stream "stream" to a desired value zset, execute
          lcgrandst(zset, stream);
      where lcgrandst is a void function and zset must be a long set to the
      desired seed, a number between 1 and 2147483646 (inclusive).  Default
      seeds for all 100 streams are given in the code.

   3. To get the current (most recently used) integer in the sequence being
      generated for stream "stream" into the long variable zget, execute
          zget = lcgrandgt(stream);
      where lcgrandgt is a long function. */

/* Define the constants. */

#define MODLUS 2147483647
#define MULT1       24112
#define MULT2       26143

/* Set the default seeds for all 100 streams. */

FIGURE 7.5
C code for the PMMLCG with m 5 231 2 1 and a 5 630,360,016 based on Marse and 
 Roberts (1983).
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static long zrng[] =
{         1,
 1973272912, 281629770,  20006270,1280689831,2096730329,1933576050,
  913566091, 246780520,1363774876, 604901985,1511192140,1259851944,
  824064364, 150493284, 242708531,  75253171,1964472944,1202299975,
  233217322,1911216000, 726370533, 403498145, 993232223,1103205531,
  762430696,1922803170,1385516923,  76271663, 413682397, 726466604,
  336157058,1432650381,1120463904, 595778810, 877722890,1046574445,
   68911991,2088367019, 748545416, 622401386,2122378830, 640690903,
 1774806513,2132545692,2079249579,  78130110, 852776735,1187867272,
 1351423507,1645973084,1997049139, 922510944,2045512870, 898585771,
  243649545,1004818771, 773686062, 403188473, 372279877,1901633463,
  498067494,2087759558, 493157915, 597104727,1530940798,1814496276,
  536444882,1663153658, 855503735,  67784357,1432404475, 619691088,
  119025595, 880802310, 176192644,1116780070, 277854671,1366580350,
 1142483975,2026948561,1053920743, 786262391,1792203830,1494667770,
 1923011392,1433700034,1244184613,1147297105, 539712780,1545929719,
  190641742,1645390429, 264907697, 620389253,1502074852, 927711160,
  364849192,2049576050, 638580085, 547070247 };
/* Generate the next random number. */

float lcgrand(int stream)
{
    long zi, lowprd, hi31;

    zi     = zrng[stream];
    lowprd = (zi & 65535) * MULT1;
    hi31   = (zi >> 16) * MULT1 + (lowprd >> 16);
    zi     = ((lowprd & 65535) - MODLUS) +
             ((hi31 & 32767) << 16) + (hi31 >> 15);
    if (zi < 0) zi += MODLUS;
    lowprd = (zi & 65535) * MULT2;
    hi31   = (zi >> 16) * MULT2 + (lowprd >> 16);
    zi     = ((lowprd & 65535) - MODLUS) +
             ((hi31 & 32767) << 16) + (hi31 >> 15);
    if (zi < 0) zi += MODLUS;
    zrng[stream] = zi;
    return (zi >> 7 | 1) / 16777216.0;
}

void lcgrandst (long zset, int stream) /* Set the current zrng for stream
                                          "stream" to zset. */
{
    zrng[stream] = zset;
}

long lcgrandgt (int stream) /* Return the current zrng for stream "stream". */
{
    return zrng[stream];
}

FIGURE 7.5
(continued)

/* The following 3 declarations are for use of the random-number generator
   lcgrand and the associated functions lcgrandst and lcgrandgt for seed
   management.  This file (named lcgrand.h) should be included in any program
   using these functions by executing
       #include "lcgrand.h"
   before referencing the functions. */

float lcgrand(int stream);
void  lcgrandst(long zset, int stream);
long  lcgrandgt(int stream);

FIGURE 7.6
C header fi le (lcgrand.h) to accompany the C code in Fig. 7.5.
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APPENDIX 7B 
PORTABLE C CODE FOR A COMBINED MRG

Here we present an ANSI-standard C function, mrand, that implements the combined 
MRG specifi ed in Sec. 7.3.2, taken from L’Ecuyer (1999a), and which supports mul-
tiple streams (up to 10,000) with seed vectors spaced 1016 (ten quadrillion) apart. This 
code requires that all integers between 2253 and 253 be represented exactly in fl oating 
point, which will be satisfi ed in the (common) situation of a 32-bit word-length ma-
chine and a C compiler that conforms to the IEEE standard for fl oating-point storage 
and arithmetic. All codes shown here can be downloaded from www.mhhe.com/law.

Figure 7.7 gives the code for this generator, in three functions, as described in 
the comments in the code. Figure 7.8 gives a header fi le (mrand.h) that the user must 
#include before the main function in the calling program. Figure 7.9 gives the fi rst 23 
and last 4 lines (showing the seed vectors for streams 1–20 and 9998–10,000) of the 
fi le mrand_seeds.h, which contains seed vectors for the 10,000 streams spaced 1016 

FIGURE 7.7
C code for the combined MRG specifi ed in Sec. 7.3.2, based on L’Ecuyer (1999a).

/* Combined MRG from Sec. 7.3.2, from L'Ecuyer (1999a).  Multiple
   (10,000) streams are supported, with seed vectors spaced
   10,000,000,000,000,000 apart.  Throughout, input argument "stream"
   must be an int giving the desired stream number.  The header file
   mrand_seeds.h is included here, so must be available in the
   appropriate directory.  The header file mrand.h must be included in
   the calling program (#include "mrand.h") before using these
   functions.

   Usage: (Three functions)

   1. To obtain the next U(0,1) random number from stream "stream,"
      execute
          u = mrand(stream); 
      where mrand is a double function.  The double variable u will
      contain the next random number.

   2. To set the seed vector for stream "stream" to a desired 6-vector,
      execute
          mrandst(zset, stream);
      where mrandst is a void function and zset must be a double
      vector with positions 0 through 5 set to the desired
      stream 6-vector, as described in Sec. 7.3.2.

   3. To get the current (most recently used) 6-vector of integers in
      the sequences (to use, e.g., as the seed for a subsequent
      independent replication), into positions 0 through 5 of the
      double vector zget, execute
          mrandgt(zget, stream);
      where mrandgt is void function.  */

#include "mrand_seeds.h"
#define norm   2.328306549295728e-10  /* 1.0/(m1+1) */
#define norm2  2.328318825240738e-10  /* 1.0/(m2+1) */
#define m1     4294967087.0
#define m2     4294944443.0

/* Generate the next random number. */
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FIGURE 7.7
(continued)

double mrand(int stream)
{
    long k;
    double p,
           s10 = drng[stream][0], s11 = drng[stream][1], s12 = drng[stream][2],
           s20 = drng[stream][3], s21 = drng[stream][4], s22 = drng[stream][5];

    p = 1403580.0 * s11 - 810728.0 * s10;
    k = p / m1;  p -= k*m1;  if (p < 0.0) p += m1;
    s10 = s11;   s11 = s12;  s12 = p;

    p = 527612.0 * s22 - 1370589.0 * s20;
    k = p / m2;  p -= k*m2;  if (p < 0.0) p += m2;
    s20 = s21;   s21 = s22;  s22 = p; 

    drng[stream][0] = s10;  drng[stream][1] = s11;  drng[stream][2] = s12;
    drng[stream][3] = s20;  drng[stream][4] = s21;  drng[stream][5] = s22;

    if (s12 <= s22) return ((s12 - s22 + m1) * norm);
    else return ((s12 - s22) * norm);
}

/* Set seed vector for stream "stream". */

void mrandst(double* seed, int stream)
{
int i;
    for (i = 0; i <= 5; ++i) drng[stream][i] = seed[i];
}

/* Get seed vector for stream "stream". */

void mrandgt(double* seed, int stream)
{
int i;
    for (i = 0; i <= 5; ++i) seed[i] = drng[stream][i];
}

/* Header file "mrand.h" to be included by programs using mrand.c */

double mrand(int stream);
void mrandst(double* seed, int stream);
void mrandgt(double* seed, int stream);

FIGURE 7.8
C header fi le (mrand.h) to accompany the C code in Fig. 7.7.

apart. We have used these codes on a variety of computers and compilers success-
fully, though some compilers might issue harmless warnings about the size of the 
numbers in mrand.h (such warnings can usually be turned off by a compiler switch 
like -w on some UNIX C compilers). Also, the calling program might have to load 
a mathematical library (e.g., the -lm switch on UNIX C compilers).

Codes for this generator in C, C++, and Java, which allow for substreams (see 
Sec. 7.3.2), can be downloaded from www.iro.umontreal.ca/~lecuyer. [See also 
L’Ecuyer, Simard, Chen, and Kelton (2002).]
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PROBLEMS

 7.1. For the LCG of Example 7.2 fi nd Z500, using only pencil and paper.

 7.2. For the following multiplicative LCGs, compute Zi for enough values of i $ 1 to cover 
an entire cycle:
(a) Zi 5 (11Zi21)(mod 16), Z0 5 1
(b) Zi 5 (11Zi21)(mod 16), Z0 5 2
(c) Zi 5 (2Zi21)(mod 13), Z0 5 1
(d ) Zi 5 (3Zi21)(mod 13), Z0 5 1

 Note that (a) and (b) have m of the form 2b; (c) is a PMMLCG, for which a 5 2 is a 
primitive element modulo m 5 13.

 7.3. Without actually computing any Zi’s, determine which of the following mixed LCGs 
have full period:
(a) Zi 5 (13Zi21 1 13)(mod 16)
(b) Zi 5 (12Zi21 1 13)(mod 16)
(c) Zi 5 (13Zi21 1 12)(mod 16)
(d) Zi 5 (Zi21 1 12)(mod 13)

 7.4. For the four mixed LCGs in Prob. 7.3, compute Zi for enough values of i $ 1 to cover 
an entire cycle; let Z0 5 1 in each case. Comment on the results.

/* Header file "mrand_seeds.h" included by mrand.c */

static double drng[][6] =
{
           0,           0,           1,           0,           0,           1, 
  1772212344,  1374954571,  2377447708,   540628578,  1843308759,   549575061, 
  2602294560,  1764491502,  3872775590,  4089362440,  2683806282,   437563332, 
   376810349,  1545165407,  3443838735,  3650079346,  1898051052,  2606578666, 
  1847817841,  3038743716,  2014183350,  2883836363,  3242147124,  1955620878, 
  1075987441,  3468627582,  2694529948,   368150488,  2026479331,  2067041056, 
   134547324,  4246812979,  1700384422,  2358888058,    83616724,  3045736624, 
  2816844169,   885735878,  1824365395,  2629582008,  3405363962,  1835381773, 
   675808621,   434584068,  4021752986,  3831444678,  4193349505,  2833414845, 
  2876117643,  1466108979,   163986545,  1530526354,    68578399,  1111539974, 
   411040508,   544377427,  2887694751,   702892456,   758163486,  2462939166, 
  3631741414,  3388407961,  1205439229,   581001230,  3728119407,    94602786, 
  4267066799,  3221182590,  2432930550,   813784585,  1980232156,  2376040999, 
  1601564418,  2988901653,  4114588926,  2447029331,  4071707675,  3696447685, 
  3878417653,  2549122180,  1351098226,  3888036970,  1344540382,  2430069028, 
   197118588,  1885407936,   576504243,   439732583,   103559440,  3361573194, 
  4024454184,  2530169746,  2135879297,  2516366026,   260078159,  2905856966, 
  2331743881,  2059737664,   186644977,   401315249,    72328980,  1082588425, 
   694808921,  2851138195,  1756125381,  1738505503,  2662188364,  3598740668, 
  2834735415,  2017577369,  3257393066,  3823680297,  2315410613,   637316697, 
  4132025555,  3700940887,   838767760,  2818574268,  1375004287,  2172829019, 
.
.
.
   560024289,  1830276631,   144885590,  1556615741,  1597610225,  1856413969, 
  1031792556,  1844191084,  1441357589,  3147919604,   199001354,  2555043119, 
  2023049680,  4184669824,  4074523931,   252765086,  3328098427,  1480103038 
};

FIGURE 7.9
Excerpt from seed-vector fi le (mrand_seeds.h) to accompany the C codes in Figs. 7.7 and 
7.8 (complete fi le can be downloaded from www.mhhe.com/law).
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424 random-number generators

 7.5. (a)  Implement the PMMLCG Zi 5 630,360,016Zi21(mod 231 2 1) on your computer, 
using the Marse-Roberts code in App. 7A.

(b) Repeat the empirical tests of Examples 7.6 through 7.9 with this generator, and 
compare your results with those given in the examples.

 7.6. Use the multiplicative LCG in part (a) of Prob. 7.2 to shuffl e the output from the mixed 
LCG in part (d) of Prob. 7.3, using a vector V of length 2. Let the seed for both LCGs 
be 1, and list the fi rst 100 values of V, I, and VI. Identify the period and comment 
generally on the results.

 7.7. For the chi-square test of uniformity, verify the following algorithm for computing 
f1,  f2, . . . , fk:

Set fj = 0 for j = 1,2, . . . , k
For i = 1, . . . , n do
   Generate Ui
   Set J = LkUiM
   Replace fJ by fJ + 1
End do

 (For a real number x, <x= denotes the smallest integer that is greater than or equal to x.) 
Generalize this algorithm to compute the test statistic for a general d-dimensional 
 serial test.

 7.8. Show that the following algorithm correctly computes r1, r2, . . . , r6 for the runs-up 
test, from the generated numbers U1, U2, . . . , Un:

Set rj = 0 for j = 1, . . . , 6
Generate U1, set A = U1, and set J = 1
For i = 2, . . . , n do
   Generate Ui and set B = Ui
   If A ≥ B then
      Set J = min(J,6)
      Replace rJ by rJ + 1
      Set J = 1
   Else
      Replace J by J + 1
   End if
   Replace A by B
End do 
Set J = min(J,6)
Replace rJ by rJ + 1

 7.9. Subject the canned random-number generator on your computer to the chi-square test, 
two- and three-dimensional serial tests, the runs-up test, and correlation tests at 
lags 1, 2, . . . , 5. Use the same values for n, k, and a that were used in Examples 7.6 
through 7.9. (If your generator does not pass these tests, we suggest that you exercise 
caution in using it until you can obtain more information on it, either from the litera-
ture or from your own further testing.)

7.10. A general approach to testing a random-number generator empirically is to use it to 
simulate a simple stochastic model and obtain estimates of known parameters; a stan-
dard test is then used to compare the estimate(s) against the known parameter(s). For 

Law01323_ch07_393-425.indd Page 424  11/09/13  8:37 PM user Law01323_ch07_393-425.indd Page 424  11/09/13  8:37 PM user /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



chapter seven 425

example, we know that in throwing two fair dice independently, the sum of the two 
outcomes will be 2, 3, . . . , 12 with respective probabilities 1

36, 
1
18, 

1
12, 

1
9, 

5
36, 

1
6, 

5
36, 

1
9, 

1
12, 

1
18, and 1

36. Simulate 1000 independent throws of a pair of independent fair dice, and 
compare the observed proportion of 2s, 3s, . . . , 12s with the known probabilities, 
using an appropriate test from Chap. 6. Use the canned generator on your computer or 
one of the generators in App. 7A or 7B.

7.11. For the LCG in part (d) of Prob. 7.3, plot the pairs (U1, U2), (U2, U3), . . . and observe 
the lattice structure obtained. Note that this LCG has full period.

7.12. Consider the Fibonacci generator discussed in Sec. 7.3.1.
(a) Show that this generator can never produce the following arrangement of three 

consecutive output values: Ui22 , Ui , Ui21.
(b) Show that the arrangement in (a) should occur with probability 1

6 for a “perfect” 
random-number generator.

 This points out a gross defect in the generator, as noted by Bratley, Fox, and Schrage 
(1987), who credit U. Dieter with having noticed this.

7.13. Suppose that U1, U2, . . . , Uk are IID U(0, 1) random variables. Show that the  fractional 
part (i.e., ignoring anything to the left of the decimal point) of U1 1 U2 1 . . . 1 Uk 
is also uniformly distributed on the interval [0, 1]. [This property motivated the com-
posite generator of Wichmann and Hill (1982).]

7.14. Show that the average of the Ui’s taken over an entire cycle of a full-period LCG  
is  1

2 2 1y(2m). [Hint: for a positive integer k, Euler’s formula states that 1 1  
2 1 . . . 1 k 5 k(k 1 1)y2.]

7.15. For Example 7.3, use Eq. (7.6) to show that the period of the Wi’s is 31.
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C H A P T E R  8

Generating Random Variates

Recommended sections for a fi rst reading: 8.1 and 8.2

8.1 
INTRODUCTION

A simulation that has any random aspects at all must involve sampling, or generat-
ing, random variates from probability distributions. As in Chap. 7, we use the phrase 
“generating a random variate” to refer to the activity of obtaining an observation on 
(or a realization of) a random variable from the desired distribution. These distri-
butions are often specifi ed as a result of fi tting some appropriate distributional form, 
e.g., exponential, gamma, or Poisson, to observed data, as discussed in Chap. 6. In 
this chapter we assume that a distribution has already been specifi ed somehow (in-
cluding the values of the parameters), and we address the issue of how we can gen-
erate random variates with this distribution in order to run the simulation model. For 
example, the queueing-type models discussed in Sec. 1.4 and Chap. 2 required gen-
eration of interarrival and service times to drive the simulation through time, and the 
inventory model of Sec. 1.5 needed randomly generated demand sizes at the times 
when a demand occurred.

As we shall see in this chapter, the basic ingredient needed for every method of 
generating random variates from any distribution or random process is a source of 
IID U(0, 1) random variates. For this reason it is essential that a statistically reliable 
U(0, 1) random-number generator be available. Most computer installations and 
simulation packages have a convenient random-number generator but some of them 
(especially the older ones) do not perform adequately (see Chap. 7). Without an ac-
ceptable random-number generator, it is impossible to generate random variates 
correctly from any distribution. In the rest of this chapter, we therefore assume that 
a good source of random numbers is available.
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There are usually several alternative algorithms that can be used for generating 
random variates from a given distribution, and several factors should be considered 
when choosing which algorithm to use in a particular simulation study. Unfortu-
nately, these different factors often confl ict with each other, so the analyst’s judg-
ment of which algorithm to use must involve a number of tradeoffs. All we can do 
here is raise some of the pertinent questions.

The fi rst issue is exactness. We feel that, if possible, one should use an algo-
rithm that results in random variates with exactly the desired distribution, within the 
unavoidable external limitations of machine accuracy and exactness of the U(0, 1) 
random-number generator. Effi cient and exact algorithms are now available for all 
of the commonly used distributions, obviating the need to consider any older, ap-
proximate methods. [Many of these approximations, e.g., the well-known technique 
of obtaining a “normal” random variate as 6 less than the sum of 12 U(0, 1) random 
variates, are based on the central limit theorem.] On the other hand, the practitioner 
may argue that a specifi ed distribution is really only an approximation to reality 
anyway, so that an approximate generation method should suffi ce; since this de-
pends on the situation and is often diffi cult to quantify, we still prefer to use an exact 
method.

Given that we have a choice, then, of alternative exact algorithms, we would 
clearly like to use one that is effi cient, in terms of both storage space and execution 
time. Some algorithms require storage of a large number of constants or of large 
tables, which could prove troublesome or at least inconvenient. As for execution 
time, there are really two factors. Obviously, we hope that we can accomplish the 
generation of each random variate in a small amount of time; this is called the mar-
ginal execution time. Second, some algorithms have to do some initial computing to 
specify constants or tables that depend on the particular distribution and parameters; 
the time required to do this is called the setup time. In most simulations, we shall be 
generating a large number of random variates from a given distribution, so that mar-
ginal execution time is likely to be more important than setup time. If the parame-
ters of a distribution change often or randomly during the course of the simulation, 
however, setup time could become an important consideration.

A somewhat subjective issue in choosing an algorithm is its overall complexity, 
including conceptual as well as implementational factors. One must ask whether the 
potential gain in effi ciency that might be experienced by using a more complicated 
algorithm is worth the extra effort to understand and implement it. This issue should 
be considered relative to the purpose in implementing a method for random-variate 
generation; a more effi cient but more complex algorithm might be appropriate for 
use as permanent software but not for a “one-time” simulation model.

Finally, there are a few issues of a more technical nature. Some algorithms rely 
on a source of random variates from distributions other than U(0, 1), which is unde-
sirable, other things being equal. Another technical issue is that a given algorithm 
may be effi cient for some parameter values but costly for others. We would like to 
have algorithms that are effi cient for all parameter values (sometimes called robust-
ness of the algorithm); see Devroye (1988). One last technical point is relevant if we 
want to use certain kinds of variance-reduction techniques in order to obtain better 
(less variable) estimates (see Chap. 11 and also Chaps. 10 and 12). Two commonly 

Law01323_ch08_426-487.indd Page 427  16/09/13  8:52 PM user Law01323_ch08_426-487.indd Page 427  16/09/13  8:52 PM user /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



428 generating random variates

used variance-reduction techniques (common random numbers and antithetic vari-
ates) require synchronization of the basic U(0, 1) input random variates used in the 
simulation of the system(s) under study, and this synchronization is more easily 
accomplished for certain types of random-variate generation algorithms. In particu-
lar, the general inverse-transform approach can be very helpful in facilitating the 
desired synchronization and variance reduction; Sec. 8.2.1 treats this point more 
precisely.

There are a number of comprehensive references on random-variate generation, 
including Dagpunar (1988), Devroye (1986), Fishman (1996), Gentle (2010), 
 Hörmann et al. (2004), and Johnson (1987). There are also several computer pack-
ages that provide good capabilities for generating random variates from a wide 
 variety of distributions, such as the IMSL routines [Rogue Wave (2013)] and the 
C codes in secs. 7.1 and 7.3 of Press et al. (2007).

The remainder of this chapter is organized as follows. In Sec. 8.2 we survey 
the most important general approaches for random-variate generation, including 
examples and general discussions of the relative merits of the various approaches. 
In Secs. 8.3 and 8.4 we present algorithms for generating random variates from 
particular continuous and discrete distributions that have been found useful in simu-
lation. Finally, in Secs. 8.5 and 8.6 we discuss two more specialized topics: generat-
ing correlated random variates and generating realizations of both stationary and 
non-stationary arrival processes.

8.2 
GENERAL APPROACHES TO GENERATING 
RANDOM VARIATES

There are many techniques for generating random variates, and the particular 
 algorithm used must, of course, depend on the distribution from which we wish to 
generate; however, nearly all these techniques can be classifi ed according to their 
theoretical basis. In this section we discuss these general approaches.

8.2.1 Inverse Transform

Suppose that we wish to generate a random variate X that is continuous (see Sec. 4.2) 
and has distribution function F that is continuous and strictly increasing when 
0 , F(x) , 1. [This means that if x1 , x2 and 0 , F(x1) # F(x2) , 1, then in fact 
F(x1) , F(x2).] Let F21 denote the inverse of the function F. Then an algorithm for 
generating a random variate X having distribution function F is as follows (recall 
that , is read “is distributed as”):

1. Generate U , U(0, 1).
2. Return X 5 F21(U).

Note that F21(U) will always be defi ned, since 0 # U # 1 and the range of F is 
[0, 1]. Figure 8.1 illustrates the algorithm graphically, where the random variable 
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corresponding to this distribution function can take on either positive or negative 
values; the particular value of U determines which will be the case. In the fi gure, 
the random number U1 results in the positive random variate X1, while the random 
number U2 leads to the negative variate X2.

To show that the value X returned by the above algorithm, called the general 
inverse-transform method, has the desired distribution F, we must show that for any 
real number x, P(X # x) 5 F(x). Since F is invertible, we have

 P(X # x) 5 P(F21(U) # x) 5 P(U # F(x)) 5 F(x)

where the last equality follows since U , U(0, 1) and 0 # F(x) # 1. (See the discus-
sion of the uniform distribution in Sec. 6.2.2.)

E X A M P L E  8 . 1 .  Let X have the exponential distribution with mean b (see Sec. 6.2.2). 
The distribution function is

 F(x) 5 e
1 2 e2xyb

0

if x $ 0

otherwise

so to fi nd F21, we set u 5 F(x) and solve for x to obtain

 F21(u) 5 2b ln (1 2 u)

Thus, to generate the desired random variate, we fi rst generate a U , U(0, 1) and then 
let X 5 2b ln U. [It is possible in this case to use U instead of 1 2 U, since 1 2 U and 
U have the same U(0, 1) distribution. This saves a subtraction.]

In the above example, we replaced 1 2 U by U for the sake of a perhaps minor 
gain in effi ciency. However, replacing 1 2 U by U in situations like this results in 
negative correlation of the X’s with the U’s, rather than positive correlation. Also, it 
is not true that wherever a “1 2 U” appears in a variate-generation algorithm it can 
be replaced by a “U,” as illustrated in Sec. 8.3.15.

U1

U2

0

X2 X1

F(x)

1

x

FIGURE 8.1
Inverse-transform method for continuous random variables.
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430 generating random variates

The inverse-transform method’s validity in the continuous case was demon-
strated mathematically above, but there is also a strong intuitive appeal. The density 
function f(x) of a continuous random variable may be interpreted as the relative 
chance of observing variates on different parts of the range; on regions of the x axis 
above which f(x) is high we expect to observe a lot of variates, and where f(x) is low 
we should fi nd only a few. For example, Fig. 8.2b shows the density function for the 
Weibull distribution with shape parameter a 5 1.5 and scale parameter b 5 6 (see 
Sec. 6.2.2 for defi nition of this distribution), and we would expect that many gener-
ated variates would fall between, say, x 5 2 and x 5 5, but not many between 13 
and 16. Figure 8.2a shows the corresponding distribution function, F(x). Since the 
density is the derivative of the distribution function [that is, f(x) 5 F9(x)], we can 
view f(x) as the “slope function” of F(x); that is, f(x) is the slope of F at x. Thus, 
F rises most steeply for values of x where f(x) is large (e.g., for x between 2 and 5), 
and, conversely, F is relatively fl at in regions where f(x) is small (e.g., for x between 
13 and 16). Now, the inverse-transform method says to take the random number U, 
which should be evenly (uniformly) spread on the interval [0, 1] on the vertical axis 
of the plot for F(x), and “read across and down.” More U’s will hit the steep parts 
of F(x) than the fl at parts, thus concentrating the X’s under those regions where F(x) 
is steep—which are precisely those regions where f(x) is high. The interval 
[0.25, 0.30] on the vertical axis in Fig. 8.2a should contain about 5 percent of the 
U’s, which lead to X’s in the relatively narrow region [2.6, 3.0] on the x axis; thus, 
about 5 percent of the X’s will be in this region. On the other hand, the interval 
[0.93, 0.98] on the vertical axis, which is the same size as [0.25, 0.30] and thus con-
tains about 5 percent of the U’s as well, leads to X’s in the large interval [11.5, 14.9] 
on the x axis; here we will also fi nd about 5 percent of the X’s, but spread out 
sparsely over a much larger interval.

Figure 8.3 shows the algorithm in action, with 50 X’s being generated (using the 
random-number generator from App. 7A with stream 1). The U’s are plotted on the 
vertical axis of Fig. 8.3a, and the X’s corresponding to them are obtained by fol-
lowing the dashed lines across and down. Note that the U’s on the vertical axis are 
fairly evenly spread, but the X’s on the horizontal axis are indeed more dense where 
the density function f(x) is high, and become more spread out where f(x) is low. 
Thus, the inverse-transform method essentially deforms the uniform distribution of 
the U’s to result in a distribution of the X’s in accordance with the desired density.

The inverse-transform method can also be used when X is discrete. Here the 
distribution function is

 F(x) 5 P(X # x) 5
x̂i#x

 p(xi)

where p(xi) is the probability mass function

 p(xi) 5 P(X 5 xi)

(We assume that X can take on only the values x1, x2, . . . where x1 , x2 , . . . .) 
Then the algorithm is as follows:

1. Generate U , U(0, 1).
2. Determine the smallest positive integer I such that U # F(xI), and return X 5 xI.
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FIGURE 8.2
(a) Intervals for U and X, inverse transform for Weibull(1.5, 6) distribution; 
(b) density for Weibull(1.5, 6) distribution.
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432 generating random variates

FIGURE 8.3
(a) Sample of 50 U’s and X’s, inverse transform for Weibull(1.5, 6) 
 distribution; (b) density for Weibull(1.5, 6) distribution.

x

F(x)

1

0 5 10 15

(a)

X
X

X
X

XX
X

X
XX

X
XXX

X
X

X
X

XX
X

X
X

XX
X

XX
XX

XX
X

X
XXX

X
X

XX
X

XX X XX XX XXX XX X X XXXXXXX X XXX X X XX XX X XX X X XX X X X X

XX

f (x)
0.15

0.10

0.05

151050 x

(b)

Law01323_ch08_426-487.indd Page 432  16/09/13  8:52 PM user Law01323_ch08_426-487.indd Page 432  16/09/13  8:52 PM user /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



chapter eight 433

Figure 8.4 illustrates the method, where we generate X 5 x4 in this case. Although 
this algorithm might not seem related to the inverse-transform method for continu-
ous random variates, the similarity between Figs. 8.1 and 8.4 is apparent.

To verify that the discrete inverse-transform method is valid, we need to show 
that P(X 5 xi) 5 p(xi) for all i. For i 5 1, we get X 5 x1 if and only if U # F(x1) 5 
p(x1), since we have arranged the xi’s in increasing order. Since U , U(0, 1), 
P(X 5 x1) 5 p(x1), as desired. For i $ 2, the algorithm sets X 5 xi if and only if 
F(xi21) , U # F(xi), since the i chosen by the algorithm is the smallest positive 
integer such that U # F(xi). Further, since U , U(0, 1) and 0 # F(xi21) , F(xi) # 1,

 P(X 5 xi) 5 P[F(xi21) , U # F(xi)] 5 F(xi) 2 F(xi21) 5 p(xi)

E X A M P L E  8 . 2 .  Recall the inventory example of Sec. 1.5, where the demand-size ran-
dom variable X is discrete, taking on the values 1, 2, 3, 4 with respective probabilities 16, 
1
3, 

1
3, 

1
6; the distribution function F is given in Fig. 4.2. To generate an X, fi rst generate 

U , U(0, 1) and set X to either 1, 2, 3, or 4, depending on the subinterval in [0, 1] into 
which U falls. If U # 1

6, then let X 5 1; if 16 , U # 1
2, let X 5 2; if 12 , U # 5

6, let X 5 3; 
fi nally, if 56 , U, let X 5 4.

Although both Fig. 8.4 and Example 8.2 deal with discrete random variables 
taking on only fi nitely many values, the discrete inverse-transform method can also 
be used directly as stated to generate random variates with an infi nite range, e.g., the 
Poisson, geometric, or negative binomial.

The discrete inverse-transform method, when written as in Example 8.2, is re-
ally quite intuitive. We split the unit interval into contiguous subintervals of width 
p(x1), p(x2), . . . and assign X according to whichever of these subintervals contains 
the generated U. For example, U will fall in the second subinterval with probability 
p(x2), in which case we let X 5 x2. The effi ciency of the algorithm will depend on 
how we look for the subinterval that contains a given U. The simplest approach 
would be to start at the left and move up; fi rst check whether U # p(x1), in which case 
we return X 5 x1. If U . p(x1), check whether U # p(x1) 1 p(x2), in which case we 
return X 5 x2, etc. The number of comparisons needed to determine a value for X is 

x1 x4

F(x)

x2 x3 x5 x6 x

U

X

p(x1)
p(x2)

p(x3)

p(x4)

p(x5)

p(x6)
1

FIGURE 8.4
Inverse-transform method for discrete random variables.
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434 generating random variates

thus dependent on U and the p(xi)’s. If, for example, the fi rst several p(xi)’s are very 
small, the probability is high that we will have to do a large number of comparisons 
before the algorithm terminates. This suggests that we might be well advised to 
perform this search in a more sophisticated manner, using appropriate sorting and 
searching techniques from the computer-science literature [see, for example, Knuth 
(1998b)]. One simple improvement would be fi rst to check whether U lies in the 
widest subinterval, since this would be the single most-likely case. If not, we would 
check the second widest subinterval, etc. This method would be particularly useful 
when some p(xi) values are considerably greater than others and there are many xi’s; 
see Prob. 8.2 for more on this idea. See also Chen and Asau (1974) and Fishman and 
Moore (1984) for very effi cient search methods using the idea of indexing.

 Generalization, Advantages, and Disadvantages 
of the Inverse-Transform Method

Both the continuous and discrete versions of the inverse-transform method can 
be combined, at least formally, into the more general form

 X 5 min{x: F(x) $ U}

which has the added advantage of being valid for distributions that are mixed, i.e., 
have both continuous and discrete components, as well as for continuous distri-
bution functions with fl at spots. To check that the above is valid in the continuous 
case, note in Fig. 8.1 that the set {x: F(x) $ U1} is the interval [X1, `), which has 
 min imum X1. In the discrete case, we see in Fig. 8.4 that {x: F(x) $ U} 5 [x4, `), 
which has minimum x4. Figure 8.5 shows a mixed distribution with two jump 

FIGURE 8.5
Inverse-transform method for a mixed distribution.
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 discontinuities and a fl at spot; in this case the associated random variable X should 
satisfy P(X 5 x1) 5 u91 2 u1 ( jump at x1), P(X 5 x2) 5 u92 2 u2 ( jump at x2), and 
P(x0 # X # x90) 5 0 (fl at spot between x0 and x90). For the continuous component, 
note that

 X 5 min{x: F(x) $ UC} 5 min[XC, `) 5 XC

as expected. For the jump discontinuity at x1, we get, for u1 # U1 # u91,

 X 5 min{x: F(x) $ U1} 5 min[x1, `) 5 x1

which will occur with probability u91 2 u1, as desired; the jump at x2 is similar. For 
the fl at spot, we will generate a variate X in (x0, x90) only if we generate a random 
number U that is equal to u0; as U represents a continuous random variable, this 
occurs with probability 0, although in practice the fi nite accuracy of the generated 
random number U could result in U 5 u0. Thus, this more general statement of the 
inverse-transform method handles any continuous, discrete, or mixed distribution. 
How it is actually implemented, though, will of course depend heavily on the dis-
tribution desired.

Let us now consider some general advantages and disadvantages of the inverse-
transform method in both the continuous and discrete cases. One possible impedi-
ment to use of this method in the continuous case is the need to evaluate F21(U). 
Since we might not be able to write a formula for F21 in closed form for the desired 
distribution (e.g., the normal and gamma distributions), simple use of the method, 
as in Example 8.1, might not be possible. However, even if F21 does not have a 
simple closed-form expression, we might be able to use numerical methods, e.g., a 
power-series expansion, to evaluate F21. (See, e.g., the discussion in Sec. 8.3 con-
cerning the generation of gamma, normal, and beta random variates.) These numeri-
cal methods can yield arbitrary accuracy, so in particular can match the accuracy 
inherent in machine roundoff error; in this sense, they are exact for all practical 
purposes. However, Devroye (1986, pp. 31–35) points out that it may be diffi cult to 
specify an acceptable stopping rule for some distributions, especially those whose 
range is infi nite. Kennedy and Gentle (1980, chap. 5) provide a comprehensive sur-
vey of numerical methods for computing distribution functions and their inverses; 
see also Abramowitz and Stegun (1964, chap. 26) and Press et al. (2007, chap. 6). 
The IMSL library [Rogue Wave (2013)] includes routines to compute most of the 
common distribution functions and their inverses, using carefully chosen algo-
rithms. As an alternative to approximating F21 numerically, Marsaglia (1984) pro-
poses that a function g be found that is “close” to F21 and is easy to evaluate; then 
X is generated as g(Y), where Y has a particular distribution that is “close” to U(0, 1). 
Marsaglia called this method the exact-approximation method [see also Fishman 
(1996, pp. 185–187)].

Hörmann and Leydold (2003) proposed a general adaptive method for con-
structing a highly accurate Hermite interpolation for F21 in the case of continuous 
distributions. Based on a one-time setup, their method produces moderate-size 
tables for the interpolation points and coeffi cients. Generating random variates 
using these tables is then very fast. The code for their method is available in a 
public-domain library called UNURAN.

Law01323_ch08_426-487.indd Page 435  10/29/13  9:08 PM f-494 Law01323_ch08_426-487.indd Page 435  10/29/13  9:08 PM f-494 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



436 generating random variates

A second potential disadvantage is that for a given distribution the inverse-
transform method may not be the fastest way to generate the corresponding random 
variate; in Secs. 8.3 and 8.4 we discuss the effi ciency of alternative algorithms for 
each distribution considered.

Despite these possible drawbacks, there are some important advantages in 
using the inverse-transform method. The fi rst is to facilitate variance-reduction 
techniques (see Chap. 11) that rely on inducing correlation between random vari-
ates; examples of such techniques are common random numbers and antithetic 
 variates. If F1 and F2 are two distribution functions, then X1 5 F21

1 (U1) and X2 5 
F21

2 (U2) will be random variates with respective distribution functions F1 and F2, 
where U1 and U2 are random numbers. If U1 and U2 are independent, then of 
course X1 and X2 will be independent as well. However, if we let U2 5 U1, then 
the correlation between X1 and X2 is made as positive as possible, and taking 
U2 5 1 2 U1 (which, recall, is also distributed uniformly over [0, 1]) makes the 
corre lation between X1 and X2 as negative as possible. Thus, the inverse-transform 
method induces the strongest correlation (of either sign) between the generated 
random variates, which we hope will propagate through the simulation model to 
induce the strongest possible correlation in the output, thereby contributing to the 
success of the variance-reduction technique. [It is possible, however, to induce 
 correlation in random variates generated by methods other than the inverse- 
transform method; see Schmeiser and Kachitvichyanukul (1990)]. On a more 
 pragmatic level, inverse transform eases application of variance-reduction tech-
niques since we always need exactly one random number to produce one value of 
the desired X. (Other methods to be discussed later may require several random 
numbers to obtain a single value of X, or the number of random numbers might 
 itself be random, as in the acceptance-rejection method.) This observation is 
 important since proper implementation for many variance-reduction techniques 
 requires some sort of synchronization of the input random numbers between dif-
ferent simulation runs. If the inverse-transform technique is used, synchroniza-
tion is easier to achieve.

The second advantage concerns ease of generating from truncated distributions 
(see Sec. 6.8). In the continuous case, suppose that we have a density f with corre-
sponding distribution function F. For a , b (with the possibility that a 5 2` or 
b 5 1`), we defi ne the truncated density

 f *(x) 5 •

f(x)

F(b) 2 F(a)

0

if a # x # b

otherwise

which has corresponding truncated distribution function

 F*(x) 5 μ

0
F(x) 2 F(a)

F(b) 2 F(a)

1

if x , a

if a # x # b

if b , x
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(The discrete case is analogous.) Then an algorithm for generating an X having dis-
tribution function F* is as follows:

1. Generate U , U(0, 1).
2. Let V 5 F(a) 1 [F(b) 2 F(a)]U.
3. Return X 5 F21(V ).

We leave it as an exercise (Prob. 8.3) to show that the X defi ned by this algorithm in-
deed has distribution function F*. Note that the inverse-transform idea is really used 
twice: fi rst in step 2 to distribute V uniformly between F(a) and F(b) and then in step 3 
to obtain X. (See Prob. 8.3 for another way to generate X and Prob. 8.4 for a different 
type of truncation, which results in a distribution function that is not the same as F*.)

Finally, the inverse-transform method can be quite useful for generating order 
statistics. Suppose that Y1, Y2, . . . , Yn are IID with common distribution function F 
and that for i 5 1, 2, . . . , n, Y(i) denotes the ith smallest of the Yj’s. Recall from 
Chap. 6 that Y(i) is called the ith order statistic from a sample of size n. [Order sta-
tistics have been useful in simulation when one is concerned with the reliability, or 
lifetime, of some system having components subject to failure. If Yj is the lifetime 
of the jth component, then Y(1) is the lifetime of a system consisting of n such com-
ponents connected in series and Y(n) is the lifetime of the system if the components 
are connected in parallel.] One direct way of generating X 5 Y(i) is fi rst to generate 
n IID variates Y1, Y2, . . . , Yn with distribution function F, then sort them into in-
creasing order, and fi nally set X to the ith value of the Yj’s after sorting. This method, 
however, requires generating n separate variates with distribution function F and 
then sorting them, which can be slow if n is large. As an alternative, we can use the 
following algorithm to generate X 5 Y(i):

1. Generate V , beta(i, n 2 i 1 1).
2. Return X 5 F21(V ).

The validity of this algorithm is established in Prob. 8.5. Note that step 1 requires 
generating from a beta distribution, which we discuss below in Sec. 8.3.8. No sort-
ing is required, and we need to evaluate F21 only once; this is particularly advanta-
geous if n is large or evaluating F21 is slow. Two important special cases are 
generating either the minimum or maximum of the n Yj’s, where step 1 becomes 
particularly simple. For the minimum, i 5 1 and V in step 1 can be defi ned by
V 5 1 2 U1yn, where U , U(0, 1). For the maximum, i 5 n and we can set V 5 U1yn 
in step 1. (See Prob. 8.5 for verifi cation in these two special cases.) For more on 
generating order statistics, see Ramberg and Tadikamalla (1978), Schmeiser (1978a, 
1978b), and Schucany (1972).

8.2.2 Composition

The composition technique applies when the distribution function F from which we 
wish to generate can be expressed as a convex combination of other distribution 
functions F1, F2, . . . . We would hope to be able to sample from the Fj’s more easily 
than from the original F.
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438 generating random variates

Specifi cally, we assume that for all x, F(x) can be written as

 F(x) 5 ^
`

j51

pjFj(x)

where pj $ 0, O`
j51 pj 5 1, and each Fj is a distribution function. (Although we 

have written this combination as an infi nite sum, there may be a k such that pk . 0 
but pj 5 0 for j . k, in which case the sum is actually fi nite.) Equivalently, if X 
has density f that can be written as

 f (x) 5 ^
`

j51

pj fj(x)

where the fj’s are other densities, the method of composition still applies; the dis-
crete case is analogous. The general composition algorithm, then, is as follows:

1. Generate a positive random integer J such that

 P(J 5 j) 5 pj  for j 5 1, 2, . . .

2. Return X with distribution function FJ.

Step 1 can be thought of as choosing the distribution function Fj with probability 
pj  and could be accomplished, for example, by the discrete inverse-transform 
method. Given that J 5 j, generating X in step 2 should be done, of course, indepen-
dently of J. By conditioning on the value of J generated in step 1, we can easily 
see that the X returned by the algorithm will have distribution function F [see, for 
example, Ross (2003, chap. 3)]:

 P(X # x) 5 ^
`

j51

P(X # x Z J 5 j)P(J 5 j) 5 ^
`

j51

Fj(x)pj 5 F(x)

Sometimes we can give a geometric interpretation to the composition method. 
For a continuous random variable X with density f, for example, we might be able 
to divide the area under f into regions of areas p1, p2, . . . , corresponding to the de-
composition of f into its convex-combination representation. Then we can think of 
step 1 as choosing a region and step 2 as generating from the distribution corre-
sponding to the chosen region. The following two examples allow this kind of geo-
metric interpretation.

E X A M P L E  8 . 3 .  The double-exponential (or Laplace) distribution has density f(x) 5 
0.5e20 x 0 for all real x; this density is plotted in Fig. 8.6. From the plot we see that except 
for the normalizing factor 0.5, f(x) is two exponential densities placed back to back; this 
suggests the use of composition. Indeed, we can express the density as

 f(x) 5 0.5e  

xI(2`,0)(x) 1 0.5e2xI[0,`)(x)

where IA denotes the indicator function of the set A, defi ned by

 IA(x) 5 e1  if x [ A

0  otherwise

Thus, f(x) is a convex combination of f1(x) 5 ex I(2`,0)(x) and f2(x) 5 e2x I[0,`)(x), both of 
which are densities, and p1 5 p2 5 0.5. Therefore, we can generate an X with density f by 
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composition. First generate U1 and U2 as IID U(0, 1). If U1 # 0.5, return X 5 ln U2. On 
the other hand, if U1 . 0.5, return X 5 2ln U2. Note that we are essentially generating an 
exponential random variate with mean 1 and then changing its sign with probability 0.5. 
Alternatively, we are generating from the left half of the density in Fig. 8.6 with probabil-
ity equal to the corresponding area (0.5) and from the right half with probability 0.5.

Note that in Example 8.3, step 2 of the general composition algorithm was ac-
complished by means of the inverse-transform method for exponential random vari-
ates; this illustrates how different general approaches for generating random variates 
might be combined. Also, we see that two random numbers are required to generate 
a single X in this example; in general, we shall need at least two random numbers to use 
the composition method. (The reader may fi nd it interesting to compare Example 8.3 
with the inverse-transform method for generating a double-exponential random 
variate; see Prob. 8.6.)

In Example 8.3 we obtained the representation for f by dividing the area below 
the density with a vertical line, namely, the ordinate axis. In the following example, 
we make a horizontal division instead.

E X A M P L E  8 . 4 .  For 0 , a , 1, the right-trapezoidal distribution has density

 f (x) 5 e
a 1 2(1 2 a)x

0
  

if 0 # x # 1

otherwise

(see Fig. 8.7). As suggested by the dashed lines, we can think of dividing the area under 
f into a rectangle having area a and a right triangle with area 1 2 a. Now f (x) can be 
decomposed as

 f (x) 5 aI[0,1](x) 1 (1 2 a)2xI[0,1](x)

so that f1(x) 5 I[0,1](x), which is simply the U(0, 1) density, and f2(x) 5 2xI[0,1](x) is a 
right-triangular density. Clearly, p1 5 a and p2 5 1 2 a. The composition method 
thus calls for generating U1 , U(0, 1) and checking whether U1 # a. If so, generate an 
independent U2 , U(0, 1), and return X 5 U2. If U1 . a, however, we must generate 
from the right-triangular distribution. This can be accomplished either by generating 
U2 , U(0, 1) and returning X 5 1U2, or by generating U2 and U3 distributed as IID 
U(0, 1) and returning X 5 max{U2, U3} (see Prob. 8.7). Since the time to take a square 
root is probably greater than that required to generate an extra U(0, 1) random variate 
and to perform a comparison, the latter method would appear to be a faster way of gen-
erating an X with density f2.

0.5

Area � 0.5 Area � 0.5

0

f(x)

x

FIGURE 8.6
Double-exponential density.
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440 generating random variates

Again, the reader is encouraged to develop the inverse-transform method for 
generating a random variate from the right-trapezoidal distribution in Example 8.4. 
Note that especially if a is large, the composition method will be faster than the 
 inverse transform, since the latter always requires that a square root be taken, while 
it is quite likely (with probability a) that the former will simply return X 5 U2 , 
U(0, 1). This increase in speed must be played off by the analyst against the possible 
disadvantage of having to generate two or three random numbers to obtain one 
value of X. Trapezoidal distributions like that in Example 8.4 play an important 
role in the effi cient methods developed by Schmeiser and Lal (1980) for generating 
gamma random variates and for beta generation in Schmeiser and Babu (1980).

Composition methods (also called “mixture’’ methods) are further analyzed by 
Peterson and Kronmal (1982), who show as well that many specifi c variate-generation 
methods can actually be expressed as a composition of some sort. An interesting 
technique that is related closely to composition, the acceptance-complement method, 
was proposed by Kronmal and Peterson (1981, 1982); Devroye (1986, pp. 75–81) 
further discusses this and associated methods.

8.2.3 Convolution

For several important distributions, the desired random variable X can be expressed 
as a sum of other random variables that are IID and can be generated more readily 
than direct generation of X. We assume that there are IID random variables Y1, 
Y2, . . . , Ym (for fi xed m) such that Y1 1 Y2 1 . . . 1 Ym has the same distribution 
as X; hence we write

 X 5 Y1 1 Y2 1 . . . 1 Ym 

The name of this method, convolution, comes from terminology in stochastic pro-
cesses, where the distribution of X is called the m-fold convolution of the distribution 

FIGURE 8.7
Right-trapezoidal density.

2 � a

a

f(x)

x0 1

Area � 1 � a

Area � a
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of a Yj. The reader should take care not to confuse this situation with the method of 
composition. Here we assume that the random variable X can be represented as a 
sum of other random variables, whereas the assumption behind the method of com-
position is that the distribution function of X is a (weighted) sum of other distribution 
functions; the two situations are fundamentally different.

The algorithm for generating the desired random variate X is quite intuitive (let F 
be the distribution function of X and G be the distribution function of a Yj):

1. Generate Y1, Y2, . . . , Ym IID each with distribution function G.
2. Return X 5 Y1 1 Y2 1 . . . 1 Ym.

To demonstrate the validity of this algorithm, recall that we assumed that X and 
Y1 1 Y2 1 . . . 1 Ym have the same distribution function, namely, F. Thus,

 P(X # x) 5 P(Y1 1 Y2 1 . . . 1 Ym # x) 5 F(x)

E X A M P L E  8 . 5 .  The m-Erlang random variable X with mean b can be defi ned as the 
sum of m IID exponential random variables with common mean bym. Thus, to generate X, 
we can fi rst generate Y1, Y2, . . . , Ym as IID exponential with mean bym (see Example 8.1), 
then return X 5 Y1 1 Y2 1 . . . 1 Ym. (See Sec. 8.3.3 for an improvement in effi ciency 
of this algorithm.)

The convolution method, when it can be used, is very simple, provided that we 
can generate the required Yj’s easily. However, depending on the particular param-
eters of the distribution of X, it may not be the most effi cient way. For example, to 
generate an m-Erlang random variate by the convolution method (as in Example 8.5) 
when m is large could be very slow. In this case it would be better to recall that the 
m-Erlang distribution is a special case of the gamma distribution (see Sec. 6.2.2) 
and to use a general method for generating gamma random variates (see Sec. 8.3.4). 
See also Devroye (1988).

Convolution is really an example of a more general idea, that of transforming 
some intermediate random variates into a fi nal variate that has the desired distribu-
tion; the transformation with convolution is just adding, and the intermediate vari-
ates are IID. There are many other ways to transform intermediate variates, some of 
which are discussed in Sec. 8.2.6, as well as in Secs. 8.3 and 8.4.

8.2.4 Acceptance-Rejection

The three approaches for generating random variates discussed so far (inverse trans-
form, composition, and convolution) might be called direct in the sense that they deal 
directly with the distribution or random variable desired. The acceptance-rejection 
method is less direct in its approach and can be useful when the direct methods fail 
or are ineffi cient. Our discussion is for the continuous case, where we want to gen-
erate X having distribution function F and density f; the discrete case is exactly 
analogous and is treated in Prob. 8.9. The underlying idea dates back to at least von 
Neumann (1951).
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442 generating random variates

The acceptance-rejection method requires that we specify a function t, called 
the majorizing function, such that t(x) $ f(x) for all x. Now t will not, in general, be 
a density since

 c 5 #
`

2`
 t(x) dx $ #

`

2`
 f(x) dx 5 1

but the function r(x) 5 t(x)yc clearly is a density. (We assume that t is such that 
c , `.) We must be able to generate (easily and quickly, we hope) a random variate 
Y having density r. The general algorithm follows:

1. Generate Y having density r.
2. Generate U , U(0, 1), independent of Y.
3. If U # f(Y )yt(Y ), return X 5 Y. Otherwise, go back to step 1 and try again.

The algorithm continues looping back to step 1 until fi nally we generate a (Y, U) pair 
in steps 1 and 2 for which U # f(Y )yt(Y ), when we “accept” the value Y for X. Since 
demonstrating the validity of this algorithm is more complicated than for the three 
previous methods, we refer the reader to App. 8A for a proof.

E X A M P L E  8 . 6 .  The beta(4, 3) distribution (on the unit interval) has density

 f(x) 5 e
60x  

3(1 2 x)2

0
  

if 0 # x # 1

otherwise

[Since the distribution function F(x) is a sixth-degree polynomial, the inverse-transform 
approach would not be simple, involving numerical methods to fi nd polynomial roots.] 
By standard differential calculus, i.e., setting dfydx 5 0, we see that the maximum value 
of f (x) occurs at x 5 0.6, where f (0.6) 5 2.0736 (exactly). Thus, if we defi ne

 t(x) 5 e
2.0736

0
  

if 0 # x # 1

otherwise

then t majorizes f. Next, c 5 e1
0 2.0736 dx 5 2.0736, so that r(x) is just the U(0, 1) den-

sity. The functions f, t, and r are shown in Fig. 8.8. The algorithm fi rst generates Y and 
U as IID U(0, 1) random variates in steps 1 and 2; then in step 3 we check whether

 U #
60 Y 

3(1 2 Y )2

2.0736

If so, we return X 5 Y; otherwise, we reject Y and go back to step 1.

Note that in the preceding example, X is bounded on an interval (the unit inter-
val in this case), and so we were able to choose t to be constant over this interval, 
which in turn led to r’s being a uniform density. The acceptance-rejection method is 
often stated only for such bounded random variables X and only for this uniform 
choice of r; our treatment is more general.

The acceptance-rejection algorithm above seems curious to say the least, and 
the proof of its validity in App. 8A adds little insight. There is, however, a natural 
intuition to the method. Figure 8.9 presents again the f(x) and t(x) curves from 
Example 8.6, and in addition shows the algorithm in action. We generated 50 X’s 
from the beta(4, 3) distribution by acceptance-rejection (using stream 2 of the 
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random-number generator in App. 7A), which are marked by crosses on the x axis. 
On the t(x) curve at the top of the graph we also mark the location of all the Y’s 
generated in step 1 of the algorithm, regardless of whether they ended up being ac-
cepted as X’s; 50 of these Y’s were accepted and made it down to the x axis. The 
uniformity of the Y’s on the t(x) curve is evident, and the higher concentration of the 
X’s on the x axis where f(x) is high is also clear. For those Y’s falling in regions 
where f(x) is low (e.g., x near 0 or 1), f(Y )yt(Y ) is small, and as this is the probability 
of accepting Y as an X, most of such Y’s will be rejected. This can be seen in Fig. 8.9 
for small (near 0) and large (near 1) values of Y where f(x) is small. On the other 
hand, Y values where f(x) is high (e.g., near x 5 0.6) will probably be kept, since 
f(Y )yt(Y ) is nearly 1; thus, most of the Y’s around x 5 0.6 are accepted as X’s and 
make it down to the x axis. In this way, the algorithm “thins out” the Y’s from the 
r(x) density where t(x) is much larger than f(x), but retains most of the Y’s where t(x) 
is only a little higher than f(x). The result is that the concentration of the Y’s from 
r(x) is altered to agree with the desired density f(x).

The principle of acceptance-rejection is quite general, and looking at the above 
algorithm in a slightly different way clarifi es how it can be extended to generation 

FIGURE 8.8
f(x), t(x), and r(x) for the acceptance-rejection method, beta(4, 3) distribution.
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444 generating random variates

of random points in higher-dimensional spaces; this is important, for example, in 
Monte Carlo estimation of multiple integrals (see Sec. 13.5). The acceptance condi-
tion in step 3 of the algorithm can obviously be restated as Ut(Y ) # f(Y ), which 
means geometrically that Y will be accepted as an X if the point (Y, Ut(Y )) falls 
under the curve for the density f. Figure 8.10 shows this for the same Y values as in 
Fig. 8.9, with the dots being the points (Y, Ut(Y )) and the 50 accepted values of X 
again being marked by crosses on the x axis. By accepting the Y values for those 
(Y, Ut(Y )) points falling under the f(x) curve, it is intuitive that the accepted X’s will 
be more dense on the x axis where f(x) is high, since it is more likely that the uni-
formly distributed dots will be under f(x) there. While in this particular example 
the rectangular nature of the region under t(x) makes the uniformity of the points 
(Y, Ut(Y )) clear, the same is true for regions of any shape, and in any dimension. The 
challenge is to fi nd a way of effi ciently generating points uniformly in an arbitrary 
nonrectangular region; Smith (1984) discusses this, and proposes a more effi cient 
alternative to acceptance-rejection in high-dimensional spaces.

Although acceptance-rejection generates a value of X with the desired distribu-
tion regardless of the choice of the majorizing function t, this choice will play an 

FIGURE 8.9
Sample of 50 X’s (on horizontal axis) and the required Y’s [on the t(x) line], 
acceptance-rejection method for beta(4, 3) distribution.
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important role in its effi ciency in two ways. First, since step 1 requires generating Y 
with density t(x)yc, we want to choose t so that this can be accomplished rapidly. 
(The uniform t chosen in Example 8.6 certainly satisfi es this wish.) Second, we 
hope that the probability of rejection in step 3 can be made small, since we have to 
start all over if this rejection occurs. In App. 8A we show that on any given iteration 
through the algorithm, the probability of acceptance in step 3 is 1yc; we therefore 
would like to choose t so that c is small. Thus, we want to fi nd a t that fi ts closely 
above f, bringing c closer to 1, its lower bound. Intuitively, a t that is only a little 
above f leads to a density r that will be close to f, so that the Y values generated from 
r in step 1 are from a distribution that is almost correct, and so we should accept 
most of them. (From this standpoint, then, we see that the uniform choice of t in 
Example 8.6 might not be so wise after all, since it does not fi t down on top of f very 
snugly. Since c 5 2.0736, the probability of acceptance is only about 0.48, lower 
than we might like.) These two goals, ease of generation from t(x)yc and a small 
value of c, may well confl ict with each other, so the choice of t is by no means 
 obvious and deserves care. Considerable research has been aimed at identifying 
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FIGURE 8.10
Sample of 50 X’s (on horizontal axis) and the required (Y, Ut(Y )) pairs, 
acceptance-rejection method for beta(4, 3) distribution.
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446 generating random variates

good choices for t for a given distribution; see, for example, Ahrens and Dieter 
(1972, 1974), Atkinson (1979b), Atkinson and Whittaker (1976), Schmeiser (1980a, 
1980b), Schmeiser and Babu (1980), Schmeiser and Lal (1980), Schmeiser and 
Shalaby (1980), and Tadikamalla (1978). One popular method of fi nding a suitable 
t is fi rst to specify r(x) to be some common density, e.g., a normal or double expo-
nential, then fi nd the smallest c such that t(x) 5 cr(x) $ f(x) for all x.

E X A M P L E  8 . 7 .  Consider once again the beta(4, 3) distribution from Example 8.6, but 
now with a more elaborate majorizing function in an attempt to raise the probability of 
acceptance without unduly burdening the generation of Y’s from r(x); we do this along the 
lines of Schmeiser and Shalaby (1980). For this density, there are two infl ection points 
[i.e., values of x above which f(x) switches from convex to concave, or vice versa], which 
can be found by solving f 0(x) 5 0 for those values of x between 0 and 1; the solutions are 
x 5 0.36 and x 5 0.84 (to two decimals). Checking the signs of f 0(x) on the three regions 
of [0, 1] created by these two infl ection points, we fi nd that f(x) is convex on [0, 0.36], 
concave on [0.36, 0.84], and again convex on [0.84, 1]. By the defi nition of convexity, a 
line from the point (0, 0) to the point (0.36, f(0.36)) will lie above f(x); similarly, the line 
connecting (0.84, f(0.84)) with the point (1, 0) will be above f(x). Over the concave region, 
we simply place a horizontal line at height 2.0736, the maximum of f(x). This leads to the 
piecewise-linear majorizing function t(x) shown in Fig. 8.11; adding up the areas of the 
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FIGURE 8.11
f (x) and piecewise-linear majorizing function t(x), acceptance-rejection 
method for beta(4, 3) distribution.
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two triangles and the rectangle, we get c 5 1.28, so that the probability of acceptance on 
a given pass through the algorithm is 0.78, being considerably better than the 0.48 accep-
tance probability when using the simple uniform majorizing function in Example 8.6. 
However, it now becomes more diffi cult to generate values from the density r(x), which is 
plotted in Fig. 8.12; this is a typical tradeoff in specifying a majorizing function. As sug-
gested in Fig. 8.12, generating from r(x) can be done using composition, dividing the area 
under r(x) into three regions, each corresponding to a density from which generation is 
easy; see Prob. 8.16. Thus, we would really be combining three different generation 
techniques here: inverse transform [for the component densities of r(x)], composition 
[for r(x)], and fi nally acceptance-rejection [for f(x)]. In comparison with Example 8.6, 
whether the higher acceptance probability justifi es the increased work to generate a 
Y is not clear, and may depend on several factors, such as the particular parameters, code 
effi ciency, as well as the programming language, compiler, and hardware.

There have been many variations of and modifi cations to the general acceptance-
rejection method, mostly to improve speed. For example, Hörmann and Derfl inger 
(1996) give a version for generating from discrete distributions (including those with 
infi nite tails), which uses a continuous majorizing function and avoids generating a 
separate random number to decide between acceptance and rejection.
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FIGURE 8.12
r(x) corresponding to the piecewise-linear majorizing function t(x) in Fig. 8.11.
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448 generating random variates

8.2.5 Ratio of Uniforms

Let f(x) be the density function corresponding to a continuous random variable X, 
from which we would like to generate random variates. The ratio-of-uniforms 
method, which is due to Kinderman and Monahan (1977), is based on a curious 
 relationship among the random variables U, V, and VyU. Let p be a positive real 
number. If (U, V ) is uniformly distributed over the set

 S 5 e (u, v): 0 # u # Bpf av
u
b f

then VyU has density function f, which we will now show. The joint density func-
tion of U and V is given by

 fU,V 
(u, v) 5

1
s
  for (u, v) [ S

where s is the area of the set S. Let Y 5 U and Z 5 VyU. The Jacobian, J, of this 
transformation is given by the following determinant:

 J 5 ∞
0u

0y

0v

0y

 

0u

0z

0v

0z

∞ 5 `1
z
 

0

y
` 5 y

Therefore, the joint distribution of Y and Z is [see, e.g., DeGroot (1975, pp. 133–136)]

 fY, Z(y, z) 5 0  J 0  fU,V(u, v) 5
y
s
  for 0 # y # 1pf(z) and 0 , z , `

so that the density function of Z is

 fZ(z) 5 #
1pf(z)

 0
 fY, Z(y, z) dy 5 #

1pf(z)

 0
 
y
s
 dy 5

p

2s
 f(z)

Since fZ(z) and f(z) must both integrate to 1, it follows that s 5 py2 and that Z 5 VyU 
has density f(x) as desired.

To generate (u, v) uniformly in S, we may choose a majorizing region T that 
contains S, generate a point (u, v) uniformly in T, and accept this point if

 u2 # pf av
u
b

Otherwise, we generate a new point in T and try again, etc. Hopefully, it should be 
easy to generate a point uniformly in the region T.

The boundary of the acceptance region S is defi ned parametrically by the fol-
lowing equations (see Prob. 8.19):

 u(z) 5 1pf(z) and v(z) 5 z1pf(z) (8.1)

If f (x) and x2 f (x) are bounded, then a good choice of T is the rectangle

 T 5 {(u, v) : 0 # u # u* and v* # v # v*}
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where

  u* 5 sup
z

 u(z) 5 sup
z
1pf (z)

  v* 5 inf
z

 v(z) 5 inf
z  

z1pf (z)

  v* 5 sup
z

 v(z) 5 sup
z  

z1pf (z)

[The supremum (sup) of the set (0, 1) is 1, but the maximum doesn’t exist. The 
 defi nition of the infi mum (inf) is analogous.] With this choice of the majorizing 
 region T, a formal statement of the ratio-of-uniforms method is as follows:

1. Generate U , U(0, u*) and V , U(v*, v*) independently.
2. Set Z 5 VyU.
3. If U2 # pf (Z), then return Z. Otherwise, go back to step 1.

If t is the area of the region T, then the probability of accepting a particular Z is

 
s

t
5

py2

u*(v* 2 v*)

and the mean number of passes through steps 1 through 3 until a Z is accepted is the 
inverse of the above ratio.

E X A M P L E  8 . 8 .  Suppose that f (x) 5 3x2 for 0 # x # 1 [a beta(3, 1) distribution (see 
Sec. 6.2.2)] and p 5 1y3. Then

  S 5 e(u, v) : 0 # u #
v
u

, 0 #
v
u

# 1 f
  s 5

1

6

  u* 5 1, v* 5 0, v* 5 1

We generated 2000 points (u, v) uniformly in the square T (with area t 5 1), and 330 
of these points satisfi ed the stopping rule stated in the defi nition of S. Note that 
330y2000 5 0.165, which is approximately equal to syt 5 1

6y1 5 0.167. A plot of these 
330 accepted points is given in Fig. 8.13. The sample mean and sample variance of the 
330 selected points were 0.763 and 0.0395, respectively, while the true mean and variance 
of the beta(3, 1) distribution are 0.750 and 0.0375. Note that the acceptance region S is 
bounded above and below by the curves v 5 u and v 5 u2, respectively (see Prob. 8.20).

The rectangle T had a probability of acceptance of 1y6 in Example 8.8. We 
could choose a majorizing region T that is closer in shape to the acceptance region 
S so that the ratio syt is brought closer to 1 (see Prob. 8.21). However, this gain in 
effi ciency has to be traded off with the potentially greater diffi culty of generating a 
point uniformly in a more complicated majorizing region. Cheng and Feast (1979) 
give a fast algorithm for generating from a gamma distribution, where T is a paral-
lelogram. Leydold (2000) develops fast ratio-of-uniforms algorithms that use 
 polygonal majorizing regions and are applicable to a large class of distributions.

Stadlober (1990) shows that the ratio-of-uniforms method is, in fact, an 
 acceptance-rejection method. He also extends the ratio-of-uniforms method to 
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450 generating random variates

 discrete distributions, while Wakefi eld et al. (1991) and Stefănescu and Văduva 
(1987) consider multivariate distributions.

8.2.6 Special Properties

Although most methods for generating random variates can be classifi ed into one of 
the fi ve approaches discussed so far in Sec. 8.2, some techniques simply rely on 
some special property of the desired distribution function F or the random variable X. 
Frequently, the special property will take the form of representing X in terms of 
other random variables that are more easily generated; in this sense the method of 
convolution is a “special” special property. The following four examples are based 
on normal-theory random variables (see Secs. 8.3 and 8.4 for other examples that 
have nothing to do with the normal distribution).

E X A M P L E  8 . 9 .  If Y , N(0, 1) (the standard normal distribution), then Y2 has a 
 chi-square distribution with 1 df. (We write X , x2

k to mean that X has a chi-square 
distribution with k df.) Thus, to generate X , x2

1, generate Y , N(0, 1) (see Sec. 8.3.6), 
and return X 5 Y 2.

E X A M P L E  8 . 1 0 .  If Z1, Z2, . . . , Zk are IID x2
1 random variables, then X 5 

Z1 1 Z2 1 . . . 1 Zk , x2
k. Thus, to generate X , x2

k, fi rst generate Y1, Y2, . . . , Yk as 

FIGURE 8.13
Accepted points for the ratio-of-uniforms method.
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IID N(0, 1) random variates, and then return X 5 Y2
1 1 Y2

2 1 . . . 1 Y2
k (see Example 8.9). 

Since for large k this may be quite slow, we might want to exploit the fact that the x2
k 

distribution is a gamma distribution with shape parameter a 5 ky2 and scale parameter 
b 5 2. Then X can be obtained directly from the gamma-generation methods discussed 
in Sec. 8.3.4.

E X A M P L E  8 . 1 1 .  If Y , N(0, 1), Z , x2
k, and Y and Z are independent, then 

X 5 Yy1Zyk is said to have Student’s t distribution with k df, which we denote X , tk. 
Thus, to generate X , tk, we generate Y , N(0, 1) and Z , x2

k independently of Y (see 
Example 8.10), and return X 5 Yy1Zyk.

E X A M P L E  8 . 1 2 .  If Z1 , x2
k1

, Z2 , x2
k2

, and Z1 and Z2 are independent, then

 X 5
Z1yk1

Z2yk2

is said to have an F distribution with (k1, k2) df, denoted X , Fk1, k2
. We thus generate 

Z1 , x2
k1

 and Z2 , x2
k2

 independently, and return X 5 (Z1yk1)y(Z2yk2).

For some continuous distributions, it is possible to transform the density func-
tion so that it is easy to construct majorizing functions for use with the acceptance-
rejection method. In particular, Hörmann (1995) suggested the transformed density 
rejection method for generating random variates from a continuous distribution with 
density f. The idea is to transform f by a strictly increasing function T so that T( f(x)) 
is concave, in which case we say that f is T-concave. [A function g is said to be 
concave if

 
g(x1) 1 g(x2)

2
, g ax1 1 x2

2
b

for x1 , x2.] Since T( f(x)) is a concave function, a majorizing function for T( f(x)) 
can be constructed easily as the minimum of several tangents. Then T21 is used to 
transform the majorizing function back to the original scale. This results in a ma-
jorizing function for the density f, and random variates can be generated from f by 
the acceptance-rejection method. If T(x) 5 21y1x, then a large number of distri-
butions are T-concave, including the beta, exponential, gamma, lognormal, nor-
mal, and Weibull distributions. (For some distributions, there are restrictions on 
the values of the parameters.) Since transformed density rejection is applicable to 
a  large class of distributions, it is sometimes called a universal method [see 
 Hörmann et al. (2004)].

8.3 
GENERATING CONTINUOUS RANDOM VARIATES

In this section we discuss particular algorithms for generating random variates 
from several commonly occurring continuous distributions; Sec. 8.4 contains a 
similar treatment for discrete random variates. Although there may be several dif-
ferent algorithms for generating from a given distribution, we explicitly present 
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452 generating random variates

only one technique in each case and provide references for other algorithms that 
may be better in some sense, e.g., in terms of speed at the expense of increased 
setup cost and greater complexity. In deciding which algorithm to present, we 
have  tried to choose those that are simple to describe and implement, and are 
 reasonably effi cient as well. We also give only exact (up to machine accuracy) 
methods, as opposed to approximations. If speed is critically important, however, 
we urge the reader to pursue the various references given for the desired distribu-
tion. For defi nitions of density functions, mass functions, and distribution func-
tions, see Secs. 6.2.2 and 6.2.3.

8.3.1 Uniform

The distribution function of a U(a, b) random variable is easily inverted by solving 
u 5 F(x) for x to obtain, for 0 # u # 1,

 x 5 F21(u) 5 a 1 (b 2 a)u

Thus, we can use the inverse-transform method to generate X:

1. Generate U , U(0, 1).
2. Return X 5 a 1 (b 2 a)U.

If many X values are to be generated, the constant b 2 a should, of course, be com-
puted beforehand and stored for use in the algorithm.

8.3.2 Exponential

The exponential random variable with mean b . 0 was considered in Example 8.1, 
where we derived the following inverse-transform algorithm:

1. Generate U , U(0, 1).
2. Return X 5 2b ln U.

[Recall that the U in step 2 would be 1 2 U instead if we wanted a literal version 
of X 5 F21(U) in order to make the correlation between the X’s and U’s positive.] 
This is certainly a simple technique and has all the advantages of the inverse-
transform method discussed in Sec. 8.2.1. It is also reasonably fast, with most of the 
computing time’s being taken up in evaluating the logarithm. In the experiments of 
Ahrens and Dieter (1972), this method was the fastest of the four algorithms con-
sidered if programming in FORTRAN, with some 72 percent of the time taken up 
by the logarithm evaluation. If one is willing to program in a lower-level language, 
however, there are other methods that avoid the logarithm and are faster, although 
considerably more complex and involving various amounts of preliminary setup; 
see von Neumann (1951), Marsaglia (1961), and MacLaren, Marsaglia, and Bray 
(1964). We refer the interested reader to Ahrens and Dieter (1972) and to Fishman 
(1978, pp. 402–410) for further discussion.
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8.3.3 m-Erlang

As discussed in Example 8.5, if X is an m-Erlang random variable with mean b, we 
can write X 5 Y1 1 Y2 1 . . . 1 Ym, where the Yi’s are IID exponential random 
 variables, each with mean bym. This led to the convolution algorithm described in 
Example 8.5. Its effi ciency can be improved, however, as follows. If we use the 
 inverse-transform method of Sec. 8.3.2 to generate the exponential Yi’s [Yi 5 
(2bym) ln Ui, where U1, U2, . . . , Um are IID U(0, 1) random variates], then

 X 5 ^
m

i51

Yi 5 ^
m

i51

2b

m
 ln Ui 5

2b

m
 ln aq

m

i51
 Uib

so that we need to evaluate only one logarithm (rather than m logarithms). Then the 
statement of the algorithm is as follows:

1. Generate U1, U2, . . . , Um as IID U(0, 1).

2. Return X 5
2b

m
 ln aq

m

i51

 Uib.

(Again, one should compute bym beforehand and store it for repeated use.) This 
algorithm is really a combination of the composition and inverse-transform 
methods.

Since we must generate m random numbers and perform m multiplications, the 
execution time of the algorithm is approximately proportional to m. Therefore, one 
might look for an alternative method when m is large. Fortunately, the m-Erlang dis-
tribution is a special case of the gamma distribution (with shape parameter a equal 
to the integer m), so that we can use one of the methods for generating gamma ran-
dom variates here as well (see Sec. 8.3.4 for discussion of gamma generation). The 
precise threshold for m beyond which one should switch to general gamma genera-
tion will depend on the method used for generating a gamma random variate as well 
as on languages, compilers, and hardware; preliminary experimentation in one’s 
particular situation might prove worthwhile. [For the gamma generator of Sec. 8.3.4 
in the case a . 1, timing experiments in Cheng (1977) indicate that using his 
 general gamma generator becomes faster than the above m-Erlang algorithm for 
m $  10, approximately.] Another potential problem with using the above algo-
rithm, especially for large m, is that wm

i51 Ui might get close to zero, which could 
lead to numerical diffi culties when its logarithm is taken.

8.3.4 Gamma

General gamma random variates are more complicated to generate than the three 
types of random variates considered so far in this section, since the distribution 
function has no simple closed form for which we could try to fi nd an inverse. First 
note that given X , gamma(a, 1), we can obtain, for any b . 0, a gamma(a, b) 
random variate X9 by letting X9 5 bX, so that it is suffi cient to restrict attention 
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to  generating from the gamma(a, 1) distribution. Furthermore, recall that the 
gamma(1, 1) distribution is just the exponential distribution with mean 1, so that we 
need consider only 0 , a , 1 and a . 1. Since the available algorithms for gen-
erating gamma random variates are for the most part valid in only one of these 
ranges of a, we shall discuss them separately. [Tadikamalla and Johnson (1981) 
 provide a comprehensive review of gamma variate generation methods that were 
available at that time.]

We fi rst consider the case 0 , a , 1. (Note that if a 5 0.5, we have a rescaled 
x2

1 distribution and X can be easily generated using Example 8.9; the algorithm 
stated below is nevertheless valid for a 5 0.5.) Atkinson and Pearce (1976) tested 
three alterative algorithms for this case, and we present one of them, due to Ahrens 
and Dieter (1974). [The algorithm of Forsythe (1972) was usually the fastest in the 
comparisons in Atkinson and Pearce (1976), but it is considerably more compli-
cated.] This algorithm, denoted GS in Ahrens and Dieter (1974), is an acceptance-
rejection technique, with majorizing function

 t(x) 5 e
0

xa21

G(a)

e2x

G(a)

if x # 0

if 0 , x # 1

if 1 , x

Thus, c 5e`
0  t(x) dx 5 by[aG(a)], where b 5 (e 1 a)ye . 1, which yields the 

density r(x) 5 t(x)yc as

 r(x) 5 e
0

axa21

b

ae2x

b

if x # 0

if 0 , x # 1

if 1 , x

Generating a random variate Y with density r(x) can be done by the inverse- transform 
method; the distribution function corresponding to r is

 R(x) 5 #
x

0
 r(y) dy 5 μ

x  

a

b

1 2
ae2x

b

if 0 # x # 1

if 1 , x

which can be inverted to obtain

 R21(u) 5 μ
(bu)1ya

2ln 
b(1 2 u)
a

if u #
1

b

otherwise
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Thus, to generate Y with density r, we fi rst generate U1 , U(0, 1). If U1 # 1yb, we 
set Y 5 (bU1)

1ya; in this case, Y # 1. Otherwise, if U1 . 1yb, set Y 5 2ln [b(1 2 
U1)ya], which will be greater than 1. Noting that

 
f(Y )

t(Y )
5 e

e2Y

Y a21

if 0 # Y # 1

if 1 , Y

we obtain the fi nal algorithm [b 5 (e 1 a)ye must be computed beforehand]:

1. Generate U1 , U(0, 1), and let P 5 bU1. If P . 1, go to step 3. Otherwise, pro-
ceed to step 2.

2. Let Y 5 P1ya, and generate U2 , U(0, 1). If U2 # e2Y, return X 5 Y. Otherwise, 
go back to step 1.

3. Let Y 5 2ln [(b 2 P)ya] and generate U2 , U(0, 1). If U2 # Ya21, return X 5 Y. 
Otherwise, go back to step 1.

We now consider the case a . 1, where there are several good algorithms. In 
view of timing experiments by Schmeiser and Lal (1980) and Cheng and Feast 
(1979), we will present a modifi ed acceptance-rejection method due to Cheng 
(1977), who calls this the GB algorithm. This algorithm has a “capped” execution 
time; i.e., its execution time is bounded as a S ` and in fact appears to become 
faster as a grows. (The modifi cation of the general acceptance-rejection method 
consists of adding a faster pretest for acceptance.) To obtain a majorizing function 
t(x), fi rst let l 5 12a 2 1, m 5 al, and c 5 4aae2ay[lG(a)]. Then defi ne t(x) 5 
cr(x), where

 r(x) 5 •

l mxl21

(m 1 xl)2

0

if x . 0

otherwise

The distribution function corresponding to the density r(x) is

 R(x) 5 •

xl

m 1 xl

0

if x $ 0

otherwise

which is easily inverted to obtain

 R21(u) 5 a
mu

1 2 u
b

1yl

  for 0 , u , 1

To verify that t(x) indeed majorizes f(x), see Cheng (1977). Note that this is an 
example of obtaining a majorizing function by fi rst specifying a known distribution 
[R(x) is actually the log-logistic distribution function (see Sec. 8.3.11) with shape 
parameter l, scale parameter m1yl, and location parameter 0] and then rescaling 
the density r(x) to majorize f(x). Thus, we use the inverse-transform method to gen-
erate Y with density r. After adding an advantageous pretest for acceptance and 
streamlining for computational effi ciency, Cheng (1977) recommends the following 
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456 generating random variates

algorithm (the prespecifi ed constants are a 5 1y12a 2 1, b 5 a 2 ln 4, q 5 
a 1 1ya, u 5 4.5, and d 5 1 1 ln u):

1. Generate U1 and U2 as IID U(0, 1).
2. Let V 5 a ln [U1y(1 2 U1)], Y 5 aeV, Z 5 U2

1U2, and W 5 b 1 qV 2 Y.
3. If W 1 d 2 uZ $ 0, return X 5 Y. Otherwise, proceed to step 4.
4. If W $ ln Z, return X 5 Y. Otherwise, go back to step 1.

Step 3 is the added pretest, which (if passed) avoids computing the logarithm in 
the regular acceptance-rejection test in step 4. (If step 3 were removed, the 
 algorithm would still be valid and would just be the literal acceptance-rejection 
method.)

As mentioned above, there are several other good algorithms that could be used 
when a . 1. Schmeiser and Lal (1980) present another acceptance-rejection 
method with t(x) piecewise linear in the “body” of f(x) and exponential in the tails; 
their  algorithm was roughly twice as fast as the one we chose to present above, for 
a ranging from 1.0001 through 1000. However, their algorithm is more complicated 
and requires additional time to set up the necessary constants for a given value of a. 
This is typical of the tradeoffs the analyst must consider in choosing among alter-
native variate-generation algorithms.

Finally, we consider direct use of the inverse-transform method to generate 
gamma random variates. Since neither the gamma distribution function nor its in-
verse has a simple closed form, we must resort to numerical methods. Best and 
Roberts (1975) give a numerical procedure for inverting the distribution function 
of a chi-square random variable with degrees of freedom that need not be an inte-
ger, so is applicable for gamma generation for any a . 0. [If Y , x2

n where n . 0 
need not be an integer, then Y , gamma(ny2, 2). If we want X , gamma(a, 1), fi rst 
 generate Y , x2

2a, and then return X 5 Yy2.] An IMSL routine [Rogue Wave 
(2013)] is available to invert the chi-square distribution function. Press et al. (2007, 
sec. 6.2) give C codes to evaluate the chi-square distribution function (a reparam-
eterization of what’s known as the incomplete gamma function), which would then 
have to be numerically inverted by a root-fi nding algorithm, which they discuss in 
their chap. 9.

8.3.5 Weibull

The Weibull distribution function is easily inverted to obtain

 F  

21(u) 5 b[2ln(1 2 u)]1ya

which leads to the following inverse-transform algorithm:

1. Generate U , U(0, 1).
2. Return X 5 b(2ln U)1ya.

Again we are exploiting the fact that U and 1 2 U have the same U(0, 1) distribution, 
so that in step 2, U should be replaced by 1 2 U if the literal inverse-transform 
method is desired. This algorithm can also be justifi ed by noting that if Y has 
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an  exponential distribution with mean ba, then Y1ya , Weibull(a, b); see 
Sec. 6.2.2.

8.3.6 Normal

First note that given X , N(0, 1), we can obtain X9 , N(m, s2) by setting X9 5 
m 1 sX, so that we can restrict attention to generating standard normal random 
variates. Effi ciency is important, since the normal density has often been used to 
provide majorizing functions for acceptance-rejection generation of random 
 variates from other distributions, e.g., Ahrens and Dieter’s (1974) gamma and beta 
generators. Normal random variates can also be transformed directly into random 
variates from other distributions, e.g., the lognormal. Also, statisticians seeking to 
estimate empirically, in a Monte Carlo study, the null distribution of a test statistic 
for normality will need an effi cient source of normal random variates. [See, for 
 example, Filliben (1975), Lilliefors (1967), or Shapiro and Wilk (1965).]

One of the early methods for generating N(0, 1) random variates, due to Box and 
Muller (1958), is evidently still in use despite the availability of much faster 
 algorithms. It does have the advantage, however, of maintaining a one-to-one 
 correspondence between the random numbers used and the N(0, 1) random vari-
ates produced; it may thus prove useful for maintaining synchronization in the use of 
common random numbers or antithetic variates as a variance-reduction technique 
(see Secs. 11.2 and 11.3). The method simply says to generate U1 and U2 as IID 
U(0, 1), then set X1 5 122 ln U1 cos 2pU2 and X2 5 122 ln U1 sin 2pU2. Then 
X1 and X2 are IID N(0, 1) random variates. Since we obtain the desired random vari-
ates in pairs, we could, on odd-numbered calls to the subprogram, actually compute 
X1 and X2 as just described, but return only X1, saving X2 for immediate return on 
the next (even-numbered) call. Thus, we use two random numbers to produce two 
N(0, 1) random variates. While this method is valid in principle, i.e., if U1 and U2 
are truly IID U(0, 1) random variables, there is a serious diffi culty if U1 and U2 are 
actually adjacent random numbers produced by a linear congruential generator (see 
Sec. 7.2), as they might be in practice. Due to the fact that U2 would depend on U1 
according to the recursion in Eq. (7.1) in Sec. 7.2, it can be shown that the generated 
variates X1 and X2 must fall on a spiral in (X1, X2) space, rather than being truly 
 independently normally distributed; see, for example, Bratley, Fox, and Schrage 
(1987, pp. 223–224). Thus, the Box-Muller method should not be used with a 
 single stream of a linear congruential generator; it might be possible to use separate 
streams or a composite generator instead, e.g., the combined multiple recursive 
generator in App. 7B, but one of the methods described below for normal variate 
 generation should probably be used instead.

An improvement to the Box and Muller method, which eliminates the trigono-
metric calculations and was described in Marsaglia and Bray (1964), has become 
known as the polar method. It relies on a special property of the normal distribu-
tion and was found by Atkinson and Pearce (1976) to be between 9 and 31 percent 
faster in FORTRAN programming than the Box and Muller method, depending on 
the machine used. [Ahrens and Dieter (1972) experienced a 27 percent reduction 
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in time.] The polar method, which also generates N(0, 1) random variates in pairs, 
is as follows:

1. Generate U1 and U2 as IID U(0, 1); let Vi 5 2Ui 2 1 for i 5 1, 2; and let 
W 5 V 2

1 1 V 2
2.

2. If W . 1, go back to step 1. Otherwise, let Y 5 1(22 ln W )yW, X1 5 V1Y, and 
X2 5 V2Y. Then X1 and X2 are IID N(0, 1) random variates.

Since a “rejection” of U1 and U2 can occur in step 2 (with probability 1 2 py4, by 
Prob. 8.12), the polar method will require a random number of U(0, 1) random 
 variates to generate each pair of N(0, 1) random variates. More recently, a very fast 
algorithm for generating N(0, 1) random variates was developed by Kinderman and 
Ramage (1976), which is more complicated but required 30 percent less time than 
the polar method in their FORTRAN experiments.

For direct use of the inverse-transform method in normal generation, one must 
use a numerical method, since neither the normal distribution function nor its inverse 
has a simple closed-form expression. Such a method is given by Moro (1995). Also, 
the IMSL [Rogue Wave (2013)] library has routines to invert the standard normal 
distribution function.

8.3.7 Lognormal

A special property of the lognormal distribution, namely, that if Y , N(m, s2), then 
eY , LN(m, s2), is used to obtain the following algorithm:

1. Generate Y , N(m, s2).
2. Return X 5 eY.

To accomplish step 1, any method discussed in Sec. 8.3.6 for normal generation can 
be used.

Note that m and s2 are not the mean and variance of the LN(m, s2) distribution. 
In fact, if X , LN(m, s2) and we let m9 5 E(X) and s92 5 Var(X ), then it turns

out that m¿ 5 e  

m1s2y2 and s¿2 5 e2m1s2
 (es

2
2 1). Thus, if we want to generate a 

lognormal random variate X with given mean m9 5 E(X ) and given variance s92 5 
Var(X), we should solve for m and s2 in terms of m9 and s92 fi rst, before generating 
the intermediate normal random variate Y. The formulas are easily obtained as

 m 5 E(Y ) 5 ln 
m¿2

2m¿2 1 s¿2

and

 s2 5 Var(Y ) 5 ln a1 1
s¿2

m¿2b

8.3.8 Beta

First note that we can obtain X9 , beta(a1, a2) on the interval [a, b] for a , b by 
setting X9 5 a 1 (b 2 a)X, where X , beta(a1, a2) on the interval [0, 1], so that it is 
suffi cient to consider only the latter case, which we henceforth call the beta(a1, a2) 
distribution.
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Some properties of the beta(a1, a2) distribution for certain (a1, a2) combi-
nations facilitate generating beta random variates. First, if X , beta(a1, a2), then 
1 2 X , beta(a2, a1), so that we can readily generate a beta(a2, a1) random 
 variate if we can obtain a beta(a1, a2) random variate easily. One such situation oc-
curs when either a1 or a2 is equal to 1. If a2 5 1, for example, then for 0 # x # 1 
we have f (x) 5 a1x

a121, so the distribution function is F(x) 5 x  

a1, and we can 
easily generate X , beta(a1, 1) by the inverse-transform method, i.e., by re-
turning X 5 U1ya1, for U , U(0, 1). Finally, the beta(1, 1) distribution is simply 
U(0, 1).

A general method for generating a beta(a1, a2) random variate for any a1 . 0 
and a2 . 0 is a result of the fact that if Y1 , gamma(a1, 1), Y2 , gamma(a2, 1), 
and Y1 and Y2 are independent, then Y1y(Y1 1 Y2) , beta(a1, a2). This leads to the 
following algorithm:

1. Generate Y1 , gamma(a1, 1) and Y2 , gamma(a2, 1) independent of Y1.
2. Return X 5 Y1y(Y1 1 Y2).

Generating the two gamma random variates Y1 and Y2 can be done by any appropri-
ate algorithm for gamma generation (see Sec. 8.3.4), so that we must take care to 
check whether a1 and a2 are less than or greater than 1.

This method is quite convenient, in that it is essentially done provided that we 
have gamma(a, 1) generators for all a . 0; its effi ciency will, of course, depend on 
the speed of the chosen gamma generators. There are, however, considerably faster 
(and more complicated, as usual) algorithms for generating from the beta distribu-
tion directly. For a1 . 1 and a2 . 1, Schmeiser and Babu (1980) present a very 
fast acceptance-rejection method, where the majorizing function is piecewise linear 
over the center of f(x) and exponential over the tails; a fast acceptance pretest is 
specifi ed by a piecewise-linear function b(x) that minorizes (i.e., is always below) 
f(x). If a1 , 1 or a2 , 1 (or both), algorithms for generating beta(a1, a2) random 
variates directly are given by Atkinson and Whittaker (1976, 1979), Cheng (1978), 
and Jöhnk (1964). Cheng’s (1978) method BA is quite simple and is valid as well 
for any a1 . 0, a2 . 0 combination; the same is true for the algorithms of Atkinson 
(1979a) and Jöhnk (1964).

The inverse-transform method for generating beta random variates must rely on 
numerical methods, as was the case for the gamma and normal distributions. Cran, 
Martin, and Thomas (1977) give such a method with a FORTRAN program, and 
IMSL [Rogue Wave (2013)] routines are also available. Press et al. (2007, sec. 6.4) 
give C codes to evaluate the beta distribution function (also known as the  incomplete 
beta function), which would then have to be numerically inverted by a root-fi nding 
algorithm, which they discuss in their chap. 9.

8.3.9 Pearson Type V

As noted in Sec. 6.2.2, X , PT5(a, b) if and only if 1yX , gamma(a, 1yb), which 
leads to the following special-property algorithm:

1. Generate Y , gamma(a, 1yb).
2. Return X 5 1yY.
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460 generating random variates

Any method from Sec. 8.3.4 for gamma generation could be used, taking care to 
note whether a , 1, a 5 1, or a . 1. To use the inverse-transform method, we 
note from Sec. 6.2.2 that the PT5(a, b) distribution function is F(x) 5 1 2 FG(1yx) 
for x . 0, where FG is the gamma(a, 1yb) distribution function. Setting F(X) 5 U 
thus leads to X 5 1yFG

21(1 2 U) as the literal inverse-transform method, or to X 5 
1yF21

G (U) if we want to exploit the fact that 1 2 U and U have the same U(0, 1) 
distribution. In any case, we would generally have to use a numerical method to 
evaluate F21

G , as discussed in Sec. 8.3.4.

8.3.10 Pearson Type VI

From Sec. 6.2.2, we note that if Y1 , gamma(a1, b) and Y2 , gamma(a2, 1), and 
Y1 and Y2 are independent, then Y1yY2 , PT6(a1, a2, b); this leads directly to:

1. Generate Y1 , gamma(a1, b) and Y2 , gamma(a2, 1) independent of Y1.
2. Return X 5 Y1yY2.

Any method from Sec. 8.3.4 for gamma generation could be used, checking 
whether a , 1, a 5 1, or a . 1. To use the inverse-transform method, note from 
Sec. 6.2.2 that the PT6(a1, a2, b) distribution function is F(x) 5 FB(xy(x 1 b)) for 
x . 0, where FB is the beta(a1, a2) distribution function. Setting F(X ) 5 U thus 
leads to X 5 bF21

B (U )y[1 2 F21
B (U )], where F21

B (U ) would generally have to be 
evaluated by a numerical method, as discussed in Sec. 8.3.8.

8.3.11 Log-Logistic

The log-logistic distribution function can be inverted to obtain

 F21(u) 5 b a u

1 2 u
b1ya

which leads to the inverse-transform algorithm:

1. Generate U , U(0, 1).
2. Return X 5 b[Uy(1 2 U )]1ya.

8.3.12 Johnson Bounded

X , JSB(a1, a2, a, b) if and only if Z 5 a1 1 a2 ln[(X 2 a)y(b 2 X )] , N(0, 1), 
and we can solve this equation for X in terms of Z to get the following special-
property algorithm:

1. Generate Z , N(0, 1).
2. Let Y 5 exp[(Z 2 a1)ya2].
3. Return X 5 (a 1 bY )y(Y 1 1).
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Any method from Sec. 8.3.6 for standard normal generation can be used to generate 
Z in step 1.

8.3.13 Johnson Unbounded

X , JSU(a1, a2, g, b) if and only if

 Z 5 a1 1 a2 ln c X 2 g

b
1 Ba

X 2 g

b
b2

1 1 d , N(0, 1)

and we can solve this equation for X in terms of Z to get the following special-
property algorithm:

1. Generate Z , N(0, 1).
2. Let Y 5 exp[(Z 2 a1)ya2].
3. Return X 5 g 1 (by2)(Y 2 1yY ).

Any method from Sec. 8.3.6 for standard normal generation can be used to generate Z 
in step 1. An alternative statement of the algorithm is X 5 g 1 b sinh[(Z 2 a1)ya2] 
where Z is as in step 1.

8.3.14 Bézier

Random variates from fi tted Bézier distributions, as discussed in Sec. 6.9, can be 
generated by a numerical inverse-transform method given by Wagner and Wilson 
(1996b), which requires a root-fi nding algorithm as part of its operation.

8.3.15 Triangular

First notice that if we have X , triang[0, 1, (m 2 a)y(b 2 a)], then X9 5 a 1 
(b 2 a)X , triang(a, b, m), so we can restrict attention to triang(0, 1, m) random 
variables, where 0 , m , 1. (For the limiting cases m 5 0 or m 5 1, giving rise to 
a left or right triangle, see Prob. 8.7.) The distribution function is easily inverted to 
obtain, for 0 # u # 1,

 F21(u) 5 e1mu

1 2 1(1 2 m)(1 2 u)

if 0 # u # m

if m , u # 1

Therefore, we can state the following inverse-transform algorithm for generating 
X , triang(0, 1, m):

1. Generate U , U(0, 1).
2. If U # m, return X 5 1mU. Otherwise, return X 5 1 2 1(1 2 m) (1 2 U).
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(Note that if U . m in step 2, we cannot replace the 1 2 U in the formula for X 
by U. Why?) For an alternative method of generating a triangular random variate 
(by composition), see Prob. 8.13.

8.3.16 Empirical Distributions

In this section we give algorithms for generating random variates from the continu-
ous empirical distribution functions F and G defi ned in Sec. 6.2.4. In both cases, the 
inverse-transform approach can be used.

First suppose that we have the original individual observations, which we use 
to defi ne the empirical distribution function F(x) given in Sec. 6.2.4 (see also 
Fig. 6.24). Although an inverse-transform algorithm might at fi rst appear to involve 
some kind of a search, the fact that the “corners” of F occur precisely at levels 
0, 1y(n 2 1), 2y(n 2 1), . . . , (n 2 2)y(n 2 1), and 1 allows us to avoid an explicit 
search. We leave it to the reader to verify that the following algorithm is the 
 inverse-transform method:

1. Generate U , U(0, 1), let P 5 (n 2 1)U, and let I 5 :P ; 1 1.
2. Return X 5 X(I ) 1 (P 2 I 1 1)(X(I11) 2 X(I )).

Note that the X(i)’s must be stored and that storing a separate array containing the 
values of X(I11) 2 X(I ) would eliminate a subtraction in step 2. Also, the values of X 
generated will always be between X(1) and X(n); this limitation is a possible disad-
vantage of specifying an empirical distribution in this way. The lack of a search 
makes the marginal execution time of this algorithm essentially independent of n, 
although large n entails more storage and setup time for sorting the Xi’s.

Now suppose that our data are grouped; that is, we have k adjacent intervals 
[a0, a1), [a1, a2), . . . , [ak21, ak], and the jth interval contains nj observations, with 
n1 1 n2 1 . . . 1 nk 5 n. In this case, we defi ned an empirical distribution function 
G(x) in Sec. 6.2.4 (see also Fig. 6.25), and the following inverse-transform algo-
rithm generates a random variate with this distribution:

1. Generate U , U(0, 1).
2. Find the nonnegative integer J (0 # J # k 2 1) such that G(aJ) # U , G(aJ11), 

and return X 5 aJ 1 [U 2 G(aJ)](aJ11 2 aJ)y[G(aJ11) 2 G(aJ)].

Note that the J found in step 2 satisfi es G(aJ) , G(aJ11), so that no X can be 
 generated in an interval for which nj 5 0. (Also, it is clear that a0 # X # ak.) 
Determining J in step 2 could be done by a straightforward left-to-right search or by 
a search starting with the value of j for which G(aj11) 2 G(aj) is largest, then next 
largest, etc. As an alternative that avoids the search entirely (at the expense of extra 
storage), we could initially defi ne a vector (m1, m2, . . . , mn) by setting the fi rst 
n1 mi’s to 0, the next n2 mi’s to 1, etc., with the last nk mi’s being set to k 2 1. (If some 
nj is 0, no mi’s are set to j 2 1. For example, if k $ 3 and n1 . 0, n2 5 0, and n3 . 0, 
the fi rst n1 mi’s are set to 0 and the next n3 mi’s are set to 2.) Then the value of J 
in step 2 can be determined by setting L 5 :nU ; 1 1 and letting J 5 mL. Whether or 
not this is worthwhile depends on the particular characteristics of the data and on 
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the importance of any computational speed that might be gained relative to the 
extra storage and programming effort. Finally, Chen and Asau (1974) give another 
method for determining J in step 2, based on preliminary calculations that reduce the 
range of search for a given U; it requires only 10 extra memory locations. (Their 
treatment is for a discrete empirical distribution function but can also be applied 
to the present case.)

The empirical/exponential distribution mentioned briefl y in Sec. 6.2.4 can also 
be inverted so that the inverse-transform method can be used; an explicit algorithm 
is given in Bratley, Fox, and Schrage (1987, p. 151).

8.4 
GENERATING DISCRETE RANDOM VARIATES

This section discusses particular algorithms for generating random variates from 
various discrete distributions that might be useful in a simulation study. As in Sec. 8.3, 
we usually present for each distribution one algorithm that is fairly simple to im-
plement and reasonably effi cient. References will be made to alternative algorithms 
that might be faster, usually at the expense of greater complexity.

The discrete inverse-transform method, as described in Sec. 8.2.1, can be used 
for any discrete distribution, whether the range of possible values is fi nite or (count-
ably) infi nite. Many of the algorithms presented in this section are the discrete 
 inverse-transform method, although in some cases this fact is very well disguised 
due to the particular way the required search is performed, which often takes ad-
vantage of the special form of the probability mass function. As was the case for 
continuous random variates, however, the inverse-transform method may not be the 
most effi cient way to generate a random variate from a given distribution.

One other general approach should be mentioned here, which can be used for 
generating any discrete random variate having a fi nite range of values. This is the 
alias method, developed by Walker (1977) and refi ned by Kronmal and Peterson 
(1979); it is very general and effi cient, but it does require some initial setup as 
well as extra storage. We discuss the alias method in greater detail in Sec. 8.4.3, 
but the reader should keep in mind that it is applicable to any discrete distribution 
with a fi nite range (such as the binomial). For an infi nite range, the alias method 
can be used indirectly in conjunction with the general composition approach (see 
Sec. 8.2.2); this is also discussed in Sec. 8.4.3.

In addition to the alias method, there are some other general discrete-variate 
generation ideas; see, for example, Shanthikumar (1985) and Peterson and Kronmal 
(1983).

A fi nal comment concerns the apparent loss of generality in considering below 
only distributions that have range Sn 5 {0, 1, 2, . . . , n} or S 5 {0, 1, 2, . . .}, 
which may appear to be more restrictive than our original defi nition of a discrete 
random variable having general range Tn 5 {x1, x2, . . . , xn} or T 5 {x1, x2, . . .}. 
However, no generality is actually lost. If we really want a random variate X with 
mass function p(xi) and general range Tn (or T ), we can fi rst generate a random 
 variate I with range Sn21 (or S) such that P(I 5 i 2 1) 5 p(xi) for i 5 1, 2, . . . , n 
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464 generating random variates

(or i 5 1, 2, . . .). Then the random variate X 5 xI11 is returned and has the desired 
distribution. (Given I, xI11 could be determined from a stored table of the xi’s or 
from a formula that computes xi as a function of i.)

8.4.1 Bernoulli

The following algorithm is quite intuitive and is equivalent to the inverse-transform 
method (if the roles of U and 1 2 U are reversed):

1. Generate U , U(0, 1).
2. If U # p, return X 5 1. Otherwise, return X 5 0.

8.4.2 Discrete Uniform

Again, the straightforward intuitive algorithm given below is (exactly) the inverse-
transform method:

1. Generate U , U(0, 1).
2. Return X 5 i 1 : ( j 2 i 1 1)U ; .

Note that no search is required. The constant j 2 i 1 1 should, of course, be com-
puted ahead of time and stored.

8.4.3 Arbitrary Discrete Distribution

Consider the very general situation in which we have any probability mass function 
p(0), p(1), p(2), . . . on the nonnegative integers S, and we want to generate a dis-
crete random variate X with the corresponding distribution. The p(i)’s could have 
been specifi ed theoretically by some distributional form or empirically from a data 
set directly. The case of fi nite range Sn is included here by setting p(i) 5 0 for all 
i $ n 1 1. (Note that this formulation includes every special discrete distribution 
form.)

The direct inverse-transform method, for either the fi nite- or infi nite-range case, 
is as follows (defi ne the empty sum to be 0):

1. Generate U , U(0, 1).
2. Return the nonnegative integer X 5 I satisfying

 ^
I21

j50

p( j) # U , ^
I

j50

p( j)

Note that this algorithm will never return a value X 5 i for which p(i) 5 0, since 
the strict inequality between the two summations in step 2 would be impossible. 
Step 2 does require a search, which may be time consuming. As an alternative, we 
could initially sort the p(i)’s into decreasing order so that the search would be likely 
to terminate after a smaller number of comparisons; see Prob. 8.2 for an example.
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Due to the generality of the present situation, we present three other methods 
that are useful when the desired random variable has fi nite range Sn. The fi rst of 
these methods assumes that each p(i) is exactly equal to a q-place decimal; for ex-
position we take the case q 5 2, so that p(i) is of the form 0.01ki for some integer 
ki [ {0, 1, . . . , 100} (i 5 0, 1, 2, . . . , n), and On

i50 ki 5 100. We initialize a vector 
(m1, m2, . . . , m100) by setting the fi rst k0 mj’s to 0, the next k1 mj’s to 1, etc., and the 
last kn mj’s to n. (If ki 5 0 for some i, no mj’s are set to i.) Then an algorithm for 
generating the desired random variate X is as follows:

1. Generate J , DU(1, 100).
2. Return X 5 mJ.

(See Sec. 8.4.2 to accomplish step 1.) Note that this method requires 10q extra stor-
age locations and an array reference in step 2; it is, however, the inverse-transform 
method provided that J is generated by the algorithm in Sec. 8.4.2. If three or four 
decimal places are needed to specify the p(i)’s exactly, the value of l00 in step 1 
would be replaced by 1000 or 10,000, respectively, and the storage requirements 
would also grow by one or two orders of magnitude. Even if the p(i)’s are not 
 exactly q-place decimals for some small value of q, the analyst might be able to 
obtain suffi cient accuracy by rounding the p(i)’s to the nearest hundredth or thou-
sandth; this is an attractive alternative especially when the p(i)’s are proportions 
obtained directly from data, and may not be accurate beyond two or three decimal 
places anyway. When rounding the p(i)’s, however, it is important to remember that 
they must sum exactly to 1.

The above idea is certainly fast, but it could require large tables if we need high 
precision in the probabilities. Marsaglia (1963) proposed another kind of table-
based algorithm requiring less storage and only slightly more time. For example, 
consider the distribution

 p(0) 5 0.15,  p(1) 5 0.20,  p(2) 5 0.37,  p(3) 5 0.28

Then the idea of the preceding paragraph would require a vector of length 100 to 
store 15 0s, 20 1s, 37 2s, and 28 3s. Instead, defi ne two vectors—one for the 
“tenths” place and the other for the “hundredths” place. To fi ll up the tenths vector, 
look only at the tenths place in the probabilities, and put in that many copies of the 
associated i (for i 5 0, 1, 2, 3), so we would take one 0, two 1s, three 2s, and two 3s 
to get
 0 1 1 2 2 2 3 3

Similarly, the hundredths vector is

 0 0 0 0 0 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3

corresponding to the hundredths place in the probabilities; thus, there are 28 storage 
locations in all (as opposed to 100 for the earlier table method). To generate an X, 
pick the tenths vector with probability equal to one-tenth the sum of the digits in the 
probabilities’ tenths places, i.e., with probability

 
1 1 2 1 3 1 2

10
5 0.8
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and then choose one of the eight members of the tenths vector at random (equiprob-
ably) as the returned X. On the other hand, we choose the hundredths vector with 
probability equal to 1

100 of the sum of the digits in the hundredths place in the origi-
nal probabilities, i.e., with probability

 
5 1 0 1 7 1 8

100
5 0.2

and then choose one of the 20 entries in the hundredths vector at random to return 
as the value of X. It is easy to see that this method is valid; for example,

 P(X 5 2) 5 P(X 5 2 0  choose tenths vector)P(choose tenths vector)

 1 P(X 5 2 0  choose hundredths vector)P(choose hundredths vector)

 5 3
8(0.8) 1 7

20(0.2)

 5 0.37

as required. The storage advantage of Marsaglia’s tables becomes more marked as 
the number of decimal places in the probabilities increases; in his original example 
there were three-place decimals, so the direct table method of the preceding para-
graph would require 1000 storage locations; the three vectors (tenths, hundredths, 
and thousandths) in this example required only 91 locations.

The third attractive technique to use when X has range Sn is the alias method 
mentioned earlier. The method requires that we initially calculate two arrays of 
length n 1 1 each, from the given p(i)’s. The fi rst array contains what are called the 
cutoff values Fi [ [0, 1] for i 5 0, 1, . . . , n, and the second array gives the aliases 
Li [ Sn for i 5 0, 1, . . . , n; two algorithms for computing valid cutoff values and 
aliases from the p(i)’s are given in App. 8B. (The cutoff values and aliases are not 
unique, and indeed the two algorithms in App. 8B may produce different results for 
the same distribution; both will result in a valid variate-generation algorithm, how-
ever.) Then the alias method is as follows:

1. Generate I , DU(0, n) and U , U(0, 1) independent of I.
2. If U # FI, return X 5 I. Otherwise, return X 5 LI.

Thus, step 2 involves a kind of “rejection,” but upon rejecting I we need not start 
over but only return I’s alias LI, rather than I itself. The cutoff values are seen to be 
the probabilities with which we return I rather than its alias. There is only one com-
parison needed to generate each X, and we need exactly two random numbers for 
each X if I is generated as in Sec. 8.4.2. (See Prob. 8.17 for a way to accomplish 
step 1 with only one random number.) Although the setup is not complicated, stor-
ing the cutoffs and aliases does require 2(n 1 1) extra storage locations; Kronmal 
and Peterson (1979) discuss a way to cut the storage in half (see Prob. 8.18). In any 
case, storage is of order n, which is regarded as the principal weakness of the alias 
method if n could be very large.
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E X A M P L E  8 . 1 3 .  Consider a random variable on S3 5 {0, 1, 2, 3} with probability 
mass function p(0) 5 0.1, p(1) 5 0.4, p(2) 5 0.2, and p(3) 5 0.3. Applying the fi rst 
algorithm in App. 8B leads to the following setup:

i 0 1 2 3

p(i) 0.1 0.4 0.2 0.3
Fi 0.4 0.0 0.8 0.0
Li 1 1 3 3

For instance, if step 1 of the algorithm produces I 5 2, the probability is F2 5 0.8 
that we would keep X 5 I 5 2, and with probability 1 2 F2 5 0.2 we would return 
X 5 L2 5 3 instead. Thus, since 2 is not the alias of anything else (i.e., none of the 
other Li’s is equal to 2), the algorithm returns X 5 2 if and only if I 5 2 in step 1 and 
U # 0.8 in step 2, so that

  P(X 5 2) 5 P(I 5 2 and U # 0.8)

  5 P(I 5 2)P(U # 0.8)

  5 0.25 3 0.8

  5 0.2

which is equal to p(2), as desired. (The second equality in the above follows since U and 
I are generated independently.) On the other hand, the algorithm can return X 5 3 in two 
different (and mutually exclusive) ways: if I 5 3, then since F3 5 0 we will always 
 return X 5 L3 5 3; and if I 5 2 we will return X 5 L2 5 3 with probability 1 2 F2 5 
0.2. Thus,
  P(X 5 3) 5 P(I 5 3) 1 P(I 5 2 and U . F2)

  5 0.25 1 (0.25 3 0.2)

  5 0.3

which is p(3). The reader is encouraged to verify that the algorithm is correct for i 5 0 
and 1 as well. Figure 8.14 illustrates the method’s rationale. Figure 8.14a shows bars 
whose (total) height is 1y(n 1 1) 5 0.25, and thus is the probability mass function of I 
generated in step 1. The shaded areas in the bars represent the probability mass that is 
moved by the method, and the number in each shaded area is the value Li that will be re-
turned as X. Thus, if step 1 generates I 5 0, there is a probability of 1 2 F0 5 0.6 that 
this I will be changed into its alias, L0 5 1, for the returned X; the shaded area in the bar 
above 0 is of height 0.6 3 0.25 5 0.15, or 60 percent of that bar. Similarly, the fraction 
1 2 F2 5 0.2 of the 0.25-high bar (resulting in a shaded area of height 0.2 3 0.25 5 
0.05) above 2 represents the chance that a generated I 5 2 will be changed into X 5 
L2 5 3. Note that the entire bars above 1 and 3 are shaded, since Fl and F3 are both zero; 
however, the indicated values are their own aliases, so they do not really get moved. 
Figure 8.14b shows the probability mass function of the returned X after the shaded 
areas (probabilities) are moved to their destination values, and it is seen to equal the 
desired probabilities p(i).

Although the alias method is limited to discrete random variables with a fi nite 
range, it can be used indirectly for discrete distributions with an infi nite range, such 
as the geometric, negative binomial, or Poisson, by combining it with the general 
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468 generating random variates

composition method. For example, if X can be any nonnegative integer, we can 
 examine the p(i)’s to fi nd an n such that q 5 On

i50 p(i) is close to 1, so that the 
 probability is high that X [ Sn. Since for any i we can write

 p(i) 5 q c
p(i)

q
 ISn

(i) d 1 (1 2 q) e
p(i)

1 2 q
 [1 2 ISn

(i)]f

we obtain the following general algorithm:

1. Generate U , U(0, 1). If U # q, go to step 2. Otherwise, go to step 3.
2. Use the alias method to return X on Sn with probability mass function p(i)yq for 

i 5 0, 1, . . . , n.
3. Use any other method to return X on {n 1 1, n 1 2, . . .} with probability mass 

function p(i)y(1 2 q) for i 5 n 1 1, n 1 2, . . . .
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FIGURE 8.14
Setup for the alias method in 
Example 8.13.
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In step 3, we could use the inverse-transform method, for example. Since n was 
chosen to make q close to l, we would expect to avoid step 3 most of the time.

Finally, we note that all the table-based methods discussed above, as well as the 
alias method, require some effort in an initial setup stage. Thus, they could be unat-
tractive if the probability mass function changes frequently over time as the simu-
lation proceeds. An effi cient method for general discrete-variate generation in this 
case was developed by Rajasekaran and Ross (1993).

8.4.4 Binomial

To generate a bin(t, p) random variate, recall from Sec. 6.2.3 that the sum of t IID 
Bernoulli(p) random variables has the bin(t, p) distribution. This relation leads to 
the following convolution algorithm:

1. Generate Y1, Y2, . . . , Yt as IID Bernoulli(p) random variates.
2. Return X 5 Y1 1 Y2 1 . . . 1 Yt.

Since the execution time of this algorithm is proportional to t, we might want 
to look for an alternative if t is large. One possibility would be the direct inverse-
transform method with an effi cient search. Another alternative is the alias method 
(see Sec. 8.4.3), since the range of X is fi nite. Finally, algorithms specifi c to the bi-
nomial distribution that are effi cient for large t are discussed by Ahrens and Dieter 
(1974) and Kachitvichyanukul and Schmeiser (1988).

8.4.5 Geometric

The following algorithm is equivalent to the inverse-transform method if we replace 
U by 1 2 U in step 2 (see Prob. 8.14):

1. Generate U , U(0, 1).
2. Return X 5 : ln Uyln (1 2 p) ; .

The constant ln (1 2 p) should, of course, be computed beforehand. If p is near 0, 
ln (1 2 p) will also be near zero, so that double-precision arithmetic should be 
 considered to avoid excessive roundoff error in the division in step 2. For p near 1, 
ln (1 2 p) will be a large negative number, which also could cause numerical diffi -
culties; fortunately, for large p it is more effi cient to use an altogether different 
 algorithm based on the relationship between geometric and Bernoulli random vari-
ables described in Sec. 6.2.3 (see Prob. 8.14).

8.4.6 Negative Binomial

The relation between the negbin(s, p) and geom(p) distributions in Sec. 6.2.3 leads 
to the following convolution algorithm:

1. Generate Y1, Y2, . . . , Ys as IID geom(p) random variates.
2. Return X 5 Y1 1 Y2 1 . . . 1 Ys.

This is simple, but its execution time is proportional to s. For large s, consideration 
might be given to an alternative method discussed in Fishman (1978), which makes 
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use of a special relationship between the negative binomial, gamma, and Poisson 
distributions; its effi ciency depends on the ability to generate rapidly from the 
gamma and Poisson distributions. Other alternatives are discussed in Ahrens and 
Dieter (1974).

8.4.7 Poisson

Our algorithm for generating Poisson(l) random variates is based essentially on 
the  relationship between the Poisson(l) and expo(1yl) distributions stated in 
Sec. 6.2.3. The algorithm is as follows:

1. Let a 5 e2l, b 5 1, and i 5 0.
2. Generate Ui11 , U(0, 1) and replace b by bUi11. If b , a, return X 5 i. Other-

wise, go to step 3.
3. Replace i by i 1 1 and go back to step 2.

The algorithm is justifi ed by noting that X 5 i if and only if

 ^
i

j51

Yj # 1 , ^
i11

j51

Yj

where Yj 5 (21yl) ln Uj , expo(1yl) and the Yj’s are independent. That is, 
X 5 max{i: Oi

j51 Yj # 1}, so that X , Poisson(l) by the fi rst comment in the 
description of the Poisson distribution in Table 6.4.

Unfortunately, this algorithm becomes slow as l increases, since a large l 
means that a 5 e2l is smaller, requiring more executions of step 2 to bring the cu-
mulative product of the Ui11’s down under a. [In fact, since X is 1 less than the num-
ber of Ui11’s required, the expected number of executions of step 2 is E(X ) 1 1 5 
l 1 1, so that execution time grows with l in an essentially linear fashion.] One 
 alternative would be to use the alias method in concert with the composition ap-
proach (since the range of X is infi nite), as described in Sec. 8.4.3. Another possi-
bility would be the inverse-transform method with an effi cient search. Atkinson 
(1979b, 1979c) examined several such search procedures and reported that an 
 indexed search similar to the method of Chen and Asau (1974), discussed earlier 
in Sec. 8.3.16, performed well. (This search procedure, called PQM by Atkinson, 
 requires a small amount of setup and extra storage but is still quite simple to imple-
ment.) Other fast methods of generating Poisson variates are given by Devroye 
(1981) and by Schmeiser and Kachitvichyanukul (1981).

8.5 
GENERATING RANDOM VECTORS, CORRELATED RANDOM 
VARIATES, AND STOCHASTIC PROCESSES

So far in this chapter we have really considered generation of only a single random 
variate at a time from various univariate distributions. Applying one of these 
 algorithms repeatedly with independent sets of random numbers produces a 
 sequence of IID random variates from the desired distribution.
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In some simulation models, however, we may want to generate a random 
vector X 5 (X1, X2, . . . , Xd)

T from a specifi ed joint (or multivariate) distribution, 
where the individual components of the vector might not be independent. (AT de-
notes the transpose of a vector or matrix A.) Even if we cannot specify the exact, 
full joint distribution of X1, X2, . . . , Xd, we might want to generate them so that 
the individual Xi’s have specifi ed univariate distributions (called the marginal dis-
tributions of the Xi’s) and so that the correlations, rij, between Xi and Xj are spec-
ifi ed by the modeler. In Sec. 6.10 we discussed the need for modeling these 
situations, and in this section we give examples of methods for generating such 
correlated random variates and processes in some specifi c cases. There are several 
other problems related to generating correlated random variates that we do not 
 discuss explicitly, e.g., generating from a multivariate exponential distribution; 
we refer the reader to Johnson (1987), Johnson, Wang, and Ramberg (1984), 
 Fishman (1973a, 1978), Mitchell and Paulson (1979), Marshall and Olkin (1967), 
and  Devroye (1997).

8.5.1 Using Conditional Distributions

Suppose that we have a fully specified joint distribution function 
FX1, X2, . . . , Xd

(x1, x2, . . . , xd) from which we would like to generate a random vector 

X 5 (X1, X2, . . . , Xd)T. Also assume that for i 5 2, 3, . . . , d we can obtain the 
conditional distribution of Xi given that Xj 5 xj for j 5 1, 2, . . . , i 2 1; denote the 
conditional distribution function by Fi(xi 0 x1, x2, . . . , xi21). [See any probability text, 
such as Mood, Graybill, and Boes (1974, chap. IV) or Ross (2003, chap. 3) for a 
discussion of conditional distributions.] In addition, let FXi

(xi) be the marginal dis-
tribution function of Xi for i 5 1, 2, . . . , d. Then a general algorithm for generating 
a random vector X with joint distribution function FX1, X2, . . . , Xd

 is as follows:

1. Generate X1 with distribution function FX1
.

2. Generate X2 with distribution function F2(? 0  X1).
3. Generate X3 with distribution function F3(? 0  X1, X2).
 ?
 ?
 ?
d. Generate Xd with distribution function Fd(? 0  X1, X2, . . . , Xd21).
d 1 1. Return X 5 (X1, X2, . . . , Xd)T.

Note that in steps 2 through d the conditional distributions used are those with the 
previously generated Xi’s; for example, if x1 is the value generated for X1 in step 1, 
the conditional distribution function used in step 2 is F2(? 0  x1), etc. Proof of the va-
lidity of this algorithm relies on the defi nition of conditional distributions and is left 
to the reader.

As general as this approach may be, its practical utility is probably quite 
 limited. Not only is specifi cation of the entire joint distribution required, but 
also derivation of all the required marginal and conditional distributions must be 

Law01323_ch08_426-487.indd Page 471  10/29/13  9:08 PM f-494 Law01323_ch08_426-487.indd Page 471  10/29/13  9:08 PM f-494 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



472 generating random variates

carried out. Such a level of detail is probably rarely obtainable in a complicated 
simulation.

8.5.2 Multivariate Normal and Multivariate Lognormal

The d-dimensional multivariate normal distribution with mean vector m 5 
(m1, m2, . . . , md)T and covariance matrix S, where the (i, j)th entry is sij, has joint 
density function given in Sec. 6.10.1. Although the conditional-distribution ap-
proach of Sec. 8.5.1 can be applied, a simpler method due to Scheuer and Stoller 
(1962) is available, which uses a special property of the multivariate normal distri-
bution. Since S is symmetric and positive defi nite, we can factor it uniquely as S 5 
CCT (called the Cholesky decomposition), where the d 3 d matrix C is lower trian-
gular. Algorithms to compute C can be found in Fishman (1973a, p. 217), in Press 
et al. (2007, sec. 2.9), or among the IMSL routines [Rogue Wave (2013)]. If cij is the 
(i, j)th element of C, an algorithm for generating the desired multivariate normal 
vector X is as follows:

1. Generate Z1, Z2, . . . , Zd as IID N(0, 1) random variates.
2. For i 5 1, 2, . . . , d, let Xi 5 mi 1 Oi

j51cijZj and return X 5 (X1, X2, . . . , Xd)
T.

To accomplish the univariate normal generation in step 1, see Sec. 8.3.6. In matrix 
notation, if we let Z 5 (Z1, Z2, . . . , Zd)

T, the algorithm is just X 5 m 1 CZ; note 
the similarity with the transformation X9 5 m 1 sX for generating X9 , N(m, s2) 
given X , N(0, 1).

The multivariate lognormal random vector from Jones and Miller (1966) and 
Johnson and Ramberg (1978), as discussed in Sec. 6.10.1, can be represented as 
X 5 (eY1, eY2, . . . , eYd)T, where Y 5 (Y1, Y2, . . . , Yd)

T , Nd(m, S). This relation 
defi nes the vector generation algorithm:

1. Generate Y 5 (Y1, Y2, . . . , Yd)
T , Nd(m, S).

2. Return X 5 (eY1, eY2, . . . , eYd)T.

Note that m and S are not the mean vector and covariance matrix of the desired 
multivariate lognormal random vector X, but rather are the mean and covariance 
matrix of the corresponding multivariate normal random vector Y. Formulas for 
the expected values and variances of the Xi’s, as well as the covariances and corre-
lations  between them, were given by Eqs. (6.10) to (6.13) in Sec. 6.10.1, and 
are functions of and m and S, the mean vector and covariance matrix of the multi-
variate normal random vector Y. Thus, if we want to generate an observation from 
a lognormal random vector X with given mean vector m9 5 E(X) 5 (m91, m92, . . . , 
m9d)

T and given covariance matrix S9 with (i, j)th entry s9ij 5 Cov(Xi, Xj), we should 
solve for m and S in terms of m9 and S9 fi rst, before generating the intermediate 
multivariate normal random vector Y. The formulas are easily obtained with the ith 
element of m being

 mi 5 E(Yi) 5 lnq
m¿2

i

2m¿2
i 1 s¿2

i

r
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and the (i, j)th entry of S being

 sij 5 Cov(Yi, Yj) 5 lnq1 1
s¿ij
0m¿i m¿j 0 r

8.5.3 Correlated Gamma Random Variates

We now come to a case where we cannot write the entire joint distribution but only 
specify the marginal distributions (gamma) and the correlations between the com-
ponent random variables of the X vector. Indeed, there is not even agreement about 
what the “multivariate gamma” distribution should be. Unlike the multivariate nor-
mal case, specifi cation of the marginal distributions and the correlation matrix does 
not completely determine the joint distribution here.

The problem, then, is as follows. For a given set of shape parameters a1, 
a2, . . . , ad, scale parameters b1, b2, . . . , bd, and correlations rij (i 5 1, 2, . . . , d; 
j 5 1, 2, . . . , d), we want to generate a random vector X 5 (X1, X2, . . . , Xd)

T so that 
Xi , gamma(ai, bi) and Cor(Xi, Xj) 5 rij. An immediate diffi culty is that not all rij 
values between 21 and 11 are theoretically consistent with a given set of ai’s; that is, 
the ai’s place a limitation on the possible rij’s [see Schmeiser and Lal (1982)]. The next 
diffi culty is that, even for a set of ai’s and rij’s that are theoretically possible, there 
might not be an algorithm that will do the job. For this reason, we must be content 
with generating correlated gamma random variates in some restricted cases.

One situation in which there is a simple algorithm is the bivariate case, d 5 2. 
A further restriction is that r 5 r12 $ 0, that is, positive correlation, and yet another 
restriction is that r # min{a1, a2}y1a1 a2. Nevertheless, this does include many 
useful situations, especially when a1 and a2 are close together. (If a1 5 a2, the upper 
bound on r is removed.) Notice that any two positively correlated exponential random 
variates are included by setting a1 5 a2 5 1. The algorithm, using a general technique 
developed by Arnold (1967), relies on a special property of gamma distributions:

1. Generate Y1 , gamma(a1 2 r1a1 a2, 1).
2. Generate Y2 , gamma(a2 2 r1a1 a2, 1) independent of Y1.
3. Generate Y3 , gamma(r1a1 a2, 1) independent of Y1 and Y2.
4. Return X1 5 b1(Y1 1 Y3) and X2 5 b2(Y2 1 Y3).

This technique is known as trivariate reduction, since the three random variates Y1, 
Y2, and Y3 are “reduced” to the two fi nal random variates X1 and X2. Note that the 
algorithm does not control the joint distribution of X1 and X2; this point is addressed 
by Schmeiser and Lal (1982).

Correlated gamma random variates can also be generated in some less restrictive 
cases. Schmeiser and Lal (1982) give algorithms for generating bivariate gamma ran-
dom vectors with any theoretically possible correlation, either positive or negative. 
Ronning (1977) treats the general multivariate case (d $ 2) but again restricts consid-
eration to certain positive correlations. Lewis (1983) gives a method for generating 
negatively correlated gamma variates that have the same shape and scale parameters.
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8.5.4 Generating from Multivariate Families

Multivariate versions of the Johnson translation system, discussed in Sec. 6.10.1, 
can be generated by inverse-transform methods given by Stanfi eld et al. (1996). The 
generated vectors will then match the empirical marginal moments from the sample 
data, and will have correlations between the coordinates that are close to their sam-
ple counterparts as long as the marginal distributions are not heavily skewed.

As mentioned in Sec. 6.10.1, Bézier distributions have been generalized to the 
bivariate case. Wagner and Wilson (1995) give algorithms for generating samples 
from the corresponding random vectors based on the conditional-distribution 
method of Sec. 8.5.1. Extension of Bézier distributions to three or more dimensions 
is described by Wagner and Wilson (1995) as “feasible but cumbersome.” Further 
results and methods concerning bivariate Bézier distributions can be found in Wagner 
and Wilson (1996a).

8.5.5 Generating Random Vectors with Arbitrarily Specifi ed 
Marginal Distributions and Correlations

In Sec. 6.10.2 we noted the need to model some input random variables as a random 
vector with fairly arbitrary marginal distributions and correlation structure, rather 
than specifying and controlling their entire joint distribution as a member of some 
multivariate parametric family like normal, lognormal, Johnson, or Bézier. The in-
dividual marginal distributions need not be members of the same parametric family; 
we may even want to specify them to be of different types—continuous, discrete, or 
mixed. The only constraint is that the correlation structure between them be inter-
nally consistent with the form and parameters of the marginal distributions, as dis-
cussed by Whitt (1976), i.e., that the correlation structure specifi ed be feasible. The 
modeling fl exibility and marginal-distribution-fi tting ease of such a setup has obvi-
ous appeal, but the question then becomes how to generate observations on random 
variables with such arbitrary specifi ed marginals and correlations. In the remainder 
of this subsection, we mention two methods that address this issue.

Hill and Reilly (1994) describe a technique applicable when the marginal dis-
tributions are either all discrete or all continuous, involving composition (or random 
mixing) of distributions known to exhibit the most extreme feasible correlations to 
achieve the fi nal correlation structure desired. They present specifi c examples 
through dimension d 5 3 when the marginal distributions are uniform, exponential, 
and discrete uniform.

Cario et al. (2002) develop a method called normal to anything (NORTA). In 
this approach, we transform a multivariate normal random vector to one having a 
specifi ed set of marginal distributions (including the case where some marginals are 
continuous, others are discrete, and still others are mixed continuous-discrete) and 
any feasible correlation structure. Let Fi denote the ith of the d marginal distribu-
tion functions desired for the fi nal generated vector X 5 (X1, X2, . . . , Xd)

T, and 
let rij(X) 5 Cor(Xi, Xj) be the desired correlations between the components of X. 
Initially, a standard multivariate normal random vector Z 5 (Z1, Z2, . . . , Zd)

T is 
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generated (see Sec. 8.5.2) with Zi , N(0, 1) and correlations rij(Z) 5 Cor(Zi, Zj); 
specifi cation of the rij(Z)’s is discussed below. Letting F denote the N(0, 1) distribu-
tion function, the ith component of X is then generated as Xi 5 Fi

21[F(Zi)]. Since 
F(Zi) , U(0, 1) [by a basic result known as the probability integral transform, as 
discussed by Mood, Graybill, and Boes (1974, pp. 202–203), for instance], it is clear 
that Xi will have the desired marginal distribution Fi by the validity of the inverse-
transform method for variate generation. The main task in NORTA generation, then, 
is to fi nd the correlations rij(Z) between the Zi’s that induce the desired correlations 
rij(X) between the generated Xi’s. Cario et al. (2002) give numerical methods for 
doing so in general, and indicate that these methods are fairly effi cient [see also 
Chen (2001)]. Also, the N(0, 1) distribution function F would need to be evaluated 
numerically, but there are effi cient methods for doing this to high accuracy; see, 
e.g., chap. 26 of Abramowitz and Stegun (1964). Finally, evaluating the inverse 
distribution function Fi

21 could, depending on its form, require a numerical method 
or search. Thus, NORTA vector generation does require some internal numerical-
method computation, though in most cases the burden should not be too great, 
 particularly in comparison with the work involved in a large, complex dynamic 
simulation. On the other hand, the benefi t of NORTA vector generation is its gener-
ality and fl exibility within a single framework.

Ghosh and Henderson (2002) show that there are sets of marginal distributions 
with feasible correlation matrix for d $ 3 that the NORTA method cannot generate. 
In such cases, they show how to modify the initialization phase of the NORTA 
method so that it will exactly match the marginals and approximately match the 
desired correlations [see also Ghosh and Henderson (2003, 2009)].

8.5.6 Generating Stochastic Processes

As mentioned in Sec. 6.10.3, some applications require that we generate observa-
tions of the “same” random variable as it is observed through time. For example, we 
might want to generate a sequence of processing times of parts on a machine, or the 
sizes of incoming messages in a telecommunications system. If the observations of 
this random variable are assumed to be IID, we just repeatedly sample independently 
from the appropriate univariate distribution, as discussed in Secs. 8.1 through 8.4.

But if there is some kind of dependence between successive observations (or 
between observations spaced more than a single time lag apart), this method will 
not account for correlation to the possible detriment of model validity; see Livny 
et al. (1993), for example. In parallel to our discussion in Sec. 6.10.3 of specifying 
and fi tting input stochastic processes, we discuss in this subsection how such pro-
cesses can be generated for a simulation.

AR and ARMA Processes

Autoregressive (AR) and autoregressive moving-average (ARMA) models are 
generated quite obviously from their very defi nition, given for the case of an AR(p) 
process in Eq. (6.14) of Sec. 6.10.3. The process must be initialized in a specifi c 
way to obtain stationarity; see Box et al. (2008) for complete details. Thus, to generate 
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an AR(p) process, the defi ning recursion in Eq. (6.14) is simply implemented mecha-
nistically, and generation of the normally distributed ei’s proceeds by any method from 
Sec. 8.3.6. The autocorrelation structure of the generated process is implied by the 
weighting parameters in the recursion. The marginal distribution of the Xi’s is nor-
mal, which limits direct application of these processes as simulation input models.

Gamma Processes

Lewis et al. (1989) discuss generation from these processes, including exponen-
tial autoregressive (EAR) processes. As mentioned in Sec. 6.10.3, the result is an 
autocorrelated process with gamma marginals, and an autoregressive-type recursive 
defi nition and generation procedure.

ARTA Processes

Autoregressive-to-anything (ARTA) processes, developed by Cario and Nelson 
(1996, 1998) and described in Sec. 6.10.3, allow the modeler to achieve any desired 
stationary marginal distribution for the generated process, as well as the desired 
autocorrelation structure out to any specifi ed lag p. The generation of a specifi ed 
ARTA process proceeds by generating a stationary AR(p) base process {Zi} with 
N(0, 1) marginals, and then transforming it to the desired {Xi} input process via 
Eq. (6.15) in Sec. 6.10.3. As mentioned there, the autocorrelation of the base {Zi} 
process is determined so that, after the transformation in Eq. (6.15), the autocorrela-
tion structure of {Xi} is as desired. The methodology for this is  developed in Cario 
and Nelson (1996), and software for both specifi cation and generation is discussed 
in Cario and Nelson (1998).

VARTA Processes

Vector-autoregressive-to-anything (VARTA) processes, which were developed by 
Biller and Nelson (2003) and described in Sec. 6.10.3, provide a methodology for 
modeling and generating stationary multivariate stochastic processes {X1, X2, . . . }.

8.6 
GENERATING ARRIVAL PROCESSES

In this section, we show how to generate the times of arrival t1, t2, . . . for the arrival 
processes discussed in Sec. 6.12.

8.6.1 Poisson Processes

The (stationary) Poisson process with rate l . 0, discussed in Sec. 6.12.1, has the 
property that the interarrival times Ai 5 ti 2 ti21 (where i 5 1, 2, . . .) are IID expo-
nential random variables with common mean 1yl. Thus, we can generate the ti’s 
recursively as follows (assume that ti21 has been determined and we want to gener-
ate the next arrival time ti):

1. Generate U , U(0, 1) independent of any previous random variates.
2. Return ti 5 ti21 2 (1yl) ln U.
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The recursion starts by computing t1 (recall that t0 5 0).
This algorithm can be easily modifi ed to generate any arrival process where the 

interarrival times are IID random variables, whether or not they are exponential. 
Step 2 would just add an independently generated interarrival time to ti21 in order 
to get ti; the form of step 2 as given above is simply a special case for exponential 
interarrival times.

8.6.2 Nonstationary Poisson Processes

We now discuss how to generate arrival times that follow a nonstationary Poisson 
process (see Sec. 6.12.2).

It is tempting to modify the algorithm of Sec. 8.6.1 to generate ti given ti21 by 
substituting l(ti21) in step 2 for l. However, this would be incorrect, as can be seen 
from Fig. 8.15. (This fi gure might represent traffi c arrival rates at an intersection 
over a 24-hour day.) If ti21 5 5, for example, this erroneous “algorithm” would 
tend to generate a large interarrival time before ti, since l(5) is low compared with 
l(t) for t between 6 and 9. Thus, we would miss this upcoming rise in the arrival 
rate and would not generate the high traffi c density associated with the morning 
rush; indeed, if ti turned out to be 11, we would miss the morning rush altogether. 
Kaminsky and Rumpf (1977) illustrate the danger in using other more sophisticated 
approximations.

Care must be taken, then, to generate a nonstationary Poisson process in a valid 
way. A general and simple method proposed by Lewis and Shedler (1979), known 
as thinning, can be used. We present a special case of the thinning algorithm that 
works when l* 5 max

t
{l(t)} is fi nite. Briefl y, we generate a stationary Poisson

process with constant rate l* and arrival times {ti*} (using, for example, the algo-
rithm of Sec. 8.6.1), then “thin out” the ti*’s by throwing away (rejecting) each ti* as 
an arrival with probability 1 2 l(ti*)yl*. Thus, we are more likely to accept ti* as an 
arrival if l(ti*) is high, yielding the desired property that arrivals will occur more 
frequently in intervals for which l(t) is high. An equivalent algorithm, in a more 

t0 6 12 18 24

�*

�*

�(t)

FIGURE 8.15
Nonstationary Poisson process.
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478 generating random variates

convenient recursive form, is as follows (again we assume that ti21 has been validly 
generated and we want to generate the next arrival time ti):

1. Set t 5 ti21.
2. Generate U1 and U2 as IID U(0, 1) independent of any previous random variates.
3. Replace t by t 2 (1yl*) ln U1.
4. If U2 # l(t)yl*, return ti 5 t. Otherwise, go back to step 2.

(Once again the algorithm is started by computing t1.) If the evaluation of l(t) is 
slow [which might be the case if, for example, l(t) is a complicated function involv-
ing exponential and trigonometric calculations], computation time might be saved 
in step 4 by adding an acceptance pretest; i.e., the current value for t is automatically 
accepted as the next arrival time if U2 # l*yl*, where l* 5 min

t
{l(t)}. This would 

be useful especially when l(t) is fairly fl at.

E X A M P L E  8 . 1 4 .  Recall Example 6.26, where l(t) was specifi ed empirically from 
data to be the piecewise-constant function plotted in Fig. 6.57. This rate function is plot-
ted again in Fig. 8.16, along with l* 5 0.09 and l* 5 0.84 as indicated. Values of {ti*} 
from the stationary Poisson process at rate l* were generated (using stream 3 of the 
random-number generator in App. 7A), and are marked by the crosses on the l* line; 
these indeed appear to be distributed uniformly along the line, as would be expected 
(see Poisson Process Tests in Sec. 6.6). The ti*’s were then thinned out, as specifi ed 
by the algorithm, and the “accepted” arrivals are marked with crosses on the t axis. 
As desired, these actual arrivals are few and far between when l(t) is low (e.g., between 

11:00 12:00 1:00
0

0.5

�*

�*

�(t)

t
XX XX

XX XXXXXXXXXXXXXXXXXXXXX XXXXXXXX XXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX XX XX XXX XXX X XXX XXXXXXX

X X X XXXX X XXXX XXXX X X X XX XX

FIGURE 8.16
Generating a nonstationary Poisson process by thinning.
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11:30 and 11:50), since most of the ti*’s were thinned out. On the other hand, most ti*’s 
were retained as actual arrivals during peak arrival periods (e.g., from 12:00 to 12:20). 
Note the similarity between Fig. 8.16 and Fig. 8.9, which exemplifi es another “thinning” 
idea, the acceptance-rejection method for random-variate generation.

Although the thinning algorithm is simple, it might be ineffi cient in some cases. 
For example, if l(t) is relatively low except for a few high and narrow peaks, l* will 
be a lot larger than l(t) most of the time, resulting in thinning out most of the ti*’s. 
In such cases, a more general thinning algorithm with a nonconstant l* curve could 
be used [see Lewis and Shedler (1979)].

There is a different and older method, treated, for example, by Çinlar (1975, 
pp. 94–101), and is the analog of the inverse-transform method of random-variate 
generation, just as the thinning algorithm is analogous to the acceptance-rejection 
method for variate generation. Recall from Sec. 6.12.2 that the expectation function is

 L(t) 5 #
t

 0
 l(y) dy

which will always be a continuous function of t, since it is an indefi nite integral; 
L(t) is the expected number of arrivals between time 0 and time t. Then a nonsta-
tionary Poisson process with expectation function L can be generated by fi rst gen-
erating Poisson arrival times {t9i} at rate 1, and then setting ti 5 L21(t9i ), where L21 
is the inverse of the function L. Note that all of the rate 1 arrival times t9i are used, 
in contrast with the thinning method. A recursive version of this algorithm is

1. Generate U , U(0, 1).
2. Set t9i 5 t9i21 2 ln U.
3. Return ti 5 L21(t9i ).

E X A M P L E  8 . 1 5 .  Figure 8.17a plots the expectation function L(t) corresponding to the 
rate function l(t) from Fig. 8.16; for comparison purposes, l(t) is redrawn in Fig. 8.17b. 
Note that L(t) is piecewise linear, since l(t) was specifi ed to be piecewise constant. 
Also, L(t) rises most steeply for those values of t where l(t) is highest, i.e., where 
arrivals should occur rapidly. The times t9i for the stationary rate 1 Poisson process are 
plotted on the vertical axis of the plot for L(t), and do appear to be fairly uniformly 
spread. Following the dashed lines across to L(t) and down (i.e., taking L21 of the t9i’s) 
leads to the actual arrival times ti, marked on the t axis of the plot. The concentration of 
the ti’s where l(t) is high [and L(t) is steep, thus “catching” many t9i’s] seems evident, 
such as between 12:00 and 12:20, and the spreading out of the ti’s during the low-arrival 
period of 11:30 to 11:50 is also clear. Thus, applying L21 to the uniformly spread t9i’s on 
the vertical axis has the effect of deforming their uniformity to agree with the nonsta-
tionarity of the arrival process, just as applying F21 to the uniform U’s in the inverse-
transform variate-generation algorithm deformed them to agree with the density f. 
Indeed, there is a strong similarity between Figs. 8.17 and 8.3.

This second algorithm for generating a nonstationary Poisson process does, 
however, require inversion of L, which could be diffi cult. (In Example 8.15, this 
could be accomplished easily by a short search and linear interpolation, since L was 
piecewise linear.) This must be traded off against the “wasting” of generated ti*’s in 
the thinning algorithm, which can become particularly ineffi cient if the rate function 
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480 generating random variates

FIGURE 8.17
Generating a nonstationary Poisson process by inverting the 
expectation function: (a) L(t) and generated arrival times; (b) l(t).
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l(t) has one or more tall narrow spikes. For more on comparison of these and other 
methods, see Lewis and Shedler (1979).

Finally, we note that it is sometimes possible to exploit some special feature of the 
rate function l(t) or cumulative rate function L(t) to achieve an effi cient algorithm. 
This is the case for some of the specifi c estimation methods referenced at the end of 
Sec. 6.12.2, and the interested reader is referred to the original papers for details.

8.6.3 Batch Arrivals

Consider an arrival process where the ith batch of customers arrives at time ti and 
the number of customers in this batch is a discrete random variable Bi. Assume that 
the Bi’s are IID and, in addition, are independent of the ti’s. Then a general recursive 
algorithm for generating this arrival process is as follows:

1. Generate the next arrival time ti.
2. Generate the discrete random variate Bi independently of any previous Bj’s and 

also independently of t1, t2, . . . , ti.
3. Return the information that Bi customers are arriving at time ti.

Note that the arrival times {ti} are arbitrary; in particular, they could be from a non-
stationary Poisson process.

APPENDIX 8A 
VALIDITY OF THE ACCEPTANCE-REJECTION METHOD

We demonstrate here that the acceptance-rejection method for continuous random 
variables (Sec. 8.2.4) is valid by showing that for any x, P(X # x) 5 ex

2`  f(y)dy.
Let A denote the event that acceptance occurs in step 3 of the algorithm. Now X 

is defi ned only on the event (or set) A, which is a subset of the entire space on which 
Y and U (of steps 1 and 2) are defi ned. Thus, unconditional probability statements 
about X alone are really conditional probability statements (conditioned on A) about 
Y and U. Since, given that A occurs we have X 5 Y, we can write

 P(X # x) 5 P(Y # x Z A) (8.2)

We shall evaluate the right side of Eq. (8.2) directly.
By the defi nition of conditional probability,

 P(Y # x Z A) 5
P(A, Y # x)

P(A)
 (8.3)

We shall solve explicitly for the two probabilities on the right side of Eq. (8.3). To 
do this, it will be convenient fi rst to note that for any y,

 P(A Z Y 5 y) 5 P cU #
f( y)

t( y)
d 5

f( y)

t( y)
 (8.4)
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482 generating random variates

where the fi rst equality follows since U is independent of Y and the second equality 
since U , U(0, 1) and f(y) # t(y).

We now use Eq. (8.4) to show that

  P(A, Y # x) 5 #
x

2`
 P(A, Y # x Z Y 5 y)r(y) dy

  5 #
x

2`
 P(A Z Y 5 y) 

t(y)
c

 dy

  5
1
c #

x

2`
 f(y) dy  (8.5)

Next, we note that P(A) 5 e`
2`

P(A Z Y 5 y)r( y) dy 5 1yc [by Eq. (8.4) and the 
fact that f is a density, so integrates to 1]. This, together with Eqs. (8.5), (8.3), and 
(8.2), yields the desired result.

APPENDIX 8B 
SETUP FOR THE ALIAS METHOD

There are at least two different algorithms for computing the cutoff values Fi and the 
aliases Li in the setup for the alias method in Sec. 8.4.3; they do not in general lead 
to the same sets of cutoff values and aliases for a given distribution, but both will 
be valid. Originally, Walker (1977) gave the following algorithm in an explicit 
FORTRAN program:

1. Set Li 5 i, Fi 5 0, and bi 5 p(i) 2 1y(n 1 1), for i 5 0, 1, . . . , n.
2. For i 5 0, 1, . . . , n, do the following steps:

a. Let c 5 min{b0, b1, . . . , bn} and let k be the index of this minimal bj. (Ties 
can be broken arbitrarily.)

b. Let d 5 max{b0, b1, . . . , bn} and let m be the index of this maximal bj. (Ties 
can be broken arbitrarily.)

c. If gn
j50 Z bj 

Z , P, stop the algorithm.
d. Let Lk 5 m, Fk 5 l 1 c(n 1 l), bk 5 0, and bm 5 c 1 d.

Note that if the condition in step 2c is satisfi ed at some point, the rest of the range of i 
in step 2 will not be completed. This condition in step 2c should theoretically be for 
equality of the summation to 0, but insisting on this could cause numerical diffi culties 
in fl oating-point arithmetic; in the above, P is a small positive number such as 1025.

While the above algorithm is easy to implement in any programming language, 
Kronmal and Peterson (1979) gave a more effi cient algorithm using set operations:

1. Set Fi 5 (n 1 1) p(i) for i 5 0, 1, . . . , n.
2. Defi ne the sets G 5 {i: Fi $ 1} and S 5 {i: Fi , 1}.
3. Do the following steps until S becomes empty:

a. Remove an element k from G and remove an element m from S.
b. Set Lm 5 k and replace Fk by Fk 2 1 1 Fm.
c. If Fk , 1, put k into S; otherwise, put k back into G.
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This algorithm will leave at least one Li undefi ned, but the corresponding Fi values 
will be equal to 1, so these aliases will never be used in the variate-generation 
 algorithm. Implementing the sets G and S in this second algorithm could be accom-
plished in many ways, such as a simple push/pop stack or by using a linked-list 
structure as discussed in Chap. 2.

The second algorithm is more effi cient, since in the fi rst algorithm steps 2a and 
2b each require a search of n 1 1 elements, while no such search is required in the 
second algorithm; this could be important if n is large. However, we should note that 
numerical diffi culties can occur in the second algorithm if the p(i)’s do not sum ex-
actly to 1; this could occur if, for instance, the p(i)’s are proportions corresponding 
to frequency counts from data, complete with roundoff error. We experienced fail-
ure of the second algorithm (using several different set implementations) when the 
sum of the p(i)’s differed from 1 by as little as 1025.

PROBLEMS

 8.1. Give algorithms for generating random variates with the following densities:
(a) Cauchy

f(x) 5 epb c 1 1 a
x 2 g

b
b

2

d f
21

  where 2` , g , `, b . 0,
    2` , x , `

(b) Gumbel (or extreme value)

f(x) 5
1

b
 exp c2e2(x2g)yb 2

x 2 g

b
d   where 2` , g , `, b . 0,

    2` , x , `

(c) Logistic

f(x) 5
(1yb)e2(x2g)yb

[1 1 e2(x2g)yb]2
  where 2` , g , `, b . 0, 2` , x , `

(d) Pareto

f(x) 5
a2c

a2

x  

a211  where c . 0, a2 . 0, x . c

 For g 5 0 and b 5 1 in each of (a), (b), and (c), use your algorithms to generate IID 
random variates X1, X2, . . . , X5000 and write out X(n) 5 gn

i51 Xiyn for n 5 50, 100, 
150, . . . , 5000 to verify empirically the strong law of large numbers (Sec. 4.6), i.e., 
that X(n) converges to E(Xi) (if it exists); do the same for (d) with c 5 1 and a2 5 2.

 8.2. Let X be discrete with probability mass function p(1) 5 0.05, p(2) 5 0.05, p(3) 5 
0.1, p(4) 5 0.1, p(5) 5 0.6, and p(6) 5 0.1, and for i 5 1, 2, . . . , 6, let q(i) 5 
p(1) 1 p(2) 1 . . . 1 p(i). Convince yourself that the following algorithm is explicitly 
the discrete inverse-transform method with a simple left-to-right search:

1. Generate U , U(0, 1) and set i 5 1.
2. If U # q(i), return X 5 i. Otherwise, go to step 3.
3. Replace i by i 1 1 and go back to step 2.
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484 generating random variates

 Let N be the number of times step 2 is executed (so that N is also the number of compari-
sons). Show that N has the same distribution as X, so E(N) 5 E(X) 5 4.45. This algorithm 
can be represented as in Fig. 8.18a, where the circled numbers are the values to which X 
is set if U falls in the interval directly below them and the search is left-to-right.

  Alternatively, we could fi rst sort the p(i)’s into decreasing order and form a coding 
vector i9(i), as follows. Let q9(1) 5 0.6, q9(2) 5 0.7, q9(3) 5 0.8, q9(4) 5 0.9, q9(5) 5 
0.95, and q9(6) 5 1; also let i9(l) 5 5, i9(2) 5 3, i9(3) 5 4, i9(4) 5 6, i9(5) 5 1, and 
i9(6) 5 2. Show that the following algorithm is valid:

19. Generate U , U(0, 1) and set i 5 1.
29. If U # q9(i), return X 5 i9(i). Otherwise, go to step 39.
39. Replace i by i 1 1 and go back to step 29.

 If N9 is the number of comparisons for this second algorithm, show that E(N9) 5 2.05, 
which is less than half of E(N). This saving in marginal execution time will depend on the 
particular distribution and must be weighed against the extra setup time and storage 
for the coding vector i9(i). This second algorithm can be represented as in Fig. 8.18b.

 8.3. Recall the truncated distribution function F* and the algorithm for generating from it, 
as given in Sec. 8.2.1.
(a) Show that the algorithm stated in Sec. 8.2.1 is valid when F is continuous and 

strictly increasing.
(b) Show that the following algorithm is also valid for generating X with distribution 

function F* (assume again that F is continuous and strictly increasing):

 1. Generate U , U(0, 1).
 2. If F(a) # U # F(b), return X 5 F21(U). Otherwise, go back to step 1.

Which algorithm do you think is “better”? In what sense? Under what conditions?

 8.4. A truncation of a distribution function F can be defi ned differently from the F* of 
Sec. 8.2.1. Again for a , b, defi ne the distribution function

F̃(x) 5 •

0

F(x)

1

  

if x , a

if a # x , b

if b # x

 Find a method for generating from the distribution function F̃, assuming that we already 
have a method for generating from F. Demonstrate the validity of your algorithm.

1

16435 2

0 0.1 0.2 0.3 0.9 10.05

2 3 4 5 6

(a)

(b)
10.950.90.80.70.60

FIGURE 8.18
Representation of the two algorithms in Prob. 8.2.
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 8.5. Show that the algorithm in Sec. 8.2.1 for generating the ith order statistic is valid when 
F is strictly increasing. [Hint: Use the fact that if U1, U2, . . . , Un are IID U(0, l), 
then U(i) , beta(i, n 2 i 1 1).] Verify directly that for i 5 l and i 5 n it is valid to let 
V 5 1 2 U1yn and V 5 U1yn, respectively.

 8.6. Derive the inverse-transform algorithm for the double-exponential distribution of 
Example 8.3, and compare it with the composition algorithm as given in the example. 
Which would you prefer?

 8.7. For a , b, the right-triangular distribution has density function

fR(x) 5 •
2(x 2 a)

(b 2 a)2

0
  

if a # x # b

otherwise

 and the left-triangular distribution has density function

fL(x) 5 •
2(b 2 x)

(b 2 a)2

0
  

if a # x # b

otherwise

 These distributions are denoted by RT(a, b) and LT(a, b), respectively.
(a) Show that if X , RT(0, 1), then X9 5 a 1 (b 2 a)X , RT(a, b); verify the same 

 relation between LT(0, 1) and LT(a, b). Thus it is suffi cient to generate from 
RT(0, 1) and LT(0, 1).

(b) Show that if X , RT(0, 1), then 1 2 X , LT(0, 1). Thus it is enough to restrict our 
attention further to generating from RT(0, 1).

(c) Derive the inverse-transform algorithm for generating from RT(0, l). Despite the 
result in (b), also derive the inverse-transform algorithm for generating directly 
from LT(0, l).

(d) As an alternative to the inverse-transform method, show that if U1 and U2 are IID 
U(0, 1) random variables, then max{U1, U2} , RT(0, 1). Do you think that this is 
better than the inverse-transform method? In what sense? (See Example 8.4.)

 8.8. In each of the following cases, give an algorithm that uses exactly one random number 
for generating a random variate with the same distribution as X.
(a) X 5 min{U1, U2}, where U1 and U2 are IID U(0, 1).
(b) X 5 max{U1, U2}, where U1 and U2 are IID U(0, 1).
(c) X 5 min{Y1, Y2}, where Y1 and Y2 are IID exponential with common mean b.

 Compare (a) and (b) with Prob. 8.7. Compare your one-U algorithms in (a) through (c) 
with the direct ones of actually generating the Ui’s or Yi’s and then taking the mini-
mum or maximum.

 8.9. The general acceptance-rejection method of Sec. 8.2.4 has the following discrete analog. 
Let X be discrete with probability mass function p(xi) for i 5 0, 61, 62, . . . , let the 

 majorizing function be t(xi) $ p(xi) for all i, let c 5 g`
i52` t(xi), and let r(xi) 5 t(xi)yc 

for i 5 0, 61, 62, . . . .

19. Generate Y having probability mass function r.
29. Generate U , U(0, 1), independent of Y.
39. If U # p(Y )yt(Y ), return X 5 Y. Otherwise, go back to step 19 and try again.
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486 generating random variates

 Show that this algorithm is valid by following steps similar to those in App. 8A. What 
considerations are important in choosing the function t(xi)?

8.10. For the general acceptance-rejection method (either continuous, as in Sec. 8.2.4, or 
discrete, as in Prob. 8.9) fi nd the distribution of the number of (Y, U) pairs that are 
rejected before acceptance occurs. What is the expected number of rejections?

8.11. Give inverse-transform, composition, and acceptance-rejection algorithms for gener-
ating from each of the following densities. Discuss which algorithm is preferable for 
each density. (First plot the densities.)
(a) 

  
f(x) 5 •

3x  

2

2

0
  

if 21 # x # 1

otherwise

(b) For 0 , a , 12,

  f (x) 5

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

0

x

a(1 2 a)

1

1 2 a

1 2 x

a(1 2 a)

0

  

if x # 0

if 0 # x # a

if a # x # 1 2 a

if 1 2 a # x # 1

if 1 # x

8.12. Recall the polar method of Sec. 8.3.6 for generating N(0, 1) random variates. Show 
that the probability of “acceptance” of W in step 2 is py4, and fi nd the distribution 
of the number of “rejections” of W before “acceptance” fi nally occurs. What is the 
expected number of executions of step 1?

8.13. Give a composition algorithm for generating from the triang(0, 1, m) distribution 
(0 , m , 1) of Sec. 8.3.15. Compare it with the inverse-transform algorithm in 
Sec. 8.3.15. (Hint: See Prob. 8.7.)

8.14. (a)  Demonstrate the validity of the algorithm given in Sec. 8.4.5 for generating from 
the geom(p) distribution. (Hint: For a real number x and an integer i, :x ; 5 i if 
and only if i # x , i 1 1.) Also verify (with 1 2 U in place of U) that this is the 
inverse-transform algorithm.

(b) Show that the following algorithm is also valid for generating X , geom( p):

1. Let i 5 0.
2. Generate U , U(0, 1) independent of any previously generated U(0, 1) ran-

dom variates.
3. If U # p, return X 5 i. Otherwise, replace i by i 1 1 and go back to step 2.

 Note that if p is large (close to 1), this algorithm is an attractive alternative to the one 
given in Sec. 8.4.5, since no logarithms are required and early termination is likely.

8.15. Recall the shifted exponential, gamma, Weibull, lognormal, Pearson types V and VI, 
and log-logistic distributions discussed in Sec. 6.8. Assuming the ability to generate 
random variates from the original (unshifted) versions of these distributions, give a 
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general algorithm for generating random variates from the shifted versions. (Assume 
that the shift parameter g is specifi ed.)

8.16. Give an explicit algorithm for generating a variate Y from the density r(x) in Example 
8.7; r(x) is plotted in Fig. 8.12. (See also Prob. 8.7.)

8.17. The alias method, as stated in Sec. 8.4.3, requires generating at least two U(0, 1) ran-
dom numbers—one to generate I in step 1 and the other to determine whether I or its 
alias is returned in step 2. Show that the following version of the alias method, which 
requires only one random number, is also valid:

1. Generate U , U(0, 1).
2. Let V 5 (n 1 1)U, I 5 :V ; , and U9 5 V 2 I.
3. If U9 # FI, return X 5 I. Otherwise, return X 5 LI.

 [Hint: What is the joint distribution of I and U9? Although this “trick” does reduce the 
number of random numbers generated, it is probably not a good idea, since it depends 
on the low-order (least signifi cant) bits of V 2 I being “random,” which may be doubt-
ful for many (pseudo) random-number generators.]

8.18. The setup algorithms in App. 8B for the alias method produce cutoff values Fi that could 
actually be equal to 1; this will occur for at least one i if the second algorithm is used.
(a) Find a way to alter the cutoff and alias values so that every Fi will be strictly less 

than 1.
(b) With the Fi’s all being strictly less than 1, fi nd a way to reduce the storage require-

ments from 2(n 1 1) to n 1 1 by combining the Li and Fi arrays into a single array 
of length n 1 1. Restate the alias algorithm from Sec. 8.4.3 so that it works with 
this one-array method of holding the aliases and cutoff values.

8.19. For the ratio-of-uniforms method, show that the formulas for u(z) and v(z) in Eq. (8.1) 
are correct.

8.20. Show that the acceptance region S in Example 8.8 is bounded above and below by the 
curves v 5 u and v 5 u2, respectively.

8.21. Develop a majorizing region T that is closer in shape to the acceptance region S for 
Example 8.8. What is syt? Give an algorithm for generating points uniformly in T.

8.22. Develop a ratio-of-uniforms algorithm for the standard normal distribution. Draw the 
acceptance region S. What is syt?

8.23. The standard Kumaraswamy distribution has the following density function

f (x) 5 a1a2x  

a121(1 2 x  

a1)a221 
 

for 0 , x , 1

 where a1 . 0 and a2 . 0 are shape parameters. Develop an algorithm for generating 
random variates from this distribution.
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C H A P T E R  9

Output Data Analysis 
for a Single System

Recommended sections for a fi rst reading: 9.1 through 9.3, 9.4.1, 9.4.3, 9.5.1, 
9.5.2, 9.8

9.1 
INTRODUCTION

In many simulation studies a great deal of time and money is spent on model devel-
opment and “programming,” but little effort is made to analyze the simulation out-
put data appropriately. As a matter of fact, a common mode of operation is to make 
a single simulation run of somewhat arbitrary length and then to treat the resulting 
simulation estimates as the “true” model characteristics. Since random samples 
from probability distributions are typically used to drive a simulation model through 
time, these estimates are just particular realizations of random variables that may 
have large variances. As a result, these estimates could, in a particular simulation 
run, differ greatly from the corresponding true characteristics for the model. The net 
effect is, of course, that there could be a signifi cant probability of making erroneous 
inferences about the system under study.

Historically, there are several reasons why output data analyses have not been 
conducted in an appropriate manner. First, some users have the unfortunate im-
pression that simulation is largely an exercise in computer programming, albeit a 
complicated one. Consequently some simulation “studies” begin with construction 
of an assumptions document (see Sec. 5.4.3) and subsequent “programming,” and 
end with a single run of the simulation to produce the “answers.” In fact, however, 
a simulation is a computer-based statistical sampling experiment. Thus if the results 
of a simulation study are to have any meaning, appropriate statistical techniques 
must be used to design and analyze the simulation experiments. A second reason for 
inadequate statistical analyses is that the output processes of virtually all simulations 
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are nonstationary and autocorrelated (see Sec. 5.6). Thus, classical statistical tech-
niques based on IID observations are not directly applicable. At present, there are 
still several output-analysis problems for which there is no completely accepted 
solution, and the methods that are available are often complicated to apply (see, for 
example, Sec. 9.5.4). Another impediment to obtaining precise estimates of a model’s 
true parameters or characteristics is the computer time needed to collect the neces-
sary amount of simulation output data. This diffi culty often occurs in the simulation 
of large-scale military problems or high-speed communications networks.

We now describe more precisely the random nature of simulation output. Let Y1, 
Y2, . . . be an output stochastic process (see Sec. 4.3) from a single simulation run. 
For example, Yi might be the throughput (production) in the ith hour for a manufac-
turing system. The Yi’s are random variables that will, in general, be neither indepen-
dent nor identically distributed. Thus, most of the formulas of Chap. 4, which assume 
independence [e.g., the confi dence interval given by (4.12)], do not apply directly.

Let y11, y12, . . . , y1m be a realization of the random variables Y1, Y2, . . . , Ym result-
ing from making a simulation run of length m observations using the random numbers 
u11, u12, . . . . (The ith random number used in the jth run is denoted uji.) If we run 
the simulation with a different set of random numbers u21, u22, . . . , then we will 
obtain a different realization y21, y22, . . . , y2m of the random variables Y1, Y2, . . . , Ym. 
(The two realizations are not the same since the different random numbers used in 
the two runs produce different samples from the input probability distributions.) In 
general, suppose that we make n independent replications (runs) of the simulation 
(i.e., different random numbers are used for each replication, the statistical counters 
are reset at the beginning of each replication, and each replication uses the same 
initial conditions; see Sec. 9.4.3) of length m, resulting in the observations:

 y11, . . . , y1i, . . . , y1m

 y21, . . . , y2i, . . . , y2m . . . . . . . . .
 yn1, . . . , yni, . . . , ynm

The observations from a particular replication (row) are clearly not IID. However, 
note that y1i, y2i, . . . , yni (from the ith column) are IID observations of the random 
variable Yi, for i 5 1, 2, . . . , m. This independence across runs (see Prob. 9.1) is the 
key to the relatively simple output-data-analysis methods described in later sections 
of this chapter. Then, roughly speaking, the goal of output analysis is to use the 
observations yji (i 5 1, 2, . . . , m; j 5 1, 2, . . . , n) to draw inferences about the 
(distributions of the) random variables Y1, Y2, . . . , Ym. For example, yi(n) 5 ^n

j51 yjiyn 
is an unbiased estimate of E(Yi).

E X A M P L E  9 . 1 .  Consider a bank with fi ve tellers and one queue, which opens its 
doors at 9 a.m., closes its doors at 5 p.m., but stays open until all customers in the bank 
at 5 p.m. have been served. Assume that customers arrive in accordance with a Poisson 
process at rate 1 per minute (i.e., IID exponential interarrival times with mean 1 min-
ute), that service times are IID exponential random variables with mean 4 minutes, and 
that customers are served in a FIFO manner. Table 9.1 shows several typical output 
statistics from l0 independent replications of a simulation of the bank, assuming that no 
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490 output data analysis for a single system

customers are present initially. Note that results from various replications can be quite 
different. Thus, one run clearly does not produce “the answers.”

Our goal in this chapter is to discuss methods for statistical analysis of simulation 
output data and to present the material with a practical focus that should be accessible 
to a reader having a basic understanding of probability and statistics. (Reviewing 
Chap. 4 might be advisable before reading this chapter.) We will discuss what we be-
lieve are all the important methods for output analysis; however, the emphasis will be 
on statistical procedures that are relatively easy to understand and implement, have 
been shown to perform well in practice, and have applicability to real-world problems.

In Secs. 9.2 and 9.3 we discuss types of simulations with regard to output analy-
sis, and also measures of performance or parameters u for each type. Sections 9.4 
through 9.6 show how to get a point estimator û and confi dence interval for each 
type of parameter u, with the confi dence interval typically requiring an estimate of 
the variance of û, namely, Var

^
(û). Each of the analysis methods discussed may suf-

fer from one or both of the following problems:

1. û is not an unbiased estimator of u, that is, E(û)≠ u; see, for example, Sec. 9.5.1.
2. Var
^

(û) is not an unbiased estimator of Var(û); see, for example, Sec. 9.5.3.

Section 9.7 extends the above analysis to confi dence-interval construction for sev-
eral different parameters simultaneously. Finally, in Sec. 9.8 we show how time 
plots of important variables may provide insight into a system’s dynamic behavior.

We will not attempt to give every reference on the subject of output-data analysis, 
since literally hundreds of papers on the subject have been written. A very compre-
hensive set of references up to 1983 is given in the survey paper by Law (1983); also 
see the survey paper by Pawlikowski (1990) and the book chapters by Alexopoulos 
and Seila (1998) and by Welch (1983). Most of the recent papers have been pub-
lished in the journals Transactions on Modeling and Computer Simulation, Opera-
tions Research, and INFORMS Journal on Computing, or in the Proceedings of the 
Winter Simulation Conference (held every December).

TABLE 9.1

Results for 10 independent replications of the bank model

   Average delay   Proportion of
 Number  Finish time in queue Average queue customers delayed
Replication served (hours) (minutes) length , 5 minutes

 1  484  8.12 1.53 1.52 0.917
 2 475 8.14 1.66 1.62 0.916
 3 484 8.19 1.24 1.23 0.952
 4 483 8.03 2.34 2.34 0.822
 5 455 8.03 2.00 1.89 0.840
 6 461 8.32 1.69 1.56 0.866
 7 451 8.09 2.69 2.50 0.783
 8 486 8.19 2.86 2.83 0.782
 9 502 8.15 1.70 1.74 0.873
 10 475 8.24 2.60 2.50 0.779
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9.2 
TRANSIENT AND STEADY-STATE BEHAVIOR 
OF A STOCHASTIC PROCESS

Consider the output stochastic process Y1, Y2, . . . . Let Fi(y 0 I ) 5 P(Yi # y Z I ) for 
i 5 1, 2, . . . , where y is a real number and I represents the initial conditions used to 
start the simulation at time 0. [The conditional probability P(Yi # y Z I ) is the prob-
ability that the event {Yi # y} occurs given the initial conditions I.] For a manufac-
turing system, I might specify the number of jobs present, and whether each 
machine is busy or idle, at time 0. We call Fi(y Z I ) the transient distribution of the 
output process at (discrete) time i for initial conditions I. Note that Fi(y Z I ) will, in 
general, be different for each value of i and each set of initial conditions I. The den-
sity functions for the transient distributions corresponding to the random variables 
Yi1

, Yi2
, Yi3

, and Yi4
 are shown in Fig. 9.1 for a particular set of initial conditions I and 

increasing time indices i1, i2, i3, and i4, where it is assumed that the random variable 
Yij

 has density function fYij

. The density fYij

 specifi es how the random variable Yij
 can 

vary from one replication to another. In particular, suppose that we make a very 
large number of replications, n, of the simulation and observe the stochastic process 
Y1, Y2, . . . on each one. If we make a histogram of the n observed values of the ran-
dom variable Yij

, then this histogram (when appropriately scaled) will look very 
much like the density fYij

.

For fi xed y and I, the probabilities F1(y Z I), F2(y Z I), . . . are just a sequence of 
numbers. If Fi(y Z I) S F(y) as i S ̀  for all y and for any initial conditions I, then F(y) 
is called the steady-state distribution of the output process Y1, Y2, . . . . Strictly speak-
ing, the steady-state distribution F(y) is only obtained in the limit as i S ̀ . In practice, 

FIGURE 9.1
Transient and steady-state density functions for a particular stochastic process Y1, Y2, . . . 
and initial conditions I.

i1 i2 i3 i4

E(Yi)
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Yi2
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i
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492 output data analysis for a single system

however, there will often be a fi nite time index, say, k 1 1, such that the distributions 
from this point on will be approximately the same as each other; “steady state” is fi gu-
ratively said to start at time k 1 1 as shown in Fig. 9.1. Note that steady state does not 
mean that the random variables Yk11, Yk12, . . . will all take on the same value in a par-
ticular simulation run; rather, it means that they will all have approximately the same 
distribution. Furthermore, these random variables will not be independent, but will 
approximately constitute a covariance-stationary stochastic process (see Sec. 4.3). See 
Welch (1983) for an excellent discussion of transient and steady-state distributions.

The steady-state distribution F(y) does not depend on the initial conditions I; 
however, the rate of convergence of the transient distributions Fi(y Z I ) to F(y) does, 
as the following example shows.

E X A M P L E  9 . 2 .  Consider the stochastic process D1, D2, . . . for the M/M/1 queue 
with r 5 0.9 (l 5 1, v 5 10y9), where Di is the delay in queue of the ith customer. In 
Fig. 9.2 we plot the convergence of the transient mean E(Di) to the steady-state mean 

FIGURE 9.2
E(Di) as a function of i and the number in system at time 0, s, for the M/M/1 queue 
with r 5 0.9.
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d 5 E(D) 5 8.1 as i gets large for various values of the number in system at time 0, s. 
(The random variable D has the steady-state delay in queue distribution.) Note that the 
convergence of E(Di) to d is, surprisingly, much faster for s 5 15 than for s 5 0 (see 
Prob. 9.11). The values for E(Di) were derived in Kelton and Law (1985); see also 
 Kelton (1985) and Murray and Kelton (1988). The distribution function of D is given by 
(4.15) in App. 4A.

E X A M P L E  9 . 3 .  Consider the stochastic process C1, C2, . . . for the inventory problem 
of Example 4.23, where Ci is the total cost in the ith month. In Fig. 9.3 we plot the con-
vergence of E(Ci) to the steady-state mean c 5 E(C) 5 112.11 [see Wagner (1969, 
p. A19)] as i gets large for an initial inventory level of 57. Note that the convergence is 
clearly not monotone.

In Examples 9.2 and 9.3 we plotted the convergence of the expected value E(Yi) 
to the steady-state mean E(Y ). It should be remembered, however, that the entire 
distribution of Yi is also converging to the distribution of Y as i gets large.

9.3 
TYPES OF SIMULATIONS WITH REGARD 
TO OUTPUT ANALYSIS

The options available in designing and analyzing simulation experiments depend on 
the type of simulation at hand, as depicted in Fig. 9.4. Simulations may be either 
terminating or nonterminating, depending on whether there is an obvious way for 

i80706050403020100

c112.11

E(Ci)

FIGURE 9.3
E(Ci) as a function of i for the (s, S ) inventory system.
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494 output data analysis for a single system

determining the run length. Furthermore, measures of performance or parameters 
for nonterminating simulations may be of several types, as shown in the fi gure. 
These concepts are defi ned more precisely below.

A terminating simulation is one for which there is a “natural” event E that spec-
ifi es the length of each run (replication). Since different runs use independent ran-
dom numbers and the same initialization rule, this implies that comparable random 
variables from the different runs are IID (see Sec. 9.4). The event E often occurs at 
a time point when the system is “cleaned out” (see Example 9.4), at a time point 
beyond which no useful information is obtained (see Example 9.5), or at a time 
point specifi ed by management mandate (see Example 9.8). It is specifi ed before 
any runs are made, and the time of occurrence of E for a particular run may be a 
random variable. Since the initial conditions for a terminating simulation generally 
affect the desired measures of performance, these conditions should be representa-
tive of those for the actual system (see Sec. 9.4.3).

E X A M P L E  9 . 4 .  A retail/commercial establishment, e.g., a bank, closes each evening. 
If the establishment is open from 9 a.m. to 5 p.m., the objective of a simulation might be 
to estimate some measure of the quality of customer service over the period begin-
ning at 9 a.m. and ending when the last customer who entered before the doors closed 
at 5 p.m. has been served. In this case E 5 {at least 8 hours of simulated time have 
elapsed and the system is empty}, and the initial conditions for the simulation are the 
number of customers present at time 0 (see Sec. 9.4.3).

E X A M P L E  9 . 5 .  Consider a military ground confrontation between a blue force and a 
red force. Relative to some initial force strengths, the goal of a simulation might be to 
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FIGURE 9.4
Types of simulations with regard to output analysis.

Law01323_ch09_488-555.indd Page 494  30/10/13  7:04 PM user-f-w-198 Law01323_ch09_488-555.indd Page 494  30/10/13  7:04 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



chapter nine 495

determine the (fi nal) force strengths when the battle ends. In this case E 5 {either the 
blue force or the red force has “won” the battle}. An example of a condition that would 
end the battle is one side losing 30 percent of its force, since this side would no longer 
be considered viable. The choice of initial conditions, e.g., the number of troops and 
tanks for each force, for the simulation is generally not a problem here, since they are 
specifi ed by the military scenario under consideration.

E X A M P L E  9 . 6 .  An aerospace manufacturer receives a contract to produce 100 air-
planes, which must be delivered within 18 months. The company would like to simulate 
various manufacturing confi gurations to see which one can meet the delivery deadline 
at least cost. In this case E 5 {100 airplanes have been completed}.

E X A M P L E  9 . 7 .  Consider a manufacturing company that operates 16 hours a day (two 
shifts) with work in process carrying over from one day to the next. Would this qualify 
as a terminating simulation with E 5 {16 hours of simulated time have elapsed}? No, 
since this manufacturing operation is essentially a continuous process, with the ending 
conditions for one day being the initial conditions for the next day.

E X A M P L E  9 . 8 .  A company that sells a single product would like to decide how many 
items to have in inventory during a planning horizon of 120 months (see Sec. 1.5). 
Given some initial inventory level, the objective might be to determine how much to 
order each month so as to minimize the expected average cost per month of operating 
the inventory system. In this case E 5 {120 months have been simulated}, and the simu-
lation is initialized with the current inventory level.

A nonterminating simulation is one for which there is no natural event E to 
specify the length of a run. This often occurs when we are designing a new system 
or changing an existing system, and we are interested in the behavior of the system 
in the long run when it is operating “normally.” Unfortunately, “in the long run” 
doesn’t naturally translate into a terminating event E. A measure of performance for 
such a simulation is said to be a steady-state parameter if it is a characteristic of the 
steady-state distribution of some output stochastic process Y1, Y2, . . . . In Fig. 9.1, if 
the random variable Y has the steady-state distribution, then we might be interested 
in estimating the steady-state mean n 5 E(Y) or a probability P(Y # y) for some 
real number y.

E X A M P L E  9 . 9 .  Consider a company that is going to build a new manufacturing sys-
tem and would like to determine the long-run (steady-state) mean hourly throughput of 
their system after it has been running long enough for the workers to know their jobs 
and for mechanical diffi culties to have been worked out. Assume that:

(a) The system will operate 16 hours a day for 5 days a week.
(b)  There is negligible loss of production at the end of one shift or at the beginning of 

the next shift (see Prob. 9.3).
(c)  There are no breaks (e.g., lunch) that shut down production at specifi ed times 

each day.

This system could be simulated by “pasting together” 16-hour days, thus ignoring the 
system idle time at the end of each day and on the weekend. Let Ni be the number of 
parts manufactured in the ith hour. If the stochastic process N1, N2, . . . has a steady-state 
distribution with corresponding random variable N, then we are interested in estimating 
the mean n 5 E(N ) (see Prob. 9.4).

Law01323_ch09_488-555.indd Page 495  20/09/13  6:53 PM user Law01323_ch09_488-555.indd Page 495  20/09/13  6:53 PM user /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



496 output data analysis for a single system

It should be mentioned that stochastic processes for most real systems do not 
have steady-state distributions, since the characteristics of the system change over 
time. For example, in a manufacturing system the production-scheduling rules and 
the facility layout (e.g., number and location of machines) may change from time to 
time. On the other hand, a simulation model (which is an abstraction of reality) may 
have steady-state distributions, since characteristics of the model are often assumed 
not to change over time. When we have new information on the characteristics of 
the system, we can redo our steady-state analysis.

If, in Example 9.9, the manufacturing company wanted to know the time 
 required for the system to go from startup to operating in a “normal” manner, this 
would be a terminating simulation with terminating event E 5 {simulated system is 
running “normally”} (if such can be defi ned). Thus, a simulation for a particular 
system might be either terminating or nonterminating, depending on the objectives 
of the simulation study.

E X A M P L E  9 . 1 0 .  Consider a simulation model for a communications network that 
does not currently exist. Since there are typically no representative data available on the 
arrival mechanism for messages, it is common to assume that messages arrive in accor-
dance with a Poisson process with constant rate equal to the predicted arrival rate of 
messages during the period of peak loading. (When the system is actually built, the 
 arrival rate will vary as a function of time, and the period of peak loading may be rela-
tively short.) Since the state of the system during “normal operation” is unknown, initial 
conditions must be chosen somewhat arbitrarily (e.g., no messages present at time 0). 
Then the goal is to run the simulation long enough so that the arbitrary choice of initial 
conditions is no longer having a signifi cant effect on the estimated measures of perfor-
mance (e.g., mean end-to-end delay of a message).
 In performing the above steady-state analysis of the proposed communications 
 network, we are essentially trying to determine how the network will respond to a peak 
load of infi nite duration. If, however, the peak period in the actual network is short or if 
the arrival rate before the peak period is considerably lower than the peak rate, our 
analysis may overestimate the congestion level during the peak period in the network. 
This might result in purchasing a network confi guration that is more powerful than 
 actually needed.

Consider a stochastic process Y1, Y2, . . . for a nonterminating simulation that 
does not have a steady-state distribution. Suppose that we divide the time axis into 
equal-length, contiguous time intervals called cycles. (For example, in a manufac-
turing system a cycle might be an 8-hour shift.) Let Yi

C be a random variable defi ned 
on the ith cycle, and assume that Y1

C, Y2
C, . . . are comparable. Suppose that the pro-

cess Y1
C, Y2

C, . . . has a steady-state distribution FC and that YC , FC. Then a measure 
of performance is said to be a steady-state cycle parameter if it is a characteristic of 
Y C such as the mean nC 5 E(Y C). Thus, a steady-state cycle parameter is just a 
steady-state parameter of the appropriate cycle process Y1

C, Y2
C, . . . .

E X A M P L E  9 . 1 1 .  Suppose for the manufacturing system in Example 9.9 that there is 
a half-hour lunch break at the beginning of the fi fth hour in each 8-hour shift. Then 
the  process of hourly throughputs N1, N2, . . . has no steady-state distribution (see 
Prob. 9.6). Let Ni

C be the average hourly throughput in the ith 8-hour shift (cycle). Then 
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we might be interested in estimating the steady-state expected average hourly through-
put over a cycle, nC 5 E(NC), which is a steady-state cycle parameter.

E X A M P L E  9 . 1 2 .  Consider a call center for an airline. Suppose that the arrival rate of 
calls to the system varies with the time of day and day of the week, but assume that the 
pattern of arrival rates is identical from week to week. Let Di be the delay experienced 
by the ith arriving call. The stochastic process D1, D2, . . . does not have a steady-state 
distribution. Let Di

C be the average delay over the ith week. Then we might be interested 
in estimating the steady-state expected average delay over a week, nC 5 E(DC).

For a nonterminating simulation, suppose that the stochastic process Y1, Y2, . . . 
does not have a steady-state distribution, and that there is no appropriate cycle defi -
nition such that the corresponding process Y1

C, Y2
C, . . . has a steady-state distribu-

tion. This can occur, for example, if the parameters for the model continue to change 
over time. In Example 9.12, if the arrival rate of calls changes from week to week 
and from year to year, then steady-state (cycle) parameters will probably not be well 
defi ned. In these cases, however, there will typically be a fi xed amount of data 
 describing how input parameters change over time. This provides, in effect, a termi-
nating event E for the simulation and, thus, the analysis techniques for terminating 
simulations in Sec. 9.4 are appropriate. This is why we do not treat this situation as 
a separate case later in the chapter. Measures of performance or parameters for 
such simulations usually change over time and are included in the category “Other 
parameters” in Fig. 9.4.

E X A M P L E  9 . 1 3 .  Consider the manufacturing system of Example 5.26. There was a 
3-month build schedule available from marketing, which described the types and num-
bers of computers to be produced each week. The schedule changed from week to week 
because of changing sales and the introduction of new computers. In this case, weekly 
or monthly throughputs did not have steady-state distributions. We therefore performed 
a terminating simulation of length 3 months and estimated the mean throughput for 
each week.

9.4 
STATISTICAL ANALYSIS 
FOR TERMINATING SIMULATIONS

Suppose that we make n independent replications of a terminating simulation, 
where each replication is terminated by the event E and is begun with the “same” 
initial conditions (see Sec. 9.4.3). The independence of replications is accomplished 
by using different random numbers for each replication. (For a discussion of how 
this can easily be accomplished if the n replications are made in more than one 
 execution, see Sec. 7.2.) Assume for simplicity that there is a single measure of 
performance of interest. (This assumption is dropped in Sec. 9.7.) Let Xj be a ran-
dom variable defi ned on the jth replication for j 5 1, 2, . . . , n; it is assumed that the 
Xj’s are comparable for different replications. Then the Xj’s are IID random variables. 
For the bank of Examples 9.1 and 9.4, Xj might be the average delay ^N

i51 DiyN over 
a day (see column 4 in Table 9.1) from the jth replication, where N (a random 
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498 output data analysis for a single system

v ariable) is the number of customers served in a day. For the combat model of 
 Example 9.5, Xj might be the number of red tanks destroyed on the jth replication. 
Finally, for the inventory system of Example 9.8, Xj could be the average cost 
^120

i51 Ciy120 from the jth replication.

9.4.1 Estimating Means

Suppose that we would like to obtain a point estimate and confi dence interval for 
the mean m 5 E(X), where X is a random variable defi ned on a replication as 
described above. Make n independent replications of the simulation and let X1, 
X2, . . . , Xn be the resulting IID random variables. Then, by substituting the Xj’s 
into (4.3) and (4.12), we get that X(n) is an unbiased point estimator for m, and 
an approximate 100(1 2 a) percent (0 , a , 1) confi dence interval for m is 
given by

 X(n) 6 tn21,12ay2 B
S2(n)

n
 (9.1)

where the sample variance S2(n) is given by Eq. (4.4). We will call the confi dence 
interval based on (9.1) the fi xed-sample-size procedure. [See also the Willink confi -
dence interval given by (4.13).]

E X A M P L E  9 . 1 4 .  For the bank of Example 9.1, suppose that we want to obtain a point 
estimate and an approximate 90 percent confi dence interval for the expected average 
delay of a customer over a day, which is given by

 E(X) 5 E
°

^
N

i51

Di

N

¢

(Note that we estimate the expected average delay, since each delay has, in general, a 
different mean.) From the 10 replications given in Table 9.1 we obtained

 X(10) 5 2.03,  S2(10) 5 0.31

and X(10) 6 t9,0.95 B
S2(10)

10
5 2.03 6 0.32

Thus, subject to the correct interpretation to be given to confi dence intervals (see 
Sec. 4.5), we can claim with approximately 90 percent confi dence that E(X) is contained 
in the interval [1.71, 2.35] minutes.

E X A M P L E  9 . 1 5 .  For the inventory system of Sec. 1.5 and Example 9.8, suppose 
that we want to obtain a point estimate and an approximate 95 percent confi dence 
interval for the expected average cost over the 120-month planning horizon, which is 
given by

 E(X) 5 E
°

^
120

i51

Ci

120

¢
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We made 10 independent replications and obtained the following Xj’s:

129.35  127.11  124.03  122.13  120.44

118.39  130.17  129.77  125.52  133.75

which resulted in

 X(10) 5 126.07,  S2(10) 5 23.55

and the 95 percent confi dence interval

 126.07 6 3.47  or, alternatively,  [122.60, 129.54]

Note that the estimated coeffi cient of variation (see Table 6.5), a measure of variability, 
is 0.04 for the inventory system and 0.27 for the bank model. Thus the Xj’s for the bank 
model are inherently more variable than those for the inventory system.

E X A M P L E  9 . 1 6 .  For the bank of Example 9.1, suppose that we would like to obtain a 
point estimate and an approximate 90 percent confi dence interval for the expected pro-
portion of customers with a delay less than 5 minutes over a day, which is given by

 E(X) 5 E
°

^
N

i51

Ii(0, 5)

N

¢

where the indicator function Ii(0, 5) is defi ned as

 Ii(0, 5) 5 e
1

0

if Di , 5

otherwise

for i 5 1, 2, . . . , N. From the last column of Table 9.1, we obtained

 X(10) 5 0.853,  S2(10) 5 0.004

and the 90 percent confi dence interval

 0.853 6 0.036  or  [0.817, 0.889]

The correctness of the confi dence interval given by (9.1) (in terms of having 
coverage close to 1 2 a) depends on the assumption that the Xj’s are normal random 
variables (or on n being “suffi ciently large”); this is why we called the confi dence 
intervals in Examples 9.14, 9.15, and 9.16 approximate. Since this assumption will 
rarely be satisfi ed in practice, we now use several simple stochastic models with 
known means to investigate empirically the robustness of the confi dence interval to 
departures from normality. Our goal is to provide the simulation practitioner with 
some guidance as to how well the confi dence interval will perform, in terms of 
 coverage, in practice.

We fi rst performed 500 independent simulation experiments for the M/M/1 
queue with r 5 0.9. For each experiment we considered n 5 5, 10, 20, 40, and for 
each n we used (9.1) to construct an approximate 90 percent confi dence interval for

 d(25 0 s 5 0) 5 E 
£^

25

i51

Di

25

†
s 5 0

≥
5 2.12
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where s is the number of customers present at time 0 [see Kelton and Law (1985) 
and Example 9.2]. Table 9.2 gives the proportion, p̂, of the 500 confi dence intervals 
that covered the true d(25 0 s 5 0), a 90 percent confi dence interval for the true cover-
age p [the proportion of a very large number of confi dence intervals that would 
cover d(25 0 s 5 0)], and the average value of the confi dence-interval half-length 
[that is, tn21,12ay22S2(n)yn] divided by the point estimate X(n) over the 500 experi-
ments, which is a measure of the precision of the confi dence interval; see below for 
further discussion. The 90 percent confi dence interval for the true coverage is com-
puted from

 p̂ 6 z0.95 B
p̂(1 2 p̂)

500

and is based on the fact that ( p̂ 2 p)y2p̂(1 2 p̂)y500 is approximately distributed 
as a standard normal random variable [see, e.g., Hogg and Craig (1995, pp. 254–255)]. 
It is recommended that this confi dence interval for p only be used if np̂ $ 10 and 
n(1 2 p̂) $ 10. If this is not the case in a particular situation, then the score confi -
dence interval [Devore (2008, p. 266)] might be used instead.

From Table 9.2 it can be seen that 86.4 percent of the 500 confi dence intervals 
based on n 5 10 replications covered d(25 0 s 5 0), and we know with approximately 
90 percent confi dence that the true coverage for n 5 10 is between 0.839 and 0.889. 
Considering that a simulation model is always just an approximation to the corre-
sponding real-world system, we believe that the estimated coverages presented in 
Table 9.2 are close enough to the desired 0.9 to be useful. Note also from the last 
column of the table that four times as many replications are required to increase the 
precision of the confi dence interval by a factor of approximately 2. This is not sur-
prising since there is a 1n in the denominator of the expression for the confi dence-
interval half-length in (9.1).

To show that the confi dence interval given by (9.1) does not always produce 
coverages close to 1 2 a, we considered a second example. A reliability model 
consisting of three components will function as long as component 1 works and 
either component 2 or 3 works. If G is the time to failure of the whole system and 
Gi is the time to failure of component i (where i 5 1, 2, 3), then G 5 min{G1, 
max{G2, G3}}. We further assume that the Gi’s are independent random variables 
and that each Gi has a Weibull distribution with shape parameter 0.5 and scale param-
eter 1 (see Sec. 6.2.2). This particular Weibull distribution is extremely skewed and 

TABLE 9.2

Fixed-sample-size results for d(25 0 s 5 0) 5 2.12 based on 
500 experiments, M/M/1 queue with R 5 0.9

 Estimated  Average of (confi dence-interval
n  coverage half-length)/X(n)

 5 0.880 6 0.024 0.67
10 0.864 6 0.025 0.44
20 0.886 6 0.023 0.30
40 0.914 6 0.021 0.21
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 non-normal. Once again we performed 500 independent simulation experiments; 
for each experiment we considered n 5 5, 10, 20, 40, and for each n we used (9.1) 
to construct a 90 percent confi dence interval for E(G 0 all components new) 5 0.78 
(which was calculated by analytic reasoning). The results from these experiments 
are given in Table 9.3. Note that for small values of n there is signifi cant coverage 
degradation. Also, as n gets large, the coverage appears to be approaching 0.9, as 
guaranteed by the central limit theorem. The Willink confi dence interval could pos-
sibly be used for this model unless n is “large.”

We can see from Tables 9.2 and 9.3 that the coverage actually obtained from the 
confi dence interval given by (9.1) depends on the simulation model under consid-
eration (actually, on the distribution of the resulting Xj’s) and also on the sample size n. 
It is therefore natural to ask why the confi dence interval worked better for the M/M/1 
queue than it did for the reliability model. To answer this question, we fi rst per-
formed 500 independent simulation experiments for the M/M/1 queue with r 5 0.9 
and s 5 0 (n 5 1), and we observed ^25

i51 Diy25 on each replication. A  histogram of 
the 500 average delays is given in Fig. 9.5, and the sample skewness was 1.64 (see 

TABLE 9.3

Fixed-sample-size results for E(G 0 all components new) 5 0.78 
based on 500 experiments, reliability model

 Estimated  Average of (confi dence-interval
n  coverage half-length)/X(n)

 5 0.708 6 0.033 1.16
10 0.750 6 0.032 0.82
20 0.800 6 0.029 0.60
40 0.840 6 0.027 0.44
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h(x)

FIGURE 9.5
Histogram of 500 average delays (each based on 25 individual delays) for the M/M/1 
queue with r 5 0.9.
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502 output data analysis for a single system

Tables 4.1 and 6.5). Although the histogram indicates that average delay is not nor-
mally distributed, it does show that the distribution of average delay is not extremely 
skewed. (For example, an exponential distribution has a skewness of 2.) We next 
performed 500 independent experiments for the reliability model and observed the 
time to failure G on each replication. A histogram of the 500 values of G is given in 
Fig. 9.6, and the estimated skewness was 3.64. Thus, the distribution of time to 
failure is considerably more non-normal than the distribution of average delay. 
These results shed some light on why the coverages for the M/M/1 queue are closer 
to 0.9 than for the reliability model.

The reader might wonder why average delay is more normally distributed 
than time to failure. Note that an Xj for the M/M/1 queue is actually an average of 
25 individual delays, while an Xj for the reliability model is computed from the 
three individual times to failure by a formula involving a minimum and a maximum. 
There are central limit theorems for certain types of correlated data that state that 
averages of these data become approximately normally distributed as the number 
of points in the average gets large. To show this for the M/M/1 queue, we per-
formed 500 independent experiments and observed ^6400

i51  Diy6400 on each replica-
tion. A histogram of the 500 average delays (each based on 6400 individual delays) 
is given in Fig. 9.7, and the estimated skewness was 1.07. (The skewness of a  normal 
distribution is 0.) Clearly, the histogram in Fig. 9.7 is closer to a normal dis tribution 
than the histogram in Fig. 9.5.

We therefore expect that if Xj is the average of a large number of individual 
observations (even though correlated), the degradation in coverage of the confi -
dence interval may not be severe. Our experience indicates that many real-world 
simulations produce Xj’s of this type.
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FIGURE 9.6
Histogram of 500 times to failure for the reliability model.
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Obtaining a Specifi ed Precision

One disadvantage of the fi xed-sample-size procedure based on n replications is 
that the analyst has no control over the confi dence-interval half-length [or the preci-
sion of X(n)]; for fi xed n, the half-length will depend on Var(X), the population 
variance of the Xj’s. In what follows we discuss procedures for determining the 
number of replications required to estimate the mean m 5 E(X) with a specifi ed 
error or precision.

We begin by defi ning two ways of measuring the error in the estimate X . (The 
dependence on n is suppressed, since the number of replications may be a random 
variable.) If the estimate X  is such that 0 X 2 m 0 5 b, then we say that X  has an 
absolute error of b. If we make replications of a simulation until the half-length of 
the 100(1 2 a) percent confi dence interval given by (9.1) is less than or equal to b 
(where b . 0), then

  1 2 a < P(X 2 half-length # m # X 1 half-length)

  5 P( 0 X 2 m 0# half-length)

  # P( 0 X 2 m 0# b)

[If A and B are events with A being a subset of B, then P(A) # P(B).] Thus, X  has 
an absolute error of at most b with a probability of approximately 1 2 a. In other 
words, if we construct 100 independent 90 percent confi dence intervals using the 
above stopping rule, we would expect X  to have an absolute error of at most b in 
about 90 out of the 100 cases; in about 10 cases the absolute error would be greater 
than b.
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FIGURE 9.7
Histogram of 500 average delays (each based on 6400 individual delays) for the 
M/M/1 queue with r 5 0.9.
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504 output data analysis for a single system

Suppose that we have constructed a confi dence interval for m based on a fi xed 
number of replications n. If we assume that our estimate S2(n) of the population 
variance will not change (appreciably) as the number of replications increases, an 
approximate expression for the total number of replications, na*(b), required to 
 obtain an absolute error of b is given by

 na*(b) 5 min e i $ n: ti21,12ay2 B
S2(n)

i
# bf (9.2)

(The colon “:” is read “such that.”) We can determine na*(b) by iteratively increas- 

ing i by 1 until a value of i is obtained for which ti21,12ay22S2(n)yi # b. 
 [Alternatively, na*(b) can be approximated as the smallest integer i satisfying 
i $ S2(n)(z12ay2yb)2.] If na*(b) . n and if we make na*(b) 2 n additional replica-
tions of the simulation, then the estimate X  based on all na*(b) replications should 
have an  absolute error of approximately b. The accuracy of Eq. (9.2) depends on 
how close the variance estimate S2(n) is to Var(X).

E X A M P L E  9 . 1 7 .  For the bank of Example 9.14, suppose that we would like to esti-
mate the expected average delay with an absolute error of 0.25 minute and a confi dence 
level of 90 percent. From the 10 available replications, we get

 n*a(0.25) 5 min e i $ 10: ti21,0.95 B
0.31

i
# 0.25 f 5 16

We now discuss another way of measuring the error in X . Assume now that 
m fi 0. If the estimate X  is such that 0 X 2 m 0 y 0m 0 5 g, then we say that X  has a 
relative error of g, or that the percentage error in X  is 100g percent. Suppose that 
we make replications of a simulation until the half-length of the confi dence  interval 
given by (9.1), divided by 0 X 0 , is less than or equal to g(0 , g , 1). This ratio is an 
estimate of the actual relative error. Then

  1 2 a < P( 0 X 2 m 0 y 0 X 0 # half-lengthy 0 X 0 )

  # P( 0 X 2 m 0 # g 0 X 0 ) [(half-lengthy 0 X 0 ) # g]

  5 P( 0 X 2 m 0 # g 0 X 2 m 1 m 0 ) (add, subtract m)

  # P( 0 X 2 m 0 # g( 0 X 2 m 0 1 0m 0 )) (triangle inequality)

  5 P((1 2 g) 0 X 2 m 0 # g 0m 0 ) (algebra)

  5 P( 0 X 2 m 0 y 0m 0 # gy(1 2 g)) (algebra)

Thus, X has a relative error of at most gy(1 2 g) with a probability of approximately 
1 2 a. In other words, if we construct 100 independent 90 percent confi dence 
 intervals using the above stopping rule, we would expect X  to have a relative error 
of at most gy(1 2 g) in about 90 of the 100 cases; in about 10 cases the relative error 
would be greater than gy(1 2 g). Note that we get a relative error of gy(1 2 g) 
rather than the desired g, since we estimate 0m 0  by 0 X 0 .

Suppose once again that we have constructed a confi dence interval for m based 
on a fi xed number of replications n. If we assume that our estimates of both the 
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population mean and population variance will not change (appreciably) as the 
 number of replications increases, an approximate expression for the number of 
 replications, nr*(g), required to obtain a relative error of g is given by

 nr*(g) 5 min e i $ n: 
ti21,12ay22S2(n)yi

0  X(n) 0
# g¿f (9.3)

where g9 5 gy(1 1 g) is the “adjusted” relative error needed to get an actual rela-
tive error of g. {Again, nr*(g) is approximated as the smallest integer i satisfying 
i $ S2(n) [z12ay2y(g¿X(n))]2.} If nr*(g) . n and if we make nr*(g) 2 n additional 
replications of the simulation, then the estimate X  based on all nr*(g) replications 
should have a relative error of approximately g.

E X A M P L E  9 . 1 8 .  For the bank of Example 9.14, suppose that we would like to esti-
mate the expected average delay with a relative error of 0.10 and a confi dence level of 
90 percent. From the 10 available replications, we get

 nr*(0.10) 5 min e i $ 10: 
ti21,0.95 20.31yi

2.03
 # 0.09 f 5 27

where g9 5 0.1y(1 1 0.1) 5 0.09.

The diffi culty with using Eq. (9.3) directly to obtain an estimate X  with a rela-
tive error of g is that X(n) and S2(n) may not be precise estimates of their corre-
sponding population parameters. If nr*(g) is greater than the number of replications 
actually required, then a signifi cant number of unnecessary replications may be 
made, resulting in a waste of computer resources. Conversely, if nr*(g) is too small, 
then an estimate X  based on nr*(g) replications may not be as precise as we think. 
We now present a sequential procedure (new replications are added one at a time) 
for obtaining an estimate of m with a specifi ed relative error that takes only as many 
replications as are actually needed. The procedure assumes that X1, X2, . . . is a 
 sequence of IID random variables that need not be normal.

The specifi c objective of the procedure is to obtain an estimate of m with a rela-
tive error of g(0 , g , 1) and a confi dence level of 100(1 2 a) percent. Choose an 
initial number of replications n0 $ 10 and let

 d(n, a) 5 tn21,12ay2 B
S2(n)

n

be the usual confi dence-interval half-length. Then the sequential procedure is as 
follows:

0. Make n0 replications of the simulation and set n 5 n0.
1. Compute X(n) and d(n, a) from X1, X2, . . . , Xn.
2. If d(n, a)y 0 X(n) 0 # g¿, use X(n) as the point estimate for m and stop. 

Equivalently,

 I(a, g) 5 [X(n) 2 d(n, a), X(n) 1 d(n, a)] (9.4)
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506 output data analysis for a single system

 is an approximate 100(1 2 a) percent confi dence interval for m with the desired 
precision. Otherwise, replace n by n 1 1, make an additional replication of the 
simulation, and go to step 1.

Note that the procedure computes a new estimate of Var(X) after each replication is 
obtained, and that the total number of replications required by the procedure is a 
random variable.

E X A M P L E  9 . 1 9 .  For the bank of Example 9.14, suppose that we would like to obtain 
an estimate of the expected average delay with a relative error of g 5 0.1 and a confi -
dence level of 90 percent. Using the previous n0 5 10 replications as a starting point, 
we obtained

 Number of replications at termination 5 74

 X(74) 5 1.76,  S2(74) 5 0.67

 90 percent confi dence interval: [1.60, 1.92]

Note that the number of replications actually required, 74, is considerably larger than 
the 27 predicted in Example 9.18, due mostly to the imprecise variance estimate based 
on 10 replications.

Although the sequential procedure described above is intuitively appealing, the 
question naturally arises as to how well it performs in terms of producing a confi -
dence interval with coverage close to the desired 1 2 a. In Law, Kelton, and Koenig 
(1981), it is shown that if m fi 0 [and 0 , Var(X) , `], then the coverage of the 
confi dence interval given by Eq. (9.4) will be arbitrarily close to 1 2 a, provided the 
desired relative error is suffi ciently close to 0. Based on sampling from a large num-
ber of stochastic models and probability distributions (including the M/M/1 queue 
and the above reliability model) for which the true values of m are known, our rec-
ommendation is to use the sequential procedure with n0 $ 10 and g # 0.15. It was 
found that if these recommendations are followed, the estimated coverage (based on 
500 independent experiments for each model) for a desired 90 percent confi dence 
interval was never less than 0.864.

Analogous to the sequential procedure described above is a sequential proce-
dure due to Chow and Robbins (1965) for constructing a 100(1 2 a) percent confi -
dence interval for m with a small absolute error b. Furthermore, it can be shown that 
the coverage actually produced by the procedure will be arbitrarily close to 1 2 a 
provided the desired absolute error b is suffi ciently close to 0. However, since the 
meaning of “absolute error suffi ciently small” is extremely model-dependent, and 
since the coverage results in Law (1980) indicate that the procedure is very sensitive 
to the choice of b, we do not recommend the use of the Chow and Robbins proce-
dure in general.

Recommended Use of the Procedures

We now make our recommendations on the use of the fi xed-sample-size 
and   sequential procedures for terminating simulations. If one is performing an 
 exploratory experiment where the precision of the confi dence interval may not be 
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overwhelmingly important, we recommend using the fi xed-sample-size procedure. 
However, if the Xj’s are highly non-normal and the number of replications n is too 
small, the actual coverage of the constructed confi dence interval may be somewhat 
lower than desired. In this case consider the use of the Willink confi dence interval.

From an exploratory experiment consisting of n replications, one can estimate 
the execution time per replication and the population variance of the Xj’s, and then 
obtain from Eq. (9.2) a rough estimate of the number of replications, na*(b), required 
to estimate m with a desired absolute error b. Alternatively, one can obtain from 
Eq. (9.3) a rough estimate of the number of replications, nr*(g), required to estimate 
m with a desired relative error g. Sometimes the choice of b or g may have to be tem-
pered by the execution time associated with the required number of replications. If it 
is fi nally decided to construct a confi dence interval with a small relative error g, we 
recommend use of the sequential procedure with g # 0.15 and n0 $ 10. If one wants 
a confi dence interval with a relative error g greater than 0.15, we recommend several 
successive applications of the fi xed-sample-size approach. In particular, one might 
estimate nr*(g), collect, say [nr*(g) 2 n]y2 more replications, and then use (9.1) to 
construct a confi dence interval based on the existing [n 1 nr*(g)]y2 replications. If 
the estimated relative error of the resulting confi dence interval is still greater than g9, 
then nr*(g) can be reestimated based on a new variance estimate, and some portion 
of the necessary additional replications may be collected, etc. To construct a confi -
dence interval with a small absolute error b, we once again recommend several 
successive applications of the fi xed-sample-size approach.

Regardless of the time per replication, we recommend always making at least 
three to fi ve replications of a stochastic simulation to assess the variability of the Xj’s. 
If this is not possible due to time considerations, then the simulation study should 
probably not be done at all.

9.4.2 Estimating Other Measures of Performance

In this section we discuss estimating measures of performance other than means. 
As the following example shows, comparing two or more systems by some sort of 
mean system response may result in misleading conclusions.

E X A M P L E  9 . 2 0 .  Consider the bank of Example 9.14, where the utilization factor 
r 5 ly(5v) 5 0.8. We compare the policy of having one queue for each teller (and 
jockeying) with the policy of having one queue feed all tellers on the basis of expected 
average delay in queue (see Example 9.14) and expected time-average number of cus-
tomers in queue, which is defi ned by

 E
£ #

T

0
 Q(t) dt

T

§

where Q(t) is the number of customers in queue at time t and T is the bank’s operating 
time (T $ 8 hours). Table 9.4 gives the results of making one simulation run of each 
policy. [These simulation runs were performed so that the time of arrival of the ith cus-
tomer (i 5 1, 2, . . . , N ) was identical for both policies and so that the service time of 
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508 output data analysis for a single system

the ith customer to begin service (i 5 1, 2, . . . , N ) was the same for both policies.] 
Thus, on the basis of “average system response,” it would appear that the two policies 
are equivalent. However, this is clearly not the case. Since customers need not be served 
in the order of their arrival with the multiqueue policy, we would expect this policy to 
result in greater variability of a customer’s delay. Table 9.5 gives estimates, computed 
from the same two simulation runs used above, of the expected proportion of customers 
with a delay in the interval [0, 5) (in minutes), the expected proportion of customers 
with a delay in [5, 10), . . . , the expected proportion of customers with a delay in [40, 45) 
for both policies. (We did not estimate variances from these runs since, as pointed 
out in Sec. 4.4, variance estimates computed from correlated simulation output data are 
highly biased.) Observe from Table 9.5 that a customer is more likely to have a large 
delay with the multiqueue policy than with the single-queue policy. In particular, if 
480 customers arrive in a day (the expected number), then 33 and 6 of them would be 
expected to have delays greater than or equal to 20 minutes for the fi ve-queue and 
one-queue policies, respectively. (For larger values of r, the differences between the 
two policies would be even greater.) This observation together with the greater equita-
bility of the single-queue policy has probably led many organizations, e.g., banks and 
airlines, to adopt this policy.

We conclude from the above example that comparing alternative systems or 
policies on the basis of average system behavior alone can sometimes result in mis-
leading conclusions and, furthermore, that proportions can be a useful measure of 
system performance. In Example 9.16 we showed how to obtain a point estimate 

TABLE 9.4

Simulation results for the two bank policies: averages

Estimates

Measure of performance  Five queues  One queue

Expected operating time, hours 8.14 8.14
Expected average delay, minutes 5.57 5.57
Expected average number in queue 5.52 5.52

TABLE 9.5

Simulation results for the two bank policies: proportions

  Estimates of expected 
proportions of delays in interval

Interval (minutes) Five queues One queue

[0, 5) 0.626 0.597
[5, 10) 0.182 0.188
[10, 15) 0.076 0.107
[15, 20) 0.047 0.095
[20, 25) 0.031 0.013
[25, 30) 0.020 0
[30, 35) 0.015 0
[35, 40) 0.003 0
[40, 45) 0 0
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and a confi dence interval for an expected proportion. In this section we show how 
to perform similar analyses for probabilities and quantiles in the context of termi-
nating simulations.

Let X be a random variable defi ned on a replication as described in Sec. 9.4.1. 
Suppose that we would like to estimate the probability p 5 P(X [ B), where B is a 
set of real numbers. {For example, B could be the interval [20, ̀ ) in Example 9.20.} 
Make n independent replications and let X1, X2, . . . , Xn be the resulting IID random 
variables. Let S be the number of Xj’s that fall in the set B. Then S has a binomial 
distribution (see Sec. 6.2.3) with parameters n and p, and an unbiased point estima-
tor for p is given by

 p̂ 5
S
n

Furthermore, if n is “suffi ciently large,” then an approximate 100(1 2 a) percent 
confi dence interval for p is given by

 p̂ 6 z12ay2 B
p̂(1 2 p̂)

n

[see Devore (2008, p. 266) for an alternative confi dence interval and also Prob. 9.9].

E X A M P L E  9 . 2 1 .  For the bank of Example 9.14, suppose that we would like to get a 
point estimate and approximate 90 percent confi dence interval for

 p 5 P(X # 15)  where X 5 max
0#t#T

 Q(t)

In this case, B 5 [0, 15]. We made 100 independent replications of the bank simulation 
and obtained p̂ 5 0.77. Thus, for approximately 77 out of every 100 days, we expect the 
maximum queue length during a day to be less than or equal to 15 customers. We also 
obtained the following approximate 90 percent confi dence interval for p:

 0.77 6 0.07  or, alternatively,  [0.70, 0.84]

Suppose now that we would like to estimate the q-quantile (100qth percentile) 
xq of the distribution of the random variable X (see Sec. 6.4.3 for the defi nition). For 
example, the 0.5-quantile is the median. If X(1), X(2), . . . , X(n) are the order statistics 
corresponding to the Xj’s from n independent replications, then a point estimator for 
xq is the sample q-quantile x̂q, which is given by

 x̂q 5 e
X(nq)

X(:nq11;)

if nq is an integer

otherwise

Let r and s be positive integers that satisfy 1 # r , s # n. If n is “suffi ciently large,” 
then a 100(1 2 a) percent confi dence interval for xq is given by [see Conover (1999, 
pp. 143–148)]
 P(X(r) # xq # X(s)) $ 1 2 a
where
 r 5 <nq 1 zay21nq(1 2 q) =
and
 s 5 <nq 1 z12ay21nq(1 2 q) =
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510 output data analysis for a single system

The greater than or equal to sign in the confi dence-interval expression becomes an 
equal sign if X is a continuous random variable.

E X A M P L E  9 . 2 2 .  For the bank of Example 9.14, suppose that we would like to decide 
how large a lobby is needed to accommodate customers waiting in the queue. If we let 
X be the maximum queue length as defi ned in Example 9.21, then we might want to 
build a lobby large enough to hold x0.95 customers, the 0.95-quantile of X. From the 100 
replications in the previous example, we obtained x̂0.95 5 X(95) 5 20. Thus, if the lobby 
has room for 20 customers waiting in queue, this will be suffi cient for approximately 95 
out of every 100 days. Furthermore, an approximate 90 percent confi dence interval for 
x0.95 is [X(91), X(99)] 5 [19, 23]. (For this problem, X is a discrete random variable, so that 
the confi dence level is approximate.)

The interested reader may also want to consult Conover (1999, pp. 150–155) 
for a discussion of a tolerance interval, which is an interval that contains a specifi ed 
proportion of the values of the random variable X (and does so with a certain pre-
scribed confi dence level).

9.4.3 Choosing Initial Conditions

As stated in Sec. 9.3, the measures of performance for a terminating simulation 
depend explicitly on the state of the system at time 0; thus, care must be taken in 
choosing appropriate initial conditions. Let us illustrate this potential problem by 
means of an example. Suppose that we would like to estimate the expected average 
delay of all customers who arrive and complete their delays between 12 noon and 
1 p.m. (the busiest period) in a bank. Since the bank will probably be quite congested 
at noon, starting the simulation then with no customers present (the usual initial 
conditions for a queueing simulation) will cause our estimate of expected average 
delay to be biased low. We now discuss two heuristic approaches to this problem, 
the fi rst of which appears to be used widely (see Sec. 9.5.1).

For the fi rst approach, let us assume that the bank opens at 9 a.m. with no cus-
tomers present. Then we can start the simulation at 9 a.m. with no customers present 
and run it for 4 simulated hours. In estimating the desired expected average delay, 
we use only the delays of those customers who arrive and complete their delays 
between noon and 1 p.m. The evolution of the simulation between 9 a.m. and noon 
(the “warmup period”) determines the appropriate conditions for the simulation at 
noon. A disadvantage of this approach is that 3 hours of simulated time are not used 
directly in the estimate. As a result, one might compromise and start the simulation 
at some other time, say 11 a.m., with no customers present. However, there is no 
guarantee that the conditions in the simulation at noon will be representative of the 
actual conditions in the bank at noon.

An alternative approach is to collect data on the number of customers present in 
the bank at noon for several different days. Let p̂i be the proportion of these days 
that i customers (i 5 0, 1, . . .) are present at noon. Then we simulate the bank from 
noon to 1 p.m. with the number of customers present at noon being randomly chosen 
from the distribution {p̂i}. (All customers who are being served at noon might be 
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assumed to be just beginning their services. Starting all services fresh at noon  results 
in an approximation to the actual situation in the bank, since the customers who are 
in the process of being served at noon would have partially completed their services. 
However, the effect of this approximation should be negligible for a simulation of 
length 1 hour.)

If more than one simulation run from noon to 1 p.m. is desired, then a different 
sample from {p̂i} is drawn for each run. The Xj’s that result from these runs are still 
IID, since the initial conditions for each run are chosen independently from the 
same distribution.

9.5 
STATISTICAL ANALYSIS 
FOR STEADY-STATE PARAMETERS

Let Y1, Y2, . . . be an output stochastic process from a single run of a nonterminating 
simulation. Suppose that P(Yi # y) 5 Fi(y) S F(y) 5 P(Y # y) as i S `, where 
Y is the steady-state random variable of interest with distribution function F. (We 
have suppressed in our notation the dependence of Fi on the initial conditions I.) 
Then f is a steady-state parameter if it is a characteristic of Y such as E(Y), P(Y # y), 
or a quantile of Y. One diffi culty in estimating f is that the distribution function of 
Yi (for i 5 1, 2, . . .) is different from F, since it will generally not be possible to 
choose I to be representative of “steady-state behavior.” This causes an estimator of 
f based on the observations Y1, Y2, . . . , Ym not to be “representative.” For example, 
the sample mean Y(m) will be a biased estimator of n 5 E(Y) for all fi nite values of m. 
The problem we have just described is called the problem of the initial transient or 
the startup problem in the simulation literature.

E X A M P L E  9 . 2 3 .  To illustrate the startup problem more succinctly, consider the 
 process of delays D1, D2, . . . for the M/M/1 queue with r , 1 (see Example 9.2). From 
queueing theory, it is possible to show that

 P(Di # y) S P(D # y) 5 (1 2 r) 1 r[1 2 e2(v2l)y]  as i S `

If the number of customers s present at time 0 is 0, then D1 5 0 and E(Di) fi E(D) 5 d 
for any i. On the other hand, if s is chosen in accordance with the steady-state number 
in system distribution [see, for example, Gross et al. (2009)], then for all i, P(Di # y) 5 
P(D # y) and E(Di) 5 d (see Prob. 9.11). Thus, there is no initial transient in this case.

In practice, the steady-state distribution will not be known and the above 
 initialization technique will not be possible. Techniques for dealing with the startup 
problem in practice are discussed in the next section.

9.5.1 The Problem of the Initial Transient

Suppose that we want to estimate the steady-state mean n 5 E(Y ), which is also 
generally defi ned by
 n 5 lim

iS`
 E(Yi)
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Thus, the transient means converge to the steady-state mean. The most serious con-
sequence of the problem of the initial transient is probably that E[Y(m) ]≠ n for 
any m [see Law (1983, pp. 1010–1012) for further discussion]. The technique most 
often suggested for dealing with this problem is called warming up the model or 
initial-data deletion. The idea is to delete some number of observations from the 
beginning of a run and to use only the remaining observations to estimate n. For 
example, given the observations Y1, Y2, . . . , Ym, it is often suggested to use

 Y(m, l) 5

^
m

i5l11

Yi

m 2 l

(1 # l # m 2 1) rather than Y(m) as an estimator of n. In general, one would expect 
Y(m, l) to be less biased than Y(m), since the observations near the “beginning” of 
the simulation may not be very representative of steady-state behavior due to the 
choice of initial conditions. [If û is an estimator for a parameter u, then the bias in û 
is Bias(û) 5 E(û) 2 u.] For example, this is true for the process D1, D2, . . . in the 
case of an M/M/1 queue with s 5 0, since E(Di) increases monotonically to d as 
i S ` (see Fig. 9.2). Fishman (1972) showed that this is also the case for a fi rst-
order autoregressive [AR(1)] process (see Sec. 6.10.3).

Some authors, however, have questioned the effi cacy of initial-data deletion 
[see, for example, Grassmann (2011)], so we fi rst look at the point estimator Y(m, l) 
more carefully. Although Y(m, l) will generally be less biased than Y(m), it will 
often have a larger variance, as was shown by Fishman (1972) for an AR(1) process. 
However, probably the most commonly used overall measure of point-estimator 
quality is mean-squared error [see Pasupathy and Schmeiser (2010)]. Blomqvist 
(1970) showed for the M/M/1 queue (and certain other queueing systems) with m 
suffi ciently large, that zero is the value of l that minimizes the mean-squared error 
of D(m, l), which is defi ned by

 MSE[D(m, l)] 5 E{[D(m, l) 2 d]2} 5 {Bias[D(m, l)]}2 1 Var[D(m, l)]

On the other hand, Snell and Schruben (1979) and Kelton (1980) showed for a 
AR(1) process that deletion may either increase or decrease mean-squared error, 
depending on m, l, and the values of the process parameters. As one might suspect, 
deletion most signifi cantly reduced mean-squared error when the initialization bias 
was high and the autocorrelation (see Sec. 5.6) was heavy, causing the bias to dis-
sipate slowly. In these cases, the value of l that minimized MSE[Y(m, l)] decreased 
as m increased. This observation is consistent with Blomqvist’s result that for very 
large values of m, deletion is not advisable for the mean-squared-error performance 
measure.

Another criterion that is used for evaluating the effi cacy of deletion is confi dence-
interval quality, which is the one that we prefer. [We believe that one should always 
construct a confi dence interval for n; otherwise, we have no explicit way of knowing 
how close Y(m, l) is to n.] The replication/deletion approach for constructing a con-
fi dence interval for n, which is discussed in Sec. 9.5.2, is based on making n inde-
pendent “short” replications of the process Y1, Y2, . . . of length m observations and 
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deleting the fi rst l observations from each replication. Let Yj(m, l) be the sample 
mean of the fi nal m 2 l observations in the jth replication, for j 5 1, 2, . . . , n. Then 
the Yj(m, l)’s play the same role as the Xj’s in the confi dence interval given by (4.12). 
In order for the replication/deletion approach to produce confi dence intervals with 
acceptable coverage, it is critical that m and l be chosen so that E[Yj(m, l)] < n, i.e., 
that Yj(m, l) is an approximately unbiased estimator for n [see Law (1977)].

Suppose now that we make one “long” run of length m observations, resulting 
in the observations Y1, Y2, . . . , Ym. There are a number of methods for constructing 
a confi dence interval for n based on this one-replication scenario (see Sec. 9.5.3). 
For example, the method of batch means, which is the most widely used of these 
approaches, divides the m observations into n batches of size k (m 5 nk). Let Yj(k) 
be the sample (or batch) mean of the k observations in the jth batch, for j 5 
1, 2, . . . , n. Then the Yj(k)’s play the same role as the Xj’s in the confi dence interval 
given by (4.12). In order for the batch-means method to produce confi dence inter-
vals with acceptable coverage, k must be chosen large enough so that the Yj(k)’s are 
approximately uncorrelated. Results in Law (1977), Law and Carson (1979), and 
Law and Kelton (1984), suggest that batch means (and the other methods of 
Sec. 9.5.3) will produce confi dence intervals with acceptable coverage without a 
warmup period (i.e., l 5 0), provided that m is “moderate” in value. For instance, in 
the case of an M/M/1 queue with r 5 0.9 and s 5 0, batch means achieved a cover-
age of 0.865 for a nominal 90 percent confi dence interval for d based on m 5 12,800 
and n 5 5 batches of size 2560 [Law (1977)]. Apparently, if m is large enough, then 
the observations from the initial transient get “washed out” by the remaining 
“steady-state” observations.

Thus, in terms of confi dence-interval coverage, the need for an effective warmup 
period appears to be much more important when using the replication/deletion 
 approach, which is based on multiple “short” replications. Thus, we will focus on 
the replication/deletion approach and its need for an unbiased point estimator in our 
discussion of the problem of the initial transient that follows.

The question naturally arises as to how to choose the warmup period (or dele-
tion amount) l. We would like to pick l (and m) such that E[Y (m, l)] < n. If l and m 
are chosen too small, then E[Y (m, l)] may be signifi cantly different from n. On the 
other hand, if l is chosen larger than necessary, then Y (m, l) will probably have an 
unnecessarily large variance. There have been a number of methods suggested in 
the literature for choosing l. However, Gafarian, Ancker, and Morisaku (1978) 
found that none of the methods available at that time performed well in practice. 
Kelton and Law (1983) developed an algorithm for choosing l (and m) that worked 
well {that is, E[Y (m, l)] < n} for a wide variety of stochastic models. However, a 
theoretical limitation of the procedure is that it basically makes the assumption that 
E(Yi) is a monotone function of i.

A simple and general technique for determining l is a graphical procedure 
due to Welch (1981, 1983). Its specifi c goal is to determine a time index l such 
that E(Yi) < n for i . l, where l is the warmup period. [This is equivalent to 
 determining when the transient mean curve E(Yi) (for i 5 1, 2, . . .) “fl attens out” at 
level n; see Fig. 9.1.] In general, it is very diffi cult to determine l from a single repli-
cation due to the inherent variability of the process Y1, Y2, . . . (see Fig. 9.10 below). 
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514 output data analysis for a single system

As a result, Welch’s procedure is based on making n independent replications of the 
simulation and employing the following four steps:

1.  Make n replications of the simulation (n $ 5), each of length m (where m is 
large). Let Yji be the ith observation from the jth replication ( j 5 1, 2, . . . , n; 
i 5 1, 2, . . . , m), as shown in Fig. 9.8.

2.  Let Yi 5 ^n
j51 Yjiyn for i 5 1, 2, . . .  , m (see Fig. 9.8). The averaged process 

 Y1, Y2, . . . has means E(Yi) 5 E(Yi) and variances Var(Yi) 5 Var(Yi)yn (see 
Prob. 9.12). Thus, the averaged process has the same transient mean curve as the 
original process, but its plot has only (1yn)th the variance.

3. To smooth out the high-frequency oscillations in Y1, Y2, . . . (but leave the low-
frequency oscillations or long-run trend of interest), we further defi ne the moving 

 average Yi(w) (where w is the window and is a positive integer such that 
 w # :my4 ; ) as follows:

 Yi(w) 5

⎧
⎪
⎪
⎨
⎪
⎪
⎩

^
w

s52w

Yi1s

2w 1 1

^
i21

s52(i21)

Yi1s

2i 2 1

  

if i 5 w 1 1, . . . , m 2 w

if i 5 1, . . . , w

 Thus, if i is not too close to the beginning of the replications, then Yi(w) is just the 
simple average of 2w 1 1 observations of the averaged process centered at obser-
vation i (see Fig. 9.8). It is called a moving average since i moves through time.

FIGURE 9.8
Averaged process and moving average with w 5 1 based on n replications 
of length m.
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chapter nine 515

4. Plot Yi(w) for i 5 1, 2, . . . , m 2 w and choose l to be that value of i beyond 
which Y1(w), Y2(w), . . . appears to have converged. See Welch (1983, p. 292) 
for an aid in determining convergence.

The following example illustrates the calculation of the moving average.

E X A M P L E  9 . 2 4 .  For simplicity, assume that m 5 10, w 5 2, Yi 5 i for i 5 1, 2, . . . , 5, 
and Yi 5 6 for i 5 6, 7, . . . , 10. Then

Y1(2) 5 1 Y2(2) 5 2 Y3(2) 5 3

Y4(2) 5 4 Y5(2) 5 4.8 Y6(2) 5 5.4

Y7(2) 5 5.8 Y8(2) 5 6

Before giving examples of applying Welch’s procedure to actual stochastic mod-
els, we make the following recommendations on choosing the parameters n, m, and w:

• Initially, make n 5 5 or 10 replications (depending on model execution time), 
with m as large as practical. In particular, m should be much larger than the antici-
pated value of l (see Sec. 9.5.2) and also large enough to allow infrequent events 
(e.g., machine breakdowns) to occur a reasonable number of times.

• Plot Yi(w) for several values of the window w and choose the smallest value of w 
(if any) for which the corresponding plot is “reasonably smooth.” Use this plot to 
determine the length of the warmup period l. [Choosing w is like choosing the 
interval width Db for a histogram (see Sec. 6.4.2). If w is too small, the plot of 
Yi(w) will be “ragged.” If w is too large, then the Yi observations will be overag-
gregated and we will not have a good idea of the shape of the transient mean 
curve, E(Yi) for i 5 1, 2, . . . .]

• If no value of w in step 3 is satisfactory, make 5 or 10 additional replications of 
length m. Repeat step 2 using all available replications. [For a fi xed value of w, the 
plot of Yi(w) will get “smoother” as the number of replications increases. Why?]

The major diffi culty in applying Welch’s procedure in practice is that the re-
quired number of replications, n, may be relatively large if the process Y1, Y2, . . . is 
highly variable [see Alexopoulos and Seila (1998, p. 240)]. Also, the choice of l is 
somewhat subjective.

E X A M P L E  9 . 2 5 .  A small factory consists of a machining center and inspection station 
in series, as shown in Fig. 9.9. Unfi nished parts arrive to the factory with exponential 
interarrival times having a mean of 1 minute. Processing times at the machine are uni-
form on the interval [0.65, 0.70] minute, and subsequent inspection times at the inspection 

Machining
center

Inspection
station

0.9 good

0.1 bad

QueueQueue

FIGURE 9.9
Small factory consisting of a machining center and an inspection 
station.
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516 output data analysis for a single system

station are uniform on the interval [0.75, 0.80] minute. Ninety percent of inspected parts 
are “good” and are sent to shipping; 10 percent of the parts are “bad” and are sent back 
to the machine for rework. (Both queues are assumed to have infi nite capacity.) The 
machining center is subject to randomly occurring breakdowns. In particular, a new (or 
freshly repaired) machine will break down after an exponential amount of calendar 
time with a mean of 6 hours (see Sec. 14.4.2). Repair times are uniform on the interval 
[8, 12] minutes. If a part is being processed when the machine breaks down, then the 
machine continues where it left off upon the completion of repair. Assume that the factory 
is initially empty and idle, and is open 8 hours per day.
 Consider the stochastic process N1, N2, . . . , where Ni is the number of parts pro-
duced in the ith hour. Suppose that we want to determine the warmup period l so that we 
can eventually estimate the steady-state mean hourly throughput n 5 E(N ) (see Exam-
ple 9.30). We made n 5 10 independent replications of the simulation each of length 
m 5 160 hours (or 20 days). In Fig. 9.10 we plot the averaged process Ni for i 5 1, 
2, . . . , 160. It is clear that further smoothing of the plot is necessary, and that one rep-
lication, in general, is not suffi cient to estimate l. In Figs. 9.11a and 9.11b we plot the 
moving average Ni(w) for both w 5 20 and w 5 30. From the plot for w 5 30 (which 
is smoother), we chose a warmup period of l 5 24 hours. Note that it is better to choose l 
too large rather than too small, since our goal is to have E(Yi) close to n for i . l. (We 
choose to tolerate slightly higher variance in order to be more certain that our point 
estimator for n will have a small bias.)

E X A M P L E  9 . 2 6 .  Consider a simple model of a Signaling System Number 7 (SS7) 
network that is used for setting up and tearing down of telephone calls, and for process-
ing of “800” calls. (The actual calls are transmitted on an associated circuit-switched 

70

60

50
1 160 i

Ni

FIGURE 9.10
Averaged process for hourly throughputs, small factory.
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Ni(20)
70
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50
1 160 i

Ni(30)
70

60

50
1 160 i

l � 24

(a)

(b)

FIGURE 9.11
Moving averages for hourly throughputs, small factory: (a) w 5 20; (b) w 5 30.
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518 output data analysis for a single system

network.) The network consists of four Signaling Points (denoted SP-1, . . . , SP-4), 
two Signal Transfer Point pairs (STP-A/STP-B and STP-C/STP-D), and pairs 
(see Prob. 9.33) of 56 kilobits per second, full-duplex (bidirectional) links as shown in 
Fig. 9.12. (A line segment in Fig. 9.12 corresponds to two links.) The links from node 
SP-1 to node STP-A are denoted by 1-A, the links from STP-A to STP-C are denoted 
by A-C, etc. There is a system requirement that the utilization of each STP and link 
cannot exceed 0.4. (This requirement is necessary in the actual network to allow extra 
capacity in case a resource breaks down; however, we do not model breakdowns here.)
 Each SP sends messages (signals) to each of the other SPs in accordance with a 
Poisson process (i.e., exponential interarrival times) with rates given in Table 9.6. The 
length of a message is a discrete uniform random variable in the range 23 to 29 bytes. 
Each message also includes a 7-byte routing label (containing the source and destina-
tion nodes) when it is sent over a link.
 Each STP (SP) contains three (two) parallel processors (see Prob. 9.34) that are fed 
by a single input queue, and there is an output queue for each link that emanates from 
the node. A message must be processed on one of the processors in a node, and process-
ing times are a constant 2.5 milliseconds.
 The initial links used to send a message from one node to another are given in 
Table 9.7. When two links are available, each one is chosen with a probability of 0.5.
 Consider the stochastic process E1, E2, . . . , where Ei is the end-to-end delay (i.e., 
the time to go from a source SP to a destination SP) of the ith completed message. Sup-
pose that we want to determine the warmup period l so that we can eventually estimate 
the steady-state mean n 5 E(E ) (see Example 9.31). [The symbol E(E ) is the expected 
value of the steady-state random variable E.] We made n 5 5 independent replications 
of the simulation, each of length m 5 10 seconds. In Fig. 9.13 we plot the end-to-end 
delay moving average Ei(w) for w 5 600. [Note that the number of Ei observations in a 
10-second simulation run is a random variable with approximate mean 12,400, since the 

TABLE 9.6

Traffi c rates (in messages per minute) from one SP to another SP

Node SP-1 SP-2 SP-3 SP-4

SP-1  9600 7200 4800
SP-2 8000  4800 7200
SP-3 6400 4800  6400
SP-4 4800 5600 4800

SP-1 STP-A STP-C SP-3

SP-2 STP-B STP-D SP-4

FIGURE 9.12
Topology of the SS7 network.

 Note: Each line segment represents two links.
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overall arrival rate is 1240 messages per second and the system is stable (see Prob. 9.35). 
Therefore, for our analysis we used the minimum number of observations for any one 
of the 5 runs, which was 12,306. However, Ei(w) is only plotted for i 5 1, 2, . . . , 9920 
(a multiple of 1240) in Fig. 9.13.] From the plot, we conservatively chose a warmup 
period of l 5 6200 (5 3 1240) end-to-end delays. However, for the construction of a 
confi dence interval in Example 9.31, we will actually use a warmup period of 5 seconds, 
since the run length m is in units of seconds.

TABLE 9.7

Initial links used (see Fig. 9.12) in going from one node (row) to another node (column)

Node SP-1 SP-2 SP-3 SP-4

SP-1  1-2 1-A, 1-B 1-A, 1-B
SP-2 1-2  2-A, 2-B 2-A, 2-B
SP-3 3-C, 3-D 3-C, 3-D  3-C, 3-D
SP-4 4-C, 4-D 4-C, 4-D 4-C, 4-D

Node SP-1 SP-2 SP-3 SP-4

STP-A 1-A 2-A A-C, A-D A-C, A-D
STP-B 1-B 2-B B-C, B-D B-C, B-D
STP-C A-C, B-C A-C, B-C 3-C 4-C
STP-D A-D, B-D A-D, B-D 3-D 4-D

FIGURE 9.13
Moving average with w 5 600 for end-to-end delays, SS7 network.
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520 output data analysis for a single system

E X A M P L E  9 . 2 7 .  Consider the process C1, C2, . . . for the inventory system of Exam-
ple 9.3. Suppose that we want to determine the warmup period l in order to estimate the 
steady-state mean cost per month c 5 E(C ) 5 112.11. We made n 5 10 independent 
replications of the simulation of length m 5 100 months. In Fig. 9.14 we plot the mov-
ing average Ci(w) for w 5 20, from which we chose a warmup period of l 5 30 months.

Additional applications of Welch’s procedure are given in Chaps. 10 through 12 
and 14. Note also that a version of Welch’s procedure is available in the manufacturing-
oriented simulation package AutoMod [see Banks (2004)].

White (1997) introduced a procedure for determining a warmup period or 
 deletion amount called MSER (Marginal Standard Error Rules), which is based on 
minimizing mean-squared error. Let Y 1m, l2 be as defi ned above and let

 S2(m, l) 5

^
m

i5l11

[Yi 2 Y(m, l)]2

m 2 l

be the sample variance of Yl11, Yl12, . . . , Ym if we divide by m 2 l rather than the 
usual m 2 l 2 1. Defi ne the MSER(m, l) statistic as

 MSER(m, l) 5
S2(m, l)

m 2 l

If the Yi’s were IID and S2(m, l) had an m 2 l 2 1 in the denominator, then the 
MSER(m, l) statistic would be an unbiased estimator of the variance of Y(m, l) [the 
square of the standard error of Y(m, l)]. Then the optimal deletion amount, l*, is 
that value of l that minimizes MSER(m, l) over the values l 5 0, 1, . . . , m 2 1, 
which is often written as

 l* 5 arg min 
l50,1, .  . . ,m21

MSER(m, l) (9.5)

where “arg” is an abbreviation for argument. Pasupathy and Schmeiser (2010) show 
that MSER(m, l) is asymptotically (as m goes to infi nity) proportional to the 

FIGURE 9.14
Moving average with w 5 20 for monthly costs, inventory system.
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mean-squared error MSE[Y(m, l)] for every l. Therefore, for large m the value of 
l that minimizes MSER(m, l) will tend to lie close to the value of l that minimizes 
MSE[Y(m, l)]. Although MSER is explicitly designed to minimize mean-squared 
error, it is also stated by its proponents to be a procedure for reducing the bias in 
Y(m, l) [see Hoad et al. (2009, p. 9) and Franklin and White (2008, p. 545)].

White et al. (2000) discuss a variant of MSER called MSER-k. Let

 Zj 5

^
k

i51

Yk( j21)1i

k
  for j 5 1, 2, . . . , :myk ;

Then MSER-k applies the rule given by Eq. (9.5) to the batch averages Zj’s rather 
than to the Yi’s, where MSER-1 is, of course, the same as MSER. In practice, 
MSER-5 is typically used rather than MSER, since the former operates on 
“smoother” data. Also, if l* . :myk ;y2 (half the number of batches), then l* is re-
jected as a valid warmup period. In this case, m should be increased and MSER-5 
applied to the new set of batch averages, etc. Note that the choices k 5 5 and 
:myk ;y2 are somewhat arbitrary, but have been found to work fairly well in practice. 
Finally, Hoad et al. (2009) recommend that MSER-5 be applied to data averaged 
over fi ve replications rather than to data from one replication (see Example 9.28). 
Additional papers that discuss MSER-5 are Mokashi et al. (2010) and  Sanchez and 
White (2011).

E X A M P L E  9 . 2 8 .  Consider the delay-in-queue process D1, D2, . . . for the M/M/1 queue 
with r 5 0.9 (l 5 1, v 5 10y9) and initial conditions s 5 0. We made n 5 5 indepen-
dent replications of length m 5 65,000 observations and applied MSER-5 to the aver-
aged process D1, D2, . . . , D65,000 (see Sec. 9.5.1 for the defi nition of Di). MSER-5 chose 
a warmup period of l* 5 3 batches, resulting in a total deletion amount of 15 observa-
tions. (All calculations were performed using an Excel macro graciously provided by 
Professor Katy Hoad of the University of Warwick; it allows m to have a maximum 
value of 65,536.) The fact that l* is close to 0 is not surprising given the result of 
Blomqvist discussed earlier in this section. A plot of the MSER-5 statistic as a function 
of the batch number, l, is given Fig. 9.15, where it can be seen that l 5 3 does, in fact, 
minimize the MSER-5 statistic. It can also be seen from Fig. 9.2 that MSER-5 failed to 
delete a large amount of biased data.
 In order to see how sensitive the optimal deletion amount l* might be to the value 
of m, we repeated the above analysis using subsets of the existing 65,000 observations 
of size 1000, 5000, 10,000, 20,000, and 40,000. For each of the fi ve subset sizes, l* was 
equal to 3 or 4.
 To see the effect of the batch size k on the selected warmup period, we applied 
MSER-1 (i.e., k 5 1) to the n 5 5 replications of length m 5 65,000 and obtained 
l* 5 16, resulting in a total deletion amount of 16 observations (compared to a deletion 
amount of 15 above).

E X A M P L E  9 . 2 9  Consider again the SS7 network of Example 9.26, where we had n 5 5 
replications of length m 5 12,306 observations. We applied MSER-5 to the averaged 
process E1, E2, . . . , E12,306 and obtained a warmup period of l* 5 2 batches, resulting in 
a total deletion amount of 10 observations. (Recall from Example 9.26 that Welch’s 
procedure called for a warmup period of 6200 observations.) A plot of the MSER-5 

Law01323_ch09_488-555.indd Page 521  30/10/13  7:05 PM user-f-w-198 Law01323_ch09_488-555.indd Page 521  30/10/13  7:05 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



522 output data analysis for a single system

statistic as a function of the batch number, l, is given in Fig. 9.16, where it can be seen 
that l 5 2 minimizes the MSER-5 statistic. It appears from Fig. 9.13 that MSER-5 failed 
to delete a large amount of biased data.
 In order to see how sensitive the optimal deletion amount l* might be to the value 
of m, we repeated the above analysis using subsets of the existing 12,306 observations 
of size 1000, 2000, 4000, and 8000. For each of the four subset sizes, l* was equal to 2.

Based on the two examples presented above (and several others not shown), it 
appears that MSER may fail to delete a signifi cant amount of highly biased data for 
some simulation models.

FIGURE 9.15
Plot of MSER-5 statistic as a function of the batch number, l, M/M/1 queue with 
r 5 0.9.
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FIGURE 9.16
Plot of MSER-5 statistic as a function of the batch number, l, SS7 network.
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Schruben (1982) developed a very general procedure based on standardized 
time series (see Sec. 9.5.3) for determining whether the observations Ys11, Ys12, . . . , 
Ys1t (where s need not be zero) contain initialization bias with respect to the 
steady-state mean n 5 E(Y ), that is, whether E(Yi) fi n for at least one i (where 
s 1 1 # i # s 1 t). As the procedure is constituted, it is not an algorithm for deter-
mining a deletion amount l, but rather a test to determine whether a set of observa-
tions contains initialization bias. For example, it could be applied to the truncated 
averaged process Yl11, Yl12, . . . , Ym resulting from applying Welch’s procedure, in 
order to determine if there is signifi cant remaining bias. Schruben tested his proce-
dure on several stochastic models with a known value of n, and found that it had 
high power in detecting initialization bias [see also Glynn (1995)]. Variations of this 
initialization-bias test are given in Schruben, Singh, and Tierney (1983) and in 
Goldsman, Schruben, and Swain (1994). Additionally, Vassilacopoulos (1989) pro-
posed a rank test for accessing the presence of initialization bias. Limited testing on 
the M/M/s queue produced encouraging results. Finally, comprehensive lists of 
 references on the problem of the initial transient can be found in Hoad et al. (2009) 
and Pasupathy and Schmeiser (2010).

In Example 9.23 we saw that initializing the M/M/1 queue with the steady-state 
number in system distribution resulted in the process D1, D2, . . . not having an 
 initial transient. This suggests trying to estimate the steady-state distribution from a 
“pilot” run, and then independently sampling from this estimated distribution in 
order to determine the initial conditions for each production run. Kelton (1989) 
 applied this idea to several queueing systems and also a computer model, where in 
each case the state of the system is an integer-valued random variable. He found that 
random initialization reduced the severity and duration of the initial transient period 
as compared with starting the simulation in a fi xed state (e.g., no one present in a 
queueing system). This technique would be harder to apply, however, in the case of 
many real-world simulations, where the state of the system has a multivariate distri-
bution [see Murray (1988) and Law (1983, p. 1016) for further discussion]. Glynn 
(1988) discusses a related method where a one-time pass through the “transient 
period” is used to specify the starting conditions for subsequent replications.

9.5.2 Replication/Deletion Approach for Means

Suppose that we want to estimate the steady-state mean n 5 E(Y ) of the process Y1, 
Y2, . . . . There are six fundamental approaches for addressing this problem, which 
are discussed in this and the next section. We will for the most part, however, concen-
trate on one of these, the replication/deletion approach, for the following reasons:

1. If properly applied, this approach should give reasonably good statistical 
performance.

2. It is the easiest approach to understand and implement. (This is very important 
in practice due to the time constraints of many simulation projects and because 
many analysts do not have the statistical background necessary to use some of 
the more complicated analysis approaches.)
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524 output data analysis for a single system

3. This approach applies to all types of output parameters (i.e., Secs. 9.4 through 9.6).
4. It can easily be used to estimate several different parameters for the same simula-

tion model (see Sec. 9.7).
5. This approach can be used to compare different system confi gurations, as dis-

cussed in Chap. 10.
6. Multiple replications can be made simultaneously on different cores within a 

single computer or on different computers on a network, provided that the soft-
ware being used for simulation supports this.

We now present the replication/deletion approach for obtaining a point esti-
mate and confi dence interval for n. The analysis is similar to that for terminating 
simulations except that now only those observations beyond the warmup period l in 
each replication are used to form the estimates. Specifi cally, suppose that we make 
n9 replications of the simulation each of length m9 observations, where m9 is much 
larger than the warmup period l determined by Welch’s graphical method (see 
Sec. 9.5.1). Let Yji be as defi ned before and let Xj be given by

 Xj 5

^
m¿

i5l11

Yji

m¿ 2 l
  for j 5 1, 2, . . . , n¿

(Note that Xj uses only those observations from the jth replication corresponding 
to “steady state,” namely, Yj, l11, Yj, l12, . . . , Yj,m9.) Then the Xj’s are IID random 
variables with E(Xj) < n (see Prob. 9.15), X(n¿ ) is an approximately unbiased point 
estimator for n, and an approximate 100(1 2 a) percent confi dence interval for n is 
given by

 X(n¿ ) 6 tn¿21,12ay2B
S2(n¿ )

n¿
 (9.6)

where X(n¿ ) and S2(n9) are computed from Eqs. (4.3) and (4.4), respectively.
One legitimate objection that might be levied against the replication/deletion 

approach is that it uses one set of n replications (the pilot runs) to determine the 
warmup period l, and then uses only the last m9 2 l observations from a different set 
of n9 replications (production runs) to perform the actual analyses. However, this is 
usually not a problem due to the relatively low cost of computer time.

In some situations, it should be possible to use the initial n pilot runs of length 
m observations both to determine l and to construct a confi dence interval. In particu-
lar, if m is substantially larger than the selected value of the warmup period l, then 
it is probably safe to use the “initial” runs for both purposes. Since Welch’s graphi-
cal method is only approximate, a “small” number of observations beyond the 
warmup period l might contain signifi cant bias relative to n. However, if m is much 
larger than l, these biased observations will have little effect on the overall quality 
(i.e., lack of bias) of Xj (based on m 2 l observations) or X(n). Strictly speaking, 
however, it is more correct statistically to base the replication/deletion approach on 
two independent sets of replications (see Prob. 9.16 and Example 9.31).
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E X A M P L E  9 . 3 0 .  For the manufacturing system of Example 9.25, suppose that we 
would like to obtain a point estimate and 90 percent confi dence interval for the 
steady-state mean hourly throughput n 5 E(N ). From the n 5 10 replications of length 
m 5 160 hours used there, we specifi ed a warmup period of l 5 24 hours. Since m 5 160 
is much larger than l 5 24, we will use these same replications to construct a confi -
dence interval. Let

 Xj 5

^
160

i525

Nji

136
  for j 5 1, 2, . . . , 10

Then a point estimate and 90 percent confi dence interval for n are given by

 n̂ 5 X(10) 5 59.97

and X(10) 6 t9,0.95 B
0.62

10
5 59.97 6 0.46

Thus, in the long run we would expect the small factory to produce an average of about 
60 parts per hour. Does this throughput seem reasonable? (See Prob. 9.17.)

E X A M P L E  9 . 3 1 .  For the SS7 network of Example 9.26, suppose that we would like 
to obtain a point estimate and 95 percent confi dence interval for the steady-state mean 
end-to-end delay n 5 E(E ). For this example, we made n9 5 5 new independent replica-
tions of the simulation of length m9 5 65 seconds and used the previously determined 
warmup period of l 5 5 seconds. Let Xj be the average end-to-end delay of all messages 
that are completed in the interval [5, 65] seconds for replication j. Then a point estimate 
and 95 percent confi dence interval for n (in milliseconds) are given by

 n̂ 5 X(5) 5 24.11

and

 X(5) 6 t4,0.975 B
0.0114

5
5 24.11 6 0.13

From these fi ve replications, we also found that the utilization of each STP and link was 
less than 0.4, as expected. In particular, the utilization of STP-A was 0.316, and the 
utilization of link 1-2 was 0.377. Do these values seem reasonable? (See Prob. 9.36.)

The half-length of the replication/deletion confi dence interval given by (9.6) 
depends on the variance of Xj, Var(Xj), which will be unknown when the fi rst n 
 replications are made. Therefore, if we make a fi xed number of replications of the 
simulation, the resulting confi dence-interval half-length may or may not be small 
enough for a particular purpose. We know, however, that the half-length can be de-
creased by a factor of approximately 2 by making 4 times as many replications. See 
also the discussion of “Obtaining a Specifi ed Precision” in Sec. 9.4.1.

A criticism that is sometimes made about the replication/deletion approach is 
that a 100(1 2 a ) percent confi dence interval is actually being constructed for E(Xj) 
rather than for n [i.e., X(n¿ ) is a biased estimator of n]. As a result, if we make 
a  large number of replications n9 in an effort to make the confi dence-interval 
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526 output data analysis for a single system

 half-length small, then the coverage of the confi dence interval might be much less 
than the desired 1 2 a. However, since a simulation model is only an approximation 
to the corresponding real-world system, we feel that for many, if not most, models 
it is suffi cient to estimate E(Xj), provided that it is “close” to n. This should be the 
case if we choose the run length m9 suffi ciently large and use Welch’s procedure to 
choose a conservative warmup period l.

9.5.3 Other Approaches for Means

In this section we present a more comprehensive discussion of procedures for 
constructing a point estimate and a confi dence interval for the steady-state mean 
n 5 E(Y ) of a simulation output process Y1, Y2, . . . . The following defi nitions of 
n are usually equivalent:

  n 5 lim
iS` 

E(Yi)

and  n 5 lim
mS`

^
m

i51

Yi

m
  (w.p. 1)

General references on this subject include Alexopoulos, Goldsman, and Serfozo 
(2006), Banks et al. (2010), Bratley, Fox, and Schrage (1987), Fishman (1978, 2001), 
Law (1983), and Welch (1983).

Two general strategies have been suggested in the simulation literature for 
 constructing a point estimate and confi dence interval for n:

1. Fixed-sample-size procedures. A single simulation run of an arbitrary fi xed 
length is made, and then one of a number of available procedures is used to 
 construct a confi dence interval from the available data.

2. Sequential procedures. The length of a single simulation run is sequentially in-
creased until an “acceptable” confi dence interval can be constructed. There are 
several techniques for deciding when to stop the simulation run.

Fixed-Sample-Size Procedures

There have been six fi xed-sample-size procedures suggested in the literature 
[see Law (1983) and Law and Kelton (1984) for surveys]. The replication/deletion 
approach, which was discussed in Sec. 9.5.2, is based on n independent “short” 
replications of length m observations. It tends to suffer from bias in the point esti-
mator n̂ (see Sec. 9.1). The fi ve other approaches are based on one “long” replica-
tion, and tend to have a problem with bias in the estimator Var

^
(n̂) of the variance of 

the point estimator n̂. Properties of the six approaches are given in Table 9.8, and 
details of the fi ve new approaches are now presented.

The method of batch means, like the replication/deletion approach, seeks to 
obtain independent observations so that the formulas of Chap. 4 can be used to 
 obtain a confi dence interval. However, since the batch-means method is based on a 
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single long run, it has to go through the “transient period” only once. Assume that 
Y1, Y2, . . . is a covariance-stationary process (see Sec. 4.3) with E(Yi) 5 n for all i. 
(Alternatively, suppose that the fi rst l observations have been deleted and we are 
dealing with Yl11, Yl12, . . . . If n exists, in general Yl11, Yl12, . . . will be approxi-
mately covariance-stationary if l is large enough.) Suppose that we make a simula-
tion run of length m and then divide the resulting observations Y1, Y2, . . . , Ym into 
n batches of length k. (Assume that m 5 nk.) Thus, batch 1 consists of obser-
vations Y1, . . . , Yk, batch 2 consists of observations Yk11, . . . , Y2k, etc. Let Yj(k) 
(where j 5 1, 2, . . . , n) be the sample (or batch) mean of the k observations in the 
jth batch, and let Y (n, k) 5 ^n

j51 Yj(k)yn 5 ^m
i51 Yiym be the grand sample mean. 

We shall use Y (n, k)  as our point estimator for n. [The Yj(k)’s will eventually play 
the same role for batch means as the Xj’s did for the replication/deletion approach in 
Sec. 9.5.2.]

If the process Y1, Y2, . . . satisfi es some additional conditions in addition to being 
covariance-stationary, then, for a fi xed number of batches n, Steiger and Wilson 
(2001) show that the Yj(k)’s are asymptotically (as k S `) distributed as indepen-
dent normal random variables with mean n. Therefore, if the batch size k is large 
enough, it is reasonable to treat the Yj(k)’s as if they were IID normal random 
 variables with mean n. Then a point estimate and approximate 100(1 2 a) percent 
confi dence interval for n are obtained by substituting Xj 5 Yj(k) into (4.3), (4.4), 
and (4.12).

The major source of error for batch means lies in choosing the batch size k 
too small, which results in the Yj(k)’s possibly being highly correlated and S2(n)yn 
being a severely biased estimator of Var[X(n)] 5 Var[Y (n, k)]; see Sec. 4.4. In 
particular, if the Yi’s are positively correlated (as is often the case in practice), the 
Yj(k)’s will be too, giving a variance estimator that is biased low and a confi dence 
interval that is too small. Thus, the confi dence interval will cover n with a probabil-
ity that is lower than the desired 1 2 a.

TABLE 9.8

Properties of steady-state estimation procedures

 Number of Most serious Potential
Approach replications bias problem diffi culties

Replication/deletion n (n $ 2) n̂ Choice of warmup 
    period, l
Batch means 1 Var

^
(n̂) Choice of batch size, k, 

     to obtain uncorrelated 
batch means

Autoregressive 1 Var
^

(n̂) Quality of autoregressive 
    model
Spectral 1 Var

^
(n̂) Choice of number of 

    covariance lags, q
Regenerative 1 Var

^
(n̂) Existence of cycles with 

    “small” mean length
Standardized time series 1 Var

^
(n̂) Choice of batch size, k
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528 output data analysis for a single system

There have been several variations of batch means proposed in the literature. 
Meketon and Schmeiser (1984) introduced the method of overlapping batch means 
(OBM), where Y (n, k)  is once again the point estimator for n but the expression for 
Var
^

[Y (n, k) ] involves all m 2 k 1 1 batch means of size k. In particular, batch 1 
consists of observations Y1, . . . , Yk, batch 2 consists of observations Y2, . . . , Yk11, etc. 
Let Yj(k) (where j 5 1, 2, . . . , m 2 k 1 1) be the sample (or batch) mean of the 
k observations in the jth batch; the Yj(k)’s will, in general, be highly correlated. 
Then the OBM-based estimator of Var[Y (n, k)] is given by

 Var
^

O[Y (n, k)] 5

k ^
m2k11

j51
 [Yj(k) 2 Y (n, k)]2

(m 2 k 1 1)(m 2 k)

and an approximate 100(1 2 a) percent confi dence interval for n is

 Y (n, k) 6 tf,12ay22Var
^

O[Y (n, k) ]

where the degrees of freedom, f, for the t distribution is discussed in Alexopoulos, 
Goldsman, and Serfozo (2006). Empirical results for the OBM confi dence interval 
can be found in Sargent, Kang, and Goldsman (1992).

Bischak, Kelton, and Pollak (1993) studied the idea of weighted batch means, 
where a weight of wi is assigned to the ith observation in a batch and the wi’s sum 
to 1. In the usual batch-means approach, wi 5 1yk for all i. Fox, Goldsman, and 
Swain (1991) consider the idea of spaced batch means, where a spacer of size s is 
inserted between the batches used for the actual analysis to reduce the correlations 
among the Yj(k)’s.

Tafazzoli et al. (2011) propose N-Skart. It accounts for skewness in the batch 
means by using the Willink confi dence interval given by (4.13) and it makes a 
 correlation adjustment to the half-length of the confi dence interval based on the 
estimated lag-one correlation between the batch means.

Argon and Andradóttir (2006) introduced the method of replicated batch means, 
which is based on making a “small” number, r, of replications of length m, and then 
breaking each replication into n batches of length k (m 5 nk). The sample mean of 
the r replication averages is used as a point estimator for n, and the rn batch means 
are used to construct a variance estimator. This method includes replication as a 
special case when n 5 1, and it includes batch means as a special case when r 5 1. 
Other papers that discuss batch means in general are by Alexopoulos and Goldsman 
(2004); Alexopoulos, Goldsman, and Serfozo (2006); Damerdji (1994); Fishman 
and Yarberry (1997); Sargent, Kang, and Goldsman (1992); Schmeiser (1982); 
 Schmeiser and Song (1996); and Song and Schmeiser (1995). Sequential proce-
dures based on batch means are discussed at the end of this section.

Rather than attempt to achieve independence, the two methods we discuss next 
use estimates of the autocorrelation structure of the underlying stochastic process to 
obtain an estimate of the variance of the sample mean and ultimately to construct a 
confi dence interval for n. Assume that we have the observations Y1, Y2, . . . , Ym from 
a single replication of the simulation and let Y(m) 5 ^m

i51 Yiym be our point estima-
tor for n. The autoregressive method, developed by Fishman (1971, 1973a, 1978), 

Law01323_ch09_488-555.indd Page 528  01/11/13  7:33 PM user-f-w-198 Law01323_ch09_488-555.indd Page 528  01/11/13  7:33 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



chapter nine 529

assumes that the process Y1, Y2, . . . is covariance-stationary with E(Yi) 5 n and can 
be represented by the pth-order autoregressive model

 ^
p

j50

bj(Yi2 j 2 n) 5 Pi  (9.7)

where b0 5 1 and {Pi} is a sequence of uncorrelated random variables with common 
mean 0 and variance sP

2. For known autoregressive order p and

 ^
`

j52`

0Cj 0 , `  (9.8)

it is possible to show that m Var[Y(m)] SsP
2y(^p

j50 bj)
2 as m S `. Based on 

 estimating the covariances Cj from the observations Y1, . . . , Ym, Fishman (1973a) 
gives a procedure for determining the order p and obtaining estimates b̂j (where 
j 5 1, 2, . . . , p̂) and ŝP

2, where p̂ is the estimated order. Let b̂ 5 1 1 ^p̂
j51 b̂j. 

Then, for large m, an estimate of Var[Y(m)] and an approximate 100(1 2 a) percent 
confi dence interval for n are given by

 Var
^

[Y(m)] 5
ŝP

2

m(b̂)2

and Y(m) 6 tf̂ ,12ay2 2Var
^

[Y(m)]

where an expression for the estimated df f̂  is given by

 f̂ 5
mb̂

2 ^
p̂

j50

( p̂ 2 2j)b̂j

Yuan and Nelson (1994) give an alternative approach for estimating the autore-
gressive order p and the df f. Their approach gives better coverage than Fishman’s 
approach for the M/M/1 queue with r 5 0.9.

A major concern in using these approaches is whether the autoregressive model 
provides a good representation for an arbitrary stochastic process. Schriber and 
Andrews (1984) give a generalization of the autoregressive method that allows for 
moving-average components as well.

The method of spectrum analysis also assumes that the process Y1, Y2, . . . is 
covariance-stationary with E(Yi) 5 n, but does not make any further assumptions 
such as that given by Eq. (9.7). Under this stationarity assumption, it is possible to 
show that

 Var[Y(m)] 5

C0 1 2 ^
m21

j51

(1 2 jym)Cj

m
 (9.9)

[which is essentially the same as Eq. (4.7)], and the method of spectrum analysis 
uses this relationship as a starting point for estimating Var[Y(m)]. The name of this 
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530 output data analysis for a single system

method is based on the fact that, provided (9.8) holds, we have m Var[Y(m)] S 2pg(0) 
as m S `, where g(t) is called the spectrum of the process at frequency t, and is de-
fi ned by the Fourier transform g(t) 5 (2p)21^`

j52`Cj exp(2itj) for 0 t 0 # p and 
i 5 121. Thus, for large m, Var[Y(m)] < 2pg(0)ym and the problem of estimat-
ing Var[Y(m)] can be viewed as that of estimating the spectrum at zero frequency.

An estimator of Var[Y(m)] that immediately presents itself is obtained by sim-
ply replacing Cj in Eq. (9.9) by an estimate Ĉj computed from Y1, Y2, . . . , Ym and 
Eq. (4.9). However, for large m and j near m, Cj will generally be nearly zero, but Ĉj 
will have a large variance since it will be based on only a few observations. As a 
result, several authors have suggested estimators of the following form:

 Var
^

[Y(m)] 5

Ĉ0 1 2 ^
q21

j51

Wq( j)Ĉj

m

where q (which determines the number of Ĉj’s in the estimator) must be specifi ed 
and the weighting function Wq( j) is designed to improve the sampling properties of 
Var
^

[Y(m)]. Then an approximate 100(1 2 a) percent confi dence interval for n is 
given by
 Y(m) 6 tf,12ay2 2Var

^
[Y(m)]

where f depends on m, q, and the choice of weighting function [see Fishman (1969, 
1973a) and Law and Kelton (1984)]. Welch (1987) discusses the relationships 
among batch means, overlapping batch means, and spectrum analysis.

This technique is complicated, requiring a fairly sophisticated background on 
the part of the analyst. Moreover, there is no defi nitive procedure for choosing the 
value of q. Additional discussions of spectral methods may be found in Damerdji 
(1991), Heidelberger and Welch (1981a, 1981b, 1983), Lada and Wilson (2006a), 
and Lada et al. (2007).

The regenerative method is an altogether different approach to simulation and 
thus leads to different approaches to constructing a confi dence interval for n. The 
idea is to identify random times at which the process probabilistically “starts over,” 
i.e., regenerates, and to use these regeneration points to obtain independent random 
variables to which classical statistical analysis can be applied to form point and 
interval estimates for n. This method was developed simultaneously by Crane and 
Iglehart (1974a, 1974b, 1975) and by Fishman (1973b, 1974); we follow the presen-
tation of the former authors.

Assume for the output process Y1, Y2, . . . that there is a sequence of random 
indices 1 # B1 , B2 , . . . , called regeneration points, at which the process starts 
over probabilistically; i.e., the distribution of the process {YBj1i21, i 5 1, 2, . . .} is 

the same for each j 5 1, 2, . . . , and the process from each Bj on is assumed to be 
independent of the process prior to Bj. The portion of the process between two 
 successive Bj’s is called a regeneration cycle, and it can be shown that successive 
cycles are IID replicas of each other. In particular, comparable random variables 
defi ned over the successive cycles are IID. Let Nj 5 Bj11 2 Bj for j 5 1, 2, . . . 
and assume that E(Nj) , `. If Zj 5 ^Bj1121

i5Bj
 Yi, the random vectors Uj 5 (Zj, Nj)

T 
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(where AT is the transpose of the vector A) are IID, and provided that E( 0 Zj 0 ) , `, 
the steady-state mean n is given (see Prob. 9.21) by

 n 5
E(Z )

E(N )

E X A M P L E  9 . 3 2 .  Consider the output process of delays D1, D2, . . . for a single-server 
queue with IID interarrival times, IID service times, customers served in a FIFO  manner, 
and r , 1. The indices of those customers who arrive to fi nd the system completely 
empty are regeneration points (see Fig. 9.17). Let Nj be the total number of customers 
served in the jth cycle and let Zj 5 ^Bj1121

i5Bj
 Di be the total delay of all customers served 

in the jth cycle. Then the steady-state mean delay d is given by d 5 E(Z )yE(N ).
 Note that the indices of customers who arrive to fi nd l customers present (l $ 1 and 
fi xed) will not, in general, be regeneration points for the process D1, D2, . . . . This is be-
cause the distribution of the remaining service time of the customer in service will be 
different for successive customers who arrive to fi nd l customers present. However, if 
service times are exponential random variables, these indices are regeneration points due 
to the memoryless property of the exponential distribution (see Probs. 4.26 and 9.22).

We now discuss how to obtain a point estimator and a confi dence interval for n 
using the regenerative method. Suppose that we simulate the process Y1, Y2, . . . for 
exactly n9 regeneration cycles, resulting in the following data:

 Z1, Z2, . . . , Zn9

 N1, N2, . . . , Nn9

Each of these sequences consists of IID random variables. In general, however, Zj 
and Nj are not independent. A point estimator for n is then given by

 n̂(n¿) 5
Z(n¿)
N(n¿)

Although Z(n¿) and N(n¿) are unbiased estimators of E(Z ) and E(N ), respectively, 
n̂(n¿) is not an unbiased estimator of n (see App. 9A). It is true, however, that n̂(n¿) 
is a strongly consistent estimator of n, that is, n̂(n¿) S n as n¿ S ` (w.p. 1); see 
Prob. 9.21.

L(t)
3

2

1

B1 � 1

N1 � 3

N2 � 1

N3 � 2

B2 � 4 B3 � 5 t

FIGURE 9.17
A realization of the number-in-system process {L(t), t $ 0} for a single-server queue.
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532 output data analysis for a single system

Let the covariance matrix of the vector Uj 5 (Zj, Nj)
T be

 ^ 5 c
s11

s12

s12

s22
d

for example, s12 5 E{[Zj 2 E(Zj)][Nj 2 E(Nj)]}, and let Vj 5 Zj 2 nNj. Then the Vj’s 
are IID random variables with mean 0 and variance sV

2 5 s11 2 2ns12 1 n2s22 (see 
Prob. 4.13). Therefore, if 0 , sV

2 , `, it follows from the classical central limit 
theorem (see Theorem 4.1 in Sec. 4.5) that

 
V(n¿ )
2sV

2yn¿
S$ N(0, 1)  as n¿ S ` (9.10)

where S$ denotes convergence in distribution. Let

 ^ˆ (n¿) 5 c
ŝ11(n¿)
ŝ12(n¿)

ŝ12(n¿)
ŝ22(n¿) d 5

^
n¿

j51

[Uj 2 U(n¿)][Uj 2 U(n¿)]T

n¿ 2 1

be the estimated covariance matrix and let

 ŝV
2 (n¿) 5 ŝ11(n¿) 2 2n̂(n¿)ŝ12(n¿) 1 [n̂(n¿)]2ŝ22(n¿)

be the estimate of sV
2 based on n9 regeneration cycles. It can be shown that ŝ2

V(n¿ ) S 
sV

2 as n9 S ` (w.p. 1). Consequently, we can replace sV
2 in (9.10) by ŝ2

V (n¿ ) [see 
Chung (1974, p. 93)], and dividing through the ratio by N(n¿) yields

 
n̂(n¿) 2 n

2ŝ2
V (n¿)y{n¿ [N(n¿ )]2}

S$ N(0, 1)  as n¿ S `

Therefore, if the number of cycles n9 is suffi ciently large, an approximate (in terms 
of coverage) 100(1 2 a) percent confi dence interval for n is given by

 n̂(n¿) 6
z12ay22ŝ2

V (n¿)yn¿
N(n¿)

 (9.11)

We call this regenerative approach to constructing a confi dence interval for n the 
classical approach (C). For an alternative regenerative approach to constructing a 
confi dence interval for n, known as the jackknife approach (J), see App. 9A.

The diffi culty with using the regenerative method in practice is that real-world 
simulations may not have regeneration points, or (even if they do) the expected 
cycle length may be so large that only a very few cycles can be simulated [in which 
case the confi dence interval given by (9.11) will not be valid]. For example, suppose 
one wants to estimate by simulation the steady-state mean total delay in queue for a 
network consisting of k queueing systems in series. [A customer departing from 
queueing system i (where i 5 1, 2, . . . , k 2 1) proceeds to queueing system i 1 1.] 
Then regeneration points for the process D1, D2, . . . (where Di is the total delay of the 
ith customer to arrive) are the indices of those customers who arrive at the fi rst queue-
ing system to fi nd the entire network empty. If the queueing systems composing the 
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network are highly utilized, as is typical, regeneration points for the network will be 
few and far between. A more complete discussion of the regenerative method may be 
found in Crane and Lemoine (1977), Henderson and Glynn (2001), and Shedler (1993).

The standardized time series method [see Schruben (1983a)] assumes that the 
process Y1, Y2, . . . is strictly stationary with E(Yi) 5 n for all i and is also phi- 
mixing. Strictly stationary means that the joint distribution of Yi11j, Yi21j, . . . , Yin1j 
is independent of j for all time indices i1, i2, . . . , in. (If n exists, then, in general, 
Yl11, Yl12, . . . should be approximately strictly stationary if l is large enough.) 
Roughly speaking, Y1, Y2, . . . is phi-mixing if Yi and Yi1j become essentially inde-
pendent as j becomes large [see Billingsley (1999) for a precise defi nition]. Suppose 
that we make one simulation run of length m and divide Y1, Y2, . . . , Ym into n batches 
of size k (where m 5 nk). Let Yj(k) be the sample mean of the k observations in the 
jth batch. The grand sample mean Y(m) is the point estimator for n. Furthermore, if 
m is large, then Y(m) will be approximately normally distributed with mean n and 
variance t2ym, where

 t2 5 lim
mS`

 m Var[Y(m)]

and is called the variance parameter. [See Alexopoulos et al. (2007a, 2007b), Antonini 
et al. (2009), Alexopoulos et al. (2010), and Meterelliyoz et al. (2012) for recent 
papers on estimating t2.] Let

 A 5 a
12

k3 2 k
b^

n

j51
e^

k

s51
^

s

i51

[Yj(k) 2 Yi1( j21)k]f
2

For a fi xed number of batches n, A will be asymptotically (as k S `) distributed as 
t2 times a chi-square random variable with n df and asymptotically independent of 
Y(m). Therefore, for k large, we can treat

 
[Y(m) 2 n]y2t2ym

2(Ayt2)yn
5

Y(m) 2 n

2Ay(mn)

as having a t distribution with n df, and an approximate 100(1 2 a) percent confi -
dence interval for n is given by

 Y(m) 6 tn,12ay2 1Ay(mn)

The major source of error for standardized time series is choosing the batch size 
k too small [see Schruben (1983a) for details]. It should be noted that this approach 
is based on the same underlying theory as Schruben’s test for initialization bias 
discussed in Sec. 9.5.1. Additional references for standardized time series, includ-
ing alternative confi dence-interval formulations, are Glynn and Iglehart (1990), 
Goldsman, Meketon, and Schruben (1990), Goldsman and Schruben (1984, 1990), 
and Sargent, Kang, and Goldsman (1992).

Since the fi ve fi xed-sample-size confi dence-interval approaches presented in 
this section depend on assumptions that will not be strictly satisfi ed in an actual 
simulation, it is of interest to see how these approaches perform in practice. We fi rst 
present the results from 400 independent simulation experiments for the M/M/1 
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queue with r 5 0.8 (l 5 1 and v 5 5
4), where in each experiment our goal was to 

construct a 90 percent confi dence interval for the steady-state mean delay d 5 3.2 
using all fi ve procedures. Not knowing how to select defi nitively the total sample 
size m for batch means (B), the autoregressive method (A), spectrum analysis (SA), 
and standardized times series (STS), we arbitrarily chose m 5 320, 640, 1280, and 
2560. For the regenerative method (R), it can be shown that E(N ) 5 1y(1 2 r) 5 5 
for the M/M/1 queue with r 5 0.8 (see Prob. 9.25). We therefore chose the number 
of regeneration cycles n95 64, 128, 256, and 512 so that, on the average, all proce-
dures used the same number of observations, that is, m 5 n9E(N ). Furthermore, we 
considered both the classical and jackknifed regenerative confi dence intervals. For 
batch means and standardized time series, we chose the number of batches n 5 5, 
10, and 20. The df f for spectrum analysis was chosen so that f 1 1 5 n, where f is 
related to the number of covariance estimates q in the variance expression by q 5 
1.33myf [see Law and Kelton (1984) for details]. Table 9.9 gives the proportion of 
the 400 confi dence intervals that covered d for each of the 48 cases discussed above. 
[All results are taken from Law and Kelton (1984), except those for standardized 
time series, which were graciously provided by Professor David Goldsman of 
Georgia Tech.] For example, in the case of m 5 320 and n 5 5 for batch means 
(i.e., each confi dence interval was based on fi ve batches of size 64), 69 percent 
of the 400 confi dence intervals covered d, falling considerably short of the desired 
90 percent. (Note that for fi xed m, the estimated coverage for batch means decreases 
as n increases. This is because as n increases, the batch means become more 
correlated, resulting in a more biased estimate of the variance of the sample mean.)

We next present the results from 200 independent simulation experiments for 
the time-shared computer model with 35 terminals [see Law and Kelton (1984)], 
which was discussed in Sec. 2.5. Our objective was to construct 90 percent confi -
dence intervals for the steady-state mean response time r 5 8.25 [see Adiri and 
Avi-Itzhak (1969)]. We chose m and n as above and, since E(N) < 32 for the com-
puter model, we took n9 5 10, 20, 40, and 80. Table 9.10 gives the proportion of the 
200 confi dence intervals that covered r for each of 36 cases (results for standardized 
time series were not available). Even though the computer model is physically much 
more complex than the M/M/1 queue, it can be seen from Table 9.10 that batch 
means with n 5 5 produces an estimated coverage very close to 0.90 for m as small 
as 640. Thus, the M/M/1 queue with r 5 0.8 is much more diffi cult statistically, 
despite its very simple structure. These two examples illustrate that one cannot infer 
anything about the statistical behavior of the output data by looking at how “com-
plex” the model’s structure might be.

From the empirical results presented in Tables 9.9 and 9.10 and also those in 
Law (1977), Law and Kelton (1984), and Sargent, Kang, and Goldsman (1992), we 
came to the following conclusions with regard to fi xed-sample-size procedures:

1.  If the total sample size m (or n9) is chosen too small, the actual coverages of all 
existing fi xed-sample-size procedures (including replication/deletion) may be 
considerably lower than desired. This is really not surprising, since a steady-state 
parameter is defi ned as a limit as the length of the simulation (total number of 
observations) goes to infi nity.
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TABLE 9.9

Estimated coverages based on 400 experiments, M/M/1 queue with R 5 0.8

  B   STS   SA  A R

  n   n   f 1 1   Method

m(n9) 5 10 20 5 10 20 5 10 20  C J

 320 (64) 0.690 0.598 0.490 0.520 0.340 0.208 0.713 0.625 0.538 0.688 0.560 0.670
 640 (128) 0.723 0.708 0.588 0.628 0.485 0.318 0.760 0.735 0.645 0.723 0.683 0.728
1280 (256) 0.780 0.740 0.705 0.730 0.645 0.485 0.783 0.770 0.745 0.753 0.705 0.748
2560 (512) 0.798 0.803 0.753 0.798 0.725 0.598 0.833 0.808 0.773 0.755 0.745 0.763

TABLE 9.10

Estimated coverages based on 200 experiments, time-shared computer model

  B   SA  A R

  n   f 1 1   Method

m(n9) 5 10 20 5 10 20  C J

 320 (10) 0.860 0.780 0.670 0.880 0.815 0.720 0.680 0.545 0.725
 640 (20) 0.890 0.855 0.790 0.870 0.870 0.820 0.805 0.730 0.830
1280 (40) 0.910 0.885 0.880 0.910 0.910 0.905 0.890 0.830 0.865
2560 (80) 0.905 0.875 0.895 0.910 0.885 0.900 0.885 0.870 0.915
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536 output data analysis for a single system

2. The “appropriate” choice of m (or n9) would appear to be extremely model- 
dependent and thus impossible to choose arbitrarily. For the method of batch 
means with n 5 5, m 5 640 gave good results for the computer model; however, 
even for m as large as 2560, we did not obtain good results for the M/M/1 queue.

3. For m fi xed, the methods of batch means, standardized time series, and spectrum 
analysis will achieve the best coverage for n and f small.

Sequential Procedures

We now discuss procedures that sequentially determine the length of a single 
simulation run needed to construct an acceptable confi dence interval for the steady-
state mean n. The need for such sequential procedures is evident from the fi xed-
sample-size results reported above. Specifi cally, no procedure in which the run 
length is fi xed before the simulation begins can generally be relied upon to produce 
a confi dence interval that covers n with the desired probability 1 2 a, if the fi xed 
run length is too small for the system being simulated.

In addition to the problem of coverage, an analyst might want to determine a 
run length large enough to obtain an estimate of n with a specifi ed absolute error b 
or relative error g (see Sec. 9.4.1). It will seldom be possible to know in advance 
even the order of magnitude of the run length needed to meet these goals for a given 
simulation problem, so some sort of procedure to increase the run length iteratively 
would seem to be in order.

Law and Kelton (1982) and Law (1983) surveyed the sequential procedures 
available at those times and found three that appeared to perform well in terms of 
achieved coverage if the specifi ed absolute or relative error was small enough. In 
particular, Fishman (1977) developed a procedure based on the regenerative method 
and an absolute-error stopping rule. Law and Kelton found that it achieved accept-
able coverage for 9 out of 10 stochastic models tested if b 5 0.075 n. Fishman’s 
procedure has the disadvantage of being based on the regenerative method, which 
we feel limits its application to real-world problems. Also, specifying an appropri-
ate value for b in practice may be troublesome, since n will, of course, be 
unknown.

Law and Carson (1979) developed a procedure based on batch means and a 
relative-error stopping rule. For a fi xed number of batches n 5 40, the batch size k 
is increased until the resulting batch means are approximately uncorrelated and the 
corresponding confi dence interval satisfi es the specifi ed relative error. However, at 
a particular iteration, 400 batch means each based on ky10 observations are actually 
used to determine whether the corresponding 40 batch means, each based on k ob-
servations, are uncorrelated. This scheme was necessary because correlation esti-
mators are generally biased and for small n have a large variance. The Law and 
Carson (L&C) procedure does not test the batch means to see whether they are 
approximately normally distributed. However, since n 5 40 and each batch mean is 
an average of many individual observations, this is probably not a major issue in 
 general (see Table 4.1). 

They applied their procedure to 14 stochastic models for which n can be com-
puted analytically. For each model, they tried to construct a 90 percent confi dence 
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interval with a relative error of g 5 0.075, and they carried out 100 independent 
experiments. (In general, we believe that if someone is going to use a sequential 
procedure, then they will choose g # 0.1. Otherwise, they will use a fi xed-sample-
size procedure.) Note that the L&C procedure does not explicitly address the startup 
problem (e.g., no warmup period is used).

In Table 9.11 we give for the L&C procedure the proportion, p̂, of the 100 
 confi dence intervals that contained n, a 90 percent confi dence interval for the true 
coverage p, and the average run length (sample size) at termination, respectively, for 
fi ve of the tested models. The 90 percent confi dence interval for the true coverage p 
was computed from p̂ 6 z  0.951p̂(1 2 p̂)y100 (see Sec. 9.4.2). The results in the 
fi rst four rows of Table 9.11 are for the delay-in-queue process for the M/M/1 queue, 
the M/M/1 LIFO queue, the M/H2/1 queue [hyperexponential service times with 
cv 5 2; see Law (1974) for the exact defi nition], and the M/M/1/M/1 queue (two 
M/M/1 queues in series), respectively; for each model, r 5 0.8. The fi fth row of 
Table 9.11 is for the response-time process for a simple model of a computer sys-
tem, which Law and Carson call central-server model 3. The last row in Table 9.11 
gives the number of independent experiments used in the evaluation of each 
procedure.

Heidelberger and Welch (1983) developed a procedure (denoted H&W) based 
on spectral methods and a relative-error stopping rule, which uses regression tech-
niques to estimate the spectrum at zero frequency. Their procedure requires the user 
to specify a maximum sample size, so some of the confi dence intervals produced 
may not satisfy the relative-error requirement. For the response-time process for 
two models of computer systems, they tried to construct a 90 percent confi dence 
interval for n, and they carried out 50 independent experiments [see Heidelberger 
and Welch (1981b)]. Let p̂ be the proportion of confi dence intervals satisfying the 
precision requirement that cover n. For g 5 0.05 they obtained p̂ equal to 0.88 and 

TABLE 9.11

Estimated coverage, 90 percent confi dence interval for true coverage, and average 
sample size when constructing nominal 90 percent confi dence intervals with G 5 0.075, 
batch-means procedures

Model L&C ASAP3 SBatch Skart

M/M/1, r 5 0.8 0.87 6 0.06 0.868 6 0.028 0.903 6 0.024 0.912 6 0.014
 75,648 72,060 89,434 82,508

M/M/1 LIFO, r 5 0.8 0.84 6 0.06 0.875 6 0.027 0.888 6 0.016 0.916 6 0.014
 74,624 68,325 97,172 81,441

M/H2/1, r 5 0.8 0.90 6 0.05 0.900 6 0.025 0.896 6 0.025 0.913 6 0.015
 229,632 228,482 254,400 255,363

M/M/1/M/1, r 5 0.8 0.87 6 0.06 0.913 6 0.023 0.931 6 0.013 0.909 6 0.016
 49,920 58,844 55,398 58,573

Central-server model 3 0.88 6 0.05 0.870 6 0.026 0.921 6 0.014 0.873 6 0.017
 3740 18,447 85,842 12,231

Experiments 100 400 1000 1000
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538 output data analysis for a single system

0.84 for the two models. Additional empirical results for the H&W procedure are 
given in Table 9.12 above.

Steiger et al. (2005) proposed a modifi ed version of the Automated Simula-
tion Analysis Procedure [Steiger and Wilson (2002)], called ASAP3, which is 
based on the method of batch means. It operates as follows: The batch size is 
incrementally increased until spaced groups of four adjacent batch means pass a 
test for multivariate normality (see Sec. 6.10.1), where the spacer preceding each 
group also consists of four adjacent batch means. Then after skipping the fi rst 
spacer as the warmup period, ASAP3 fi ts an AR(1) process to the nonspaced 
batch means. If necessary, the batch size is further increased until the autoregres-
sive parameter f in the AR(1) model does not exceed 0.8. Next, ASAP3 uses a 
modifi ed t confi dence interval based on the AR(1) parameter estimates to account 
for the remaining correlations in the batch means. Note that unlike the L&C 
procedure, ASAP3 does not try to obtain uncorrelated batch means. For each 
model they tried to construct a 90 percent confi dence interval for n with a relative 
error of g 5 0.075, and they carried out 400 independent experiments, with the 
results given in Table 9.11. Additional performance results for ASAP3 are given 
in Tafazzoli et al. (2011).

Lada et al. (2008) introduced SBatch (Spaced Batch means) for constructing a 
confi dence interval for a steady-state mean. SBatch uses a randomness test and a 
normality test to iteratively determine the size s of a spacer proceeding each batch 
and the batch size k so that the resulting spaced batch means are approximately IID 
normal random variables. To check for any residual correlation between the spaced 
batch means, SBatch tests the lag-one correlation of the spaced batch means to 
make sure that it does not exceed 0.8. Each time the correlation test is failed, the 
batch size is increased, additional observations are obtained from the simulation, a 

TABLE 9.12

Estimated coverage, 90 percent confi dence interval for 
true coverage, and average sample size when constructing 
nominal 90 percent confi dence intervals with G 5 0.075, 
spectral procedures

Model H&W WASSP

M/M/1, r 5 0.8 0.790 6 0.034 0.885 6 0.026
 77,971 117,540

M/M/1 LIFO, r 5 0.8 0.795 6 0.033 0.902 6 0.024
 80,098 152,355

M/H2/1, r 5 0.8 0.780 6 0.034 0.910 6 0.024
 233,430 330,580

M/M/1/M/1, r 5 0.8 0.803 6 0.033 0.890 6 0.026
 52,700 82,680

Central-server model 3 0.880 6 0.027 0.930 6 0.021
 12,562 79,188

Experiments 400 400
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new set of spaced batch means is computed, and the correlation test is repeated for 
the new set of spaced batch means.

Once the correlation test is passed, SBatch constructs a correlation-adjusted 
confi dence interval for n using the current set of spaced batch means as follows: The 
center of the confi dence interval is the average of all observations beyond the fi rst 
spacer (the warmup period), and the half-length uses the sample variance of the 
spaced batch means and a correlation adjustment based on the estimated lag-one 
correlation [see Eq. (4.9)] between the spaced batch means. For each model they 
tried to construct a 90 percent confi dence interval for n with a relative error of 
g 5 0.075, and they carried out 1000 independent experiments, with the results 
given in Table 9.11. (We would like to thank Dr. Emily Lada, Dr. Ali Tafazzoli, and 
Professor James Wilson for supplying some of results presented in Table 9.11.) 
 Additional results for SBatch are given in Tafazzoli et al. (2011).

Tafazzoli and Wilson (2011) developed a procedure that they called Skart 
(Skewness- and autoregression-adjusted Student’s t analysis). [See also Tafazzoli 
et al. (2011).] Skart addresses the startup problem by successively applying a 
randomness test to spaced batch means with progressively increasing batch sizes 
and inter-batch spacer sizes. When the test is fi nally passed with a batch size 
k and a spacer size dk (d a nonnegative integer), the warmup period is taken to 
be l 5 dk.

For the data beyond the warmup period l, Skart computes and uses n9  nonspaced 
batch means with batch size k. Since the batch means will, in general, be skewed, 
Skart uses (4.13) [by Willink (2005)] to construct a confi dence interval for the 
steady-state mean n, with the batch means’ playing the role of the Xi’s. The “center” 
of the nonsymmetric confi dence interval is the sample mean of the batch means, and 
the half-length uses the sample variance of the batch means and a correlation adjust-
ment based on the estimated lag-one correlation between the batch means. For each 
model they tried to construct a 90 percent confi dence interval for n with a relative 
error of g 5 0.075, and they carried out 1000 independent experiments, with the 
results given in Table 9.11.

Lada and Wilson (2006a) developed WASSP (WAvelet-based Sequential 
 Spectral Procedure) that also uses a relative-error stopping rule. Lada and Wilson 
(2006b) tested WASSP and H&W on the same fi ve models discussed above. They 
performed 400 independent experiments and attempted to construct 90 percent 
 confi dence intervals for n with a relative error of g 5 0.075, with the results given 
in Table 9.12. Based on the coverage results in Table 9.12 and in Lada et al. (2007), 
which we believe are more important than average sample sizes, we conclude that 
WASSP is superior to H&W. Additional results for WASSP can be found in 
 Tafazzoli et al. (2011).

We do, however, believe that the ASAP3, SBatch, and Skart are preferable to 
WASSP, since the latter procedure generally requires much larger average sample 
sizes. Also, WASSP is more complicated since it requires 21 steps as compared to, 
for example, the 13 steps employed by Skart. (If a particular step for one of these 
procedures requires p substeps, then we consider the overall step as actually consist-
ing of p steps.) Using the results in Table 9.11 and also those in Tables 1 and 6 of 
Tafazzoli et al. (2011), we believe that Skart provides the best overall results among 
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the ASAP3, SBatch, and Skart procedures using coverage and average sample size 
as the criteria for comparison.

However, we believe that the L&C procedure is also worthy of some consider-
ation, since it provided satisfactory performance on 14 stochastic models, albeit 
based on only 100 experiments per model (compared to 1000 experiments for Skart). 
It is also the simplest of all sequential procedures discussed here, requiring only fi ve 
steps. This is very important if a procedure has to be programmed from scratch for 
a particular application. Finally, Chen and Kelton (2009) present an additional 
 sequential procedure based on batch means, but only limited and noncomparable 
experimental results are given.

If one wants to construct a confi dence interval for a steady-state mean n that 
is likely to have coverage close to 1 2 a and to require a “reasonable” sample 
size, then one might consider the use of the Skart or L&C procedures with a rela-
tive error of g 5 0.075 or smaller. These two procedures have been tested on a 
large number of stochastic models and generally produced good results in terms 
of estimated coverage and average sample size. The reader should be aware, 
however, that these procedures are more complicated to understand and 
 implement than, say, the replication/deletion approach of Sec. 9.5.2. They may 
also require larger sample sizes and will probably not easily generalize to the 
 common situation of multiple measures of performance [see Sec. 9.7 and 
 Tafazzoli et al. (2011)].

It might be noted that Glynn and Whitt (1992b) give suffi cient conditions for a 
sequential procedure to be asymptotically valid, i.e., produce a coverage of 1 2 a 
as the run length goes to infi nity.

9.5.4 Estimating Other Measures of Performance

As we saw in Sec. 9.4.2, the mean does not always provide us with an appropriate 
measure of system performance. We thus consider the estimation of steady-state 
parameters f other than the mean n 5 E(Y ).

Suppose that we would like to estimate the steady-state probability p 5 
P(Y [ B), where B is a set of real numbers. By way of example, for a communica-
tions network we might want to determine the steady-state probability that the 
end-to-end delay of a message is less than or equal to 5 seconds (B 5 {all real num-
bers # 5}). Estimating the probability p, as it turns out, is just a special case of 
 estimating the mean n, as we now see. Let the steady-state random variable Z be 
defi ned by

 Z 5 e
1

0

if Y [ B

otherwise

Then

  P(Y [ B) 5 P(Z 5 1) 5 1 ? P(Z 5 1) 1 0 ? P(Z 5 0)

  5 E(Z )
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Thus, estimating p is equivalent to estimating the steady-state mean E(Z ), which has 
been discussed in Secs. 9.5.2 and 9.5.3. In particular, let

 Zi 5 e
1

0

if Yi [ B

otherwise

for i 5 1, 2, . . . , where Y1, Y2, . . . is the original stochastic process of interest. 
Then, for example, the replication/deletion approach could be applied to the output 
process Z1, Z2, . . . to obtain a point estimate and confi dence interval for E(Z) 5 p. 
Note that the warmup period for the (binary) process Z1, Z2, . . . may be different 
from that for the original process Y1, Y2, . . . .

Another parameter of the steady-state distribution of considerable interest is 
the q-quantile, yq, which was defi ned in Sec. 6.4.3. That is, yq is the value of 
y  such that P(Y # yq) 5 q, where Y is the steady-state random variable. For 
 example, in the case of the communications network discussed above, it might be 
desired to estimate the 0.9-quantile of the steady-state end-to-end delay distri-
bution. Estimating quantiles is both conceptually and computationally (in terms 
of the number of observations required to obtain a specifi ed precision) a more 
diffi cult problem than estimating the steady-state mean. Furthermore, most 
 procedures for estimating quantiles are based on order statistics and require 
 storage and sorting of the observations.

There have been several procedures proposed for estimating quantiles based on 
batch means (or extensions), spectral, and regenerative methods [see Law (1983) 
and Heidelberger and Lewis (1984)]. One drawback of these procedures is that they 
are all based on a fi xed sample size, which must be chosen somewhat arbitrarily. If 
this sample size is chosen too small, the coverage of the resulting confi dence  interval 
will be somewhat less than desired.

Raatikainen (1990) proposed a procedure for estimating quantiles based on the 
P2 algorithm of Jain and Chlamtac (1985), which does not require storing and sort-
ing the observations. It is a sequential procedure based on a spectral method and a 
relative-error stopping rule. Raatikainen tested his procedure on several stochastic 
models of computer systems and appeared to obtain good results in terms of cover-
age. The procedure is, however, diffi cult to implement.

Chen and Kelton (2006) proposed two sequential procedures—zoom in (ZI) 
and quasi-independent (QI)—for constructing a confi dence interval for a quan-
tile. They tested their procedures on the delay-in-queue process for the M/M/1 
and M/M/2 queues, performing 100 independent experiments in each case. By 
way of example, suppose that the goal is to construct a 95 percent confi dence 
interval for the 0.9-quantile for the M/M/1 queue with r 5 0.9. The ZI proce-
dure had an estimated coverage of 1.00 and an average sample size at termi-
nation of approximately 12,464,000. On the other hand, the QI procedure had 
an  estimated coverage of 0.95 and an average sample size of approximately 
14,793,000.

Alexopoulos et al. (2012) studied the feasibility of developing a sequential 
 procedure to construct point estimators and confi dence intervals for quantiles 
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based on nonoverlapping batches. (The batched quantiles become approximately 
independent.) Their results are encouraging in terms of the sample sizes that will 
be required.

9.6 
STATISTICAL ANALYSIS FOR STEADY-STATE 
CYCLE PARAMETERS

Suppose that the output process Y1, Y2, . . . does not have a steady-state distribu-
tion. Assume, on the other hand, that there is an appropriate cycle defi nition so 
that the process Y 1

C, Y 2
C, . . . has a steady-state distribution FC, where Y i

C is the 
random variable defi ned on the ith cycle (see Sec. 9.3). If Y C , FC, then we are 
interested in estimating some characteristic of Y C such as the mean nC 5 E(Y C) 
or the probability P(Y C # y). Clearly, estimating a steady-state cycle parameter 
is just a special case of estimating a steady-state parameter, so all of the tech-
niques of Sec. 9.5 apply, except to the cycle random variables Y i

C’s rather than to 
the original Yi’s. For example, we could use Welch’s method to identify a warmup 
period and then apply the replication/deletion approach to obtain a point estimate 
and confi dence interval for nC.

E X A M P L E  9 . 3 3 .  Consider once again the small factory of Example 9.25 but suppose 
that there is a half-hour lunch break that starts 4 hours into each 8-hour shift. This break 
stops the inspection process, but unfi nished parts continue to arrive and to be processed 
by the unmanned machine. If Ni is the throughput in the ith hour, then the process 
N1, N2, . . . does not have a steady-state distribution (see Example 9.11). We might, 
however, expect that it is periodic with a cycle length of 8 hours. To substantiate this, we 
made n 5 10 replications of length m 5 160 hours (20 shifts). From the plot of the aver-
aged process Ni (where i 5 1, 2, . . . , 160) in Fig. 9.18, we see that the process N1, 
N2, . . . does indeed appear to have a cycle of length 8 hours.
 Let Ni

C be the average production in the ith 8-hour cycle and assume that N1
C, 

N2
C, . . . has a steady-state distribution. Suppose that we want to obtain a point estimate 

and a 99 percent confi dence interval for the steady-state expected average production 
over a shift, nC 5 E(NC), using the replication/deletion approach. Let Nji

C be the average 
production in the ith cycle of our jth available replication ( j 5 1, 2, . . . , 10; i 5 1, 
2, . . . , 20), and let Ni

C for i 5 1, 2, . . . , 20 be the corresponding averaged process (that 
is, N C

i 5 ^10
j51 N

C
ji y10), which is plotted in Fig. 9.19. We conclude from this plot that 

further smoothing is desirable. As a result, we plot the moving average N C
i (w) (from 

Welch’s procedure) for both w 5 3 and w 5 6 shifts in Figs. 9.20a and 9.20b. From the 
plot for w 5 6 (which is smoother), we chose a warmup period of l 5 5 shifts or 
40 hours. (Compare this l with that obtained in Example 9.25.)
 Let

 XC
j 5

^
20

i56

NC
ji

15
  for j 5 1, 2, . . . , 10
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FIGURE 9.18
Averaged process for hourly throughputs, small factory with lunch breaks.
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FIGURE 9.19
Averaged process for average hourly throughputs over a shift, small factory with lunch breaks.
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FIGURE 9.20
Moving averages for average hourly throughputs over a shift, small factory with lunch 
breaks: (a) w 5 3; (b) w 5 6.
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Then a point estimate and 99 percent confi dence interval for nC are given by

 n̂C 5 XC(10) 5 60.24

and XC(10) 6 t9,0.995 B
0.79

10
5 60.24 6 0.91

which also contains 60 (see Prob. 9.27).

9.7 
MULTIPLE MEASURES OF PERFORMANCE

In Secs. 9.4 through 9.6 we presented procedures for constructing a confi dence 
 interval for a single measure of performance. However, for most real-world simula-
tions several measures of performance are of interest simultaneously. Suppose that 
Is is a 100(1 2 as) percent confi dence interval for the measure of performance ms 
(where s 5 1, 2, . . . , k). (The ms’s may all be measures of performance for a termi-
nating simulation or may all be measures for a nonterminating simulation.) Then the 
probability that all k confi dence intervals simultaneously contain their respective 
true measures satisfi es (see Prob. 9.31)

 P(ms [ Is for all s 5 1, 2, . . . , k) $ 1 2 ^
k

s51

 as (9.12)

whether or not the Is’s are independent. This result, known as the Bonferroni 
 inequality, has serious implications for a simulation study. For example, suppose 
that one constructs 90 percent confi dence intervals, that is, as 5 0.1 for all s, for 10 
different measures of performance. Then the probability that each of the 10 confi -
dence intervals contains its true measure can only be claimed to be greater than or 
equal to zero. Thus, one must be careful in interpreting the results from such a study. 
The diffi culty we have just described is known in the statistics literature as the 
multiple-comparisons problem.

We now describe a practical solution to the above problem when the value of k 
is small. If one wants the overall confi dence level associated with k confi dence 
intervals to be at least 100(1 2 a) percent, choose the as’s so that ^k

s51 as 5 a. 
(Note that the as’s do not have to be equal. Thus, as’s corresponding to more impor-
tant measures could be chosen smaller.) Therefore, one could construct ten 99 per-
cent confi dence intervals and have the overall confi dence level be at least 90 percent. 
The diffi culty with this solution is that the confi dence intervals will be larger than 
they were originally if a fi xed-sample-size procedure is used, or more data will be 
required for a specifi ed set of k relative errors if a sequential procedure is used. For 
this reason, we recommend that k be no larger than about 10.

If one has a very large number of measures of performance, the only recourse 
available is to construct the usual 90 percent or 95 percent confi dence intervals but 
to be aware that one or more of these confi dence intervals probably does not contain 
its true measure.
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E X A M P L E  9 . 3 4 .  Consider the bank of Example 9.1 with fi ve tellers and one queue. 
Table 9.13 gives the results of using these 10 replications of the (terminating) simulation 
and (9.1) to construct 96.667 percent confi dence intervals for each of the measures of 
performance

 E
£ #

T

0
 Q(t) dt

T

§
,  E

°
^
N

i51

Di

N

¢
,  E

£
^
N

i51

Ii(0, 5)

N

§

so that the overall confi dence level is at least 90 percent (see Prob. 9.38).

E X A M P L E  9 . 3 5 .  Suppose for the small factory of Example 9.25 that we would like to 
obtain point estimates and confi dence intervals for both the steady-state mean hourly 
throughput nN and the steady-state mean time in system of a part nT, with the overall 
confi dence level being at least 90 percent. Therefore, we will make the confi dence level 
of each individual interval 95 percent. Using the 10 replications from Example 9.30, we 
plotted the moving average Ti(w) (i 5 1, 2, . . .) for the time-in-system process T1, 
T2, . . . in order to determine its warmup period. (Here Ti is the time in system of the 
ith departing part.) Since this plot was highly variable, we made an additional 10 repli-
cations of length 160 hours and used the entire 20 replications for our analysis. In 
Fig. 9.21a we plot the hourly throughput moving average Ni(w) for w 5 30, and in 
Fig. 9.21b we plot the time-in-system moving average Ti(w) for w 5 1200. (Note that 
the number of Ti observations in a 160-hour simulation run is a random variable with 
approximate mean 9600. Therefore, for our analysis we used the minimum number of 
observations for any one of the 20 runs, which was 9407.) From Figs. 9.21a and 9.21b, 
we decided on warmup periods of lN 5 24 hours and lT 5 2286 times, respectively. 
Note, however, that 2286 times corresponds to approximately 38 hours. Since 24 and 
2286 are much smaller than 160 and 9407, respectively, we will use these same replica-
tions to construct our confi dence intervals.

TABLE 9.13

Results of making 10 replications of the bank model with fi ve 
tellers and one queue

 Point  96.667% confi dence
Measure of performance estimate interval

E
£ #

T

0
 Q(t) dt

T

§
 1.97 [1.55, 2.40]

E
°

^
N

i51

Di

N

¢
 2.03 [1.59, 2.47]

E
£

^
N

i51

Ii(0, 5)

N

§
 0.85 [0.80, 0.90]
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FIGURE 9.21
Moving averages for small factory: (a) w 5 30 for hourly throughputs; (b) w 5 1200 for 
times in system.
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 Let

  Xj 5

^
160

i525

Nji

136

  Yj 5

^
9407

i52287

Tji

7121
  

for j 5 1, 2, . . . , 20

Then point estimates and 95 percent confi dence intervals for nN and nT are given by

 n̂N 5 X(20) 5 60.03,  n̂T 5 Y(20) 5 6.16 minutes

and

 X(10) 6 t19,0.975 A
0.70

20
5 60.03 6 0.39

 Y(10) 6 t19,0.975 A
0.55

20
5 6.16 6 0.35

Thus, we are at least 90 percent confi dent that nN and nT are simultaneously in the inter-
vals [59.64, 60.42] and [5.81, 6.51], respectively.

Additional methods for constructing confi dence intervals (or regions) for mul-
tiple measures of performance are surveyed by Charnes (1995).

9.8 
TIME PLOTS OF IMPORTANT VARIABLES

In this chapter we have seen how to construct point estimates and confi dence inter-
vals for several different measures of performance, with an emphasis on mean sys-
tem response. Although these measures are clearly quite useful, there are situations 
where we need a better indication of how system performance changes dynamically 
over time. This is particularly true when characteristics of the system (e.g., number 
of available workers) vary as a function of time. Animation (see Sec. 3.4.3) can 
provide considerable insight into the short-term dynamic behavior of a system, but 
it does not give us an easily interpreted record of system performance over the entire 
length of the simulation. On the other hand, plotting one or more key variables over 
the duration of the simulation is an easy way to gain an understanding of long-run 
dynamic system behavior. For example, a graph of queue size over time can provide 
information on whether the corresponding server (or servers) has suffi cient process-
ing capacity and also on the required fl oor space or capacity for the queue. The 
following example illustrates the use of time plots, with additional applications 
being given in Chap. 14 (see also Prob. 9.28).
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FIGURE 9.22
Time plots for number in queue in time increments of 30 minutes (run 1), 
small factory: (a) machine queue; (b) inspector queue.
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E X A M P L E  9 . 3 6 .  Consider the small factory with lunch breaks discussed in Exam-
ple 9.33. In Figs. 9.22a and 9.22b, we plot the numbers in the machine and  inspector 
queues sampled in 30-minute increments of time, respectively, based on the fi rst of the 
10 available simulation replications. Note the periodic behavior of the  inspector plot 
due to the half-hour lunch break.
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APPENDIX 9A 
RATIOS OF EXPECTATIONS AND JACKKNIFE ESTIMATORS

Much of this chapter has been concerned with estimating the expectation of a single 
random variable X, namely, E(X). However, as the following examples show, there 
are many situations in simulation where it is of interest to estimate the ratio of two 
expectations, such as E(Y )yE(X):

1. For the regenerative method, we saw in Sec. 9.5.3 that steady-state parameters 
can be expressed as the ratio of two expectations.

2. For the combat simulation of Example 9.5, it is sometimes of interest to estimate 
E(R)yE(B), where R and B are the numbers of red losses and blue losses in a battle.

3. For the bank simulation of Example 9.14, let P 5 ^N
i51 Di be the total delay of 

all customers served in a day. Then it is of interest to estimate E(PyN), which can 
be interpreted as the expectation of the average delay of a customer where the 
expectation is taken with respect to all possible days. However, it may also be of 
interest to estimate the long-run average delay of all customers, which can be 
shown to be equal to E(P)yE(N ).

Estimators of ratios of expectations, however, are usually biased. We now dis-
cuss a method of obtaining a less biased point estimator, as well as an alternative 
confi dence interval.

Suppose that we want to estimate the ratio f 5 E(Y )yE(X ) from the data Y1, 
Y2, . . . , Yn and X1, X2, . . . , Xn, where the Xi’s are IID random variables, the Yi’s are 
IID random variables, and Cov(Yi, Xj) 5 0 for i fi j. The classical point estimator of 
f is given by f̂C(n) 5 Y(n)yX(n); see the discussion of the regenerative method in 
Sec. 9.5.3 for the classical confi dence interval for f. We now discuss the jackknife 
approach to point and interval estimation of f [see Iglehart (1975) and Miller (1974)]. 
First defi ne

 ug 5 nf̂C(n) 2 (n 2 1)

^
n

j51
j≠g

Yj

^
n

j51
j≠g

Xj

  for g 5 1, 2, . . . , n

Then the jackknife point estimator for f is given by f̂J(n) 5 ^n
g51 ugyn, which is, 

in general, less biased than f̂C(n). Let

 ŝ2
J(n) 5

^
n

g51

[ug 2 f̂J(n)]2

n 2 1

Then it can be shown [see Miller (1974)] that

 
f̂J(n) 2 f

2ŝ2
J(n)yn

Sd N(0, 1)  as n S `
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which gives the jackknife 100(1 2 a) percent confi dence interval f̂J(n) 6

z12ay22ŝ2
J(n)yn for f. (See Sec. 9.5.3 for some empirical results on the relative 

performance of the classical and jackknife confi dence intervals.)

PROBLEMS

 9.1. Argue heuristically that comparable output random variables from replications using 
different random numbers should be independent.

 9.2. Consider a machine that works for an exponential amount of time having mean 1yl 
before breaking down. Suppose that it takes an exponential amount of time having 
mean 1yv to repair the machine. Let Y(t) be the state of the machine at time t for 
t $ 0, where

Y(t) 5 e
1

0
  

if the machine is working at time t

otherwise

 Then {Y(t), t $ 0} is a continuous-time stochastic process. Furthermore, it can be 
shown that [see Ross (2003, pp. 364–366)]

P(Y(t) 5 1 0Y(0) 5 1) 5
l

l 1 v
 e2(l1v)t 1

v

l 1 v

and P(Y(t) 5 1 0 Y(0) 5 0) 5 2
v

l 1 v
 e2(l1v)t 1

v

l 1 v

 Thus, the distribution of Y(t) depends on both t and Y(0). By letting t S ` in these 
equations, compute the steady-state distribution of Y(t). Does it depend on Y(0)?

 9.3. In Example 9.9, suppose that condition (b) is violated. In particular, suppose that it 
takes workers 20 minutes to put their tools away at the end of a shift and it takes the 
new workers 20 minutes to set up their tools at the beginning of the next shift. Does 
N1, N2, . . . have a steady-state distribution?

 9.4. Suppose in Example 9.9 that we would like to estimate the steady-state mean total 
time in system of a part. Does our approach to simulating the manufacturing system 
present a problem?

 9.5. Why is determining the required number of tellers for a bank different from deter-
mining the hardware requirements for a computer or communications system (see 
 Example 9.10)?

 9.6. In Example 9.11, why doesn’t the process of hourly throughputs N1, N2, . . . have a 
steady-state distribution?

 9.7. For the following systems, state whether you think a terminating or nonterminating 
simulation would be more appropriate. In the terminating cases, state the terminating 
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event E. In the nonterminating cases, would the parameter of interest be a steady-state 
parameter or a steady-state cycle parameter?
(a) Consider a telephone system for which an arriving call may experience a delay 

before obtaining a line. Suppose that the goal is to estimate the mean delay of the 
100th arriving call, E(D100).

(b) Consider a military inventory system (see Sec. 1.5) during peacetime, which is 
assumed to have a long duration. Assume that system parameters (e.g., the inter-
demand time distribution) do not change over time and we are interested in the 
output process C1, C2, . . . , where Ci is the total cost in the ith month. Suppose 
further that we want a measure of mean cost.

(c) Consider a manufacturing system for food products. A production schedule is is-
sued, the system produces product for 13 days, and then the system is completely 
cleaned out on the fourteenth day. Then a new production schedule is issued and 
the 2-week cycle is repeated, etc. The goal is to estimate the mean throughput over 
a cycle.

(d) Consider an air freight company that provides overnight delivery of packages. 
Aircraft loaded with packages start arriving at the hub operations at approxi-
mately 11 p.m. The packages are unloaded and then sorted in a warehouse ac-
cording to the destination Zip code. Packages with similar Zip codes are placed 
on one aircraft, and the last plane departs at approximately 5 a.m. It is desired to 
estimate the mean (across departing planes) amount of time that planes are late 
in departing.

(e) Consider a manufacturing system that operates in a similar manner 7 days a week. 
Suppose, however, that 6 machines operate during the fi rst two shifts in each day, 
but only 4 machines operate during the third shift. Let N1, N2, . . . be the output 
process of interest, where Ni is the number of parts produced in the ith shift. We are 
interested in a measure of mean throughput. Does your answer depend on the rela-
tionship between the arrival rate and the service rate of an individual machine?

 9.8. For the small factory of Example 9.25, suppose that the system operates 24 hours a 
day for 5 days and then is completely cleaned out. Thus, we have a terminating simu-
lation of length 120 hours. Make fi ve independent replications and construct a point 
estimate and 95 percent confi dence interval for the mean weekly throughput. Approxi-
mately how many replications would be required to obtain an absolute error of 50? A 
relative error of 5 percent?

 9.9. Let p be a probability of interest for a terminating simulation, as discussed in Sec. 9.4.2. 
Defi ne IID random variables Y1, Y2, . . . , Yn such that p̂ 5 Y(n) and use these Yj’s in 
(4.3), (4.4), and (4.12) to derive one possible confi dence interval for p. Show that the 
variance estimate given by Eq. (4.4) can be written as p̂(1 2 p̂)y(n 2 1).

9.10. Consider the bank of Example 9.1. Use the data from the 10 replications in Table 9.1 
to construct a point estimate for the median (i.e., 0.5-quantile) of the distribution of the 
average delay over a day. How does this estimate compare with the sample mean in 
Example 9.14?

9.11. For the M/M/1 queue with r , 1 of Example 9.23, suppose that the number of custom-
ers present when the fi rst customer arrives has the following discrete distribution:

p(x) 5 (1 2 r)rx  for x 5 0, 1, . . .
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 which is the steady-state distribution of the number of customers in the system. Com-
pute the distribution function of D1 and its mean. In this case, it can also be shown that 
Di for i $ 2 has this same distribution.

9.12. For Welch’s procedure in Sec. 9.5.1, show that E(Yi) 5 E(Yi) and Var(Yi) 5
Var(Yi)yn.

9.13. Assume that Y1, Y2, . . . is a covariance-stationary process and that ri , 1 for i $ 1. 
Show for Welch’s procedure that Var[Yi(w)] , Var(Yi).

9.14. Suppose that Y1, Y2, . . . is an output process with steady-state mean n and that Y(m) is 
the usual sample mean based on m observations. Consider plotting Y(m) as a function 
of m and let l9 be the point beyond which Y(m) does not change appreciably. Is l9 a 
good warmup period in the sense that E(Yi) < n for i . l9 and also that l9 is not exces-
sively large? Why?

9.15. Consider the replication/deletion approach of Sec. 9.5.2. Show that E(Xj) < n. Give 
two reasons why the confi dence interval given by (9.6) is only approximate in terms 
of coverage.

9.16. Consider the replication/deletion approach in Sec. 9.5.2 based on using the same set 
of replications to determine the warmup period l and to construct a confi dence inter-
val. Are the resulting Xj’s truly independent?

9.17. For the small factory of Example 9.30, what should the steady-state mean hourly 
throughput be if the system is well defi ned in the sense that r , 1 for both the machine 
and the inspector?

9.18. Consider a continuous-time stochastic process such as {Q(t), t $ 0}, where Q(t) is the 
number of customers in queue at time t. Suppose that we would like to estimate the 
steady-state time-average number in queue, Q (see App. 1B for one defi nition), using 
the method of batch means based on one simulation run of length m time units. Discuss 
two approaches for getting exactly m basic discrete observations Q1, Q2, . . . , Qm for 
use in the method of batch means. The m Qi’s will be batched to form n batch means.

9.19. If Y1, Y2, . . . is a covariance-stationary process, show for the method of batch means 
that Ci(k) 5 Cov[Yj(k), Yj1i(k)] is given by

Ci(k) 5 ^
k21

l52(k21)

(1 2 Z l Zyk) Cik1l

k
  where Cl 5 Cov(Yi, Yi1 l)

9.20. Let Y1, Y2, . . . be a covariance-stationary process. For the method of batch means, let 
 ri(k) 5 Cor[Yj(k), Yj1i(k)] and let b(n, k) be such that E{Var

^
[Y(n, k)]} 5 b(n, k) ?

 Var[Y(n, k)]. Show that ri(k) S 0 (for i 5 1, 2, . . . , n 2 1) as k S ` implies that 
 E{Var

^
[Y(n, k)]} S Var[Y(n, k)] as k S `. Hint: First show that

b(n, k) 5

eny c 1 1 2 ^
n21

i51

(1 2 iyn) ri(k) d f 2 1

n 2 1
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9.21. For the regenerative method, show that n 5 E(Z )yE(N ). [Hint: Observe that

^
n¿

j51

Zj

^
n¿

j51

Nj

5

^
M(n¿)

i51

Yi

M(n¿ )

 where n9 is the number of regeneration cycles and M(n9) is the total number of obser-
vations (a random variable) in the n9 cycles. Let n9 S ` and apply the strong law of 
large numbers (see Sec. 4.6) to both sides of the above equation.] Also conclude that 
n̂(n¿ ) 5 Z(n¿ )yN(n¿ ) S n as n9 S ` (w.p. 1), so that n̂(n¿ ) is a strongly consistent 
estimator of n. (See the defi nitions of n in Sec. 9.5.3.)

9.22. For the queueing system considered in Example 9.32, are the indices of those custom-
ers who depart and leave exactly l customers behind (l $ 0 and fi xed) regeneration 
points for the process D1, D2, . . .? If not, under what circumstances would they be?

9.23. For the inventory example of Sec. 1.5, identify a sequence of regeneration points for 
the monthly-cost process. Repeat assuming that the interdemand times are not expo-
nential random variables.

9.24. Suppose that n̂(n¿ ) is the (biased) regenerative point estimator for the steady-state 
mean n based on simulating the process Yl, Y2, . . . for n9 regeneration cycles. Do you 
think that it is advisable to have a warmup period of l cycles to reduce the point esti-
mator bias?

9.25. Consider an M/M/1 queue with r , 1, and let the number of customers served in a 
cycle, N, be as defi ned in Example 9.32. By conditioning on whether the second cus-
tomer arrives before or after the fi rst customer departs, show that E(N ) 5 1y(1 2 r).

9.26. For Example 9.33, compute the utilization factor r for both the machine and the in-
spector. What arrival rate should be used? Is this system well defi ned in the sense that 
r , 1 in both cases?

9.27. In Example 9.33, what should be the value for nC if the system is well defi ned?

9.28. A manufacturing system consists of two machines in parallel and a single queue. Jobs 
arrive with exponential interarrival times at a rate of 10 per hour, and each machine 
has exponential processing times at a rate of 8 per hour. During the fi rst 16 hours of 
each day both machines are operational, but only one machine is used during the fi nal 
8 hours.
(a) Determine whether the system is well defi ned by computing the utilization factor 
r and comparing it with l.

(b) Let Ni be the throughput for the ith hour. Does N1, N2, . . . have a steady-state 
distribution?

(c) Make 10 replications of the simulation of length 480 hours (20 days) each. Plot 
the averaged process N1, N2, . . . , N480.

(d) Let Mi be the throughput for the ith 24-hour day. Use the data from part (c) and the 
replication/deletion approach to construct a point estimate and 90 percent confi -
dence interval for the steady-state mean daily throughput n 5 E(M) 5 240.
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9.29. For the system in Prob. 9.28, make one replication of length 200 days and let Mi be as 
previously defi ned. Use the Mi’s and the method of batch means to construct a point 
estimate and a 90 percent confi dence interval for n 5 240 based on n 5 10 batches and 
also on n 5 5 batches.

9.30. Repeat Prob. 9.29 using standardized time series rather than batch means.

9.31. Let Es be an event that occurs with probability 1 2 as for s 5 1, 2, . . . , k. Then prove 
that

P at
k

s51

 Esb $ 1 2 ^
k

s51

as

 where x
k

s51
 Es is the intersection of the events E1, E2, . . . , Ek. Do not assume that the Es’s 

 are independent. [This result is called the Bonferroni inequality; see (9.12).] Hint: The 
proof is by mathematical induction. That is, fi rst show that P(E1 x E2) $ 1 2 a1 2 a2. 
Then show that if

P at
k21

s51

 Esb $ 1 2 ^
k21

s51

as

 is true, the desired result is also true.

9.32. For Example 9.21, compute the approximate number of replications required to  reduce 
the half-length of the confi dence interval for p to 0.05.

9.33. For Example 9.26, show that there must be two links between SP-1 and SP-2 so that 
the utilization of this link group does not exceed 0.4.

9.34. For Example 9.26, show that STP-A must contain three processors so that its utiliza-
tion does not exceed 0.4. Also show that SP-1 must contain two processors so that its 
utilization is less than 1.

9.35. For Example 9.26, show that the overall arrival rate of messages is 1240 per second.

9.36. For Example 9.31, does the utilization of 0.316 for STP-A seem reasonable? What 
about the utilization of 0.377 for link 1-2?

9.37. Suppose that one constructs k 100(1 2 a) percent confi dence intervals from the same 
set of replications (see Sec. 9.7), so the confi dence intervals are dependent. Derive an 
expression for the expected number of confi dence intervals that do not contain their 
respective true measures of performance.

9.38. If the 10 replications and subsequent analysis corresponding to Table 9.13 were per-
formed independently by 100 different banks, what could be said about the confi dence 
intervals for approximately 90 of the banks?
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C H A P T E R  1 0

Comparing Alternative System 
Confi gurations

Recommended sections for a fi rst reading: 10.1 through 10.3, 10.4.1

10.1 
INTRODUCTION

In Chap. 9 we saw the importance of applying appropriate statistical analyses to the 
output from a simulation model of a single system. In this chapter we discuss statis-
tical analyses of the output from several different simulation models that might 
represent competing system designs or alternative operating policies. This is a very 
important subject, since the real utility of simulation lies in comparing such alter-
natives before implementation. As the following example illustrates, appropriate 
statistical methods are essential if we are to avoid making serious errors leading to 
fallacious conclusions and, ultimately, poor decisions. We hope that this example 
will demonstrate the danger inherent in making decisions based on the output from 
a single run (or replication) of each alternative system.

E X A M P L E  1 0 . 1 .  A bank planning to install an automated teller station must choose 
between buying one Zippytel machine or two Klunkytel machines. Although one Zippy 
costs twice as much to purchase, install, and operate as one Klunky, the Zippy works 
twice as fast. Since the total cost to the bank is thus the same regardless of its decision, 
the managers would like to install the system that will provide the best service.
 From available data, it appears that during a certain rush period, customers arrive 
one at a time according to a Poisson process with rate 1 per minute. The Zippy could 
provide service times that are IID exponential random variables with mean 0.9 minute. 
Alternatively, if two Klunkys are installed, each will yield service times that are IID 
exponential random variables with mean 1.8 minutes; in this case a single FIFO queue 
will be formed instead of two separate lines. Thus, we are comparing an M/M/1 queue 
with an M/M/2 queue, each with utilization factor r 5 0.9, as shown in Fig. 10.1. The 
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performance measure of interest is the expected average delay in queue of the fi rst 
100 customers, assuming that the fi rst customer arrives to an empty and idle system; we 
denote these (expected) quantities by dZ(100) and dK(100) for the one-Zippy and two-
Klunky cases, respectively. (The bank decided to ignore customer service times, since 
waiting in line is the most irritating part of the experience and customers are reasonably 
pacifi ed as long as they are being served; see Prob. 10.1 for further consideration of this 
issue.) The bank’s intrepid systems analyst decided to make a simulation run of length 
100 customer delays for each system (using independent random numbers) and to use 
the average of the 100 delays in each case to infer whether dZ(100) or dK(100) is smaller, 
and thus make a recommendation. 
 How likely is it that the analyst will make the right recommendation? To fi nd out, 
we performed 100 independent experiments of the analyst’s entire scheme and noted 
how many times the best system would have been recommended. (The number of experi-
ments, 100, has no relationship to the number of customers in a replication, which is 
also 100.) The best system is actually the two-Klunky installation, since dZ(100) 5 4.13 
and dK(100) 5 3.70. [These values were determined from the queueing-theoretic results 
in Kelton and Law (1985).] Our experiment was, thus, to perform 100 independent 
pairs of independent simulations of the two systems, and average the delays in each 
simulation to obtain d̂Z(100) and d̂K (100), say, and then recommend the Zippy or 
Klunky system according as d̂Z(100) or d̂K (100) was smaller; some of the results are 
in Table 10.1. In only 48 of our 100 experiments was d̂K (100) , d̂Z(100), so the 
 analyst would not really appear to have any better chance of making the right decision 
than making the wrong one.

We have an uneasy feeling that many simulation studies are carried out in a 
manner similar to that described in Example 10.1. The diffi culty is that the simula-
tion output data are stochastic, so comparing the two systems on the basis of only a 
single run of each is a very unreliable approach.

The following example indicates how the comparison in Example 10.1 could be 
improved.

E X A M P L E  1 0 . 2 .  To illuminate the problem with the one-run-of-each approach in 
 Example 10.1, we plotted all 100 d̂Z(100)’s and d̂K (100)’s in the “n 5 1” pair of 

Zippy Klunky Klunky

FIGURE 10.1
One Zippy or two 
Klunkys?
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558 comparing alternative system configurations

 horizontal dot plots in Fig. 10.2; each circle (solid or hollow) represents the average of 
the 100 delays in a single simulation, positioned according to the scale at the bottom. 
Even though the expected average delay for the two-Klunky system is smaller than that 
for the one-Zippy system, the distributions of the observed average delays overlap sub-
stantially. This accounts for the distressingly large probability of making the wrong 
choice noted at the end of Example 10.1.
 Instead, we could make some number, n, of complete independent replications of 
each alternative system, and compare the systems on the basis of their averages across 
replications. Specifi cally, let X1j be the average of the 100 delays in the one-Zippy sys-
tem on the jth independent replication of this system, and let X2j be the average of the 
100 delays in the two-Klunky system on its jth replication, for j 5 1, 2, . . . , n. (We also 
made the simulations so that the X1j’s and the X2j’s are independent.) Then if X1(n) and 

TABLE 10.1

Testing the analyst’s decision rule

Experiment d̂Z(100) d̂K (100) Recommendation

  1 3.80 4.60 Zippy (wrong)
  2 3.17 8.37 Zippy (wrong)
  3 3.96 4.18 Zippy (wrong)
  4 1.91 5.77 Zippy (wrong)
  5 1.71 2.23 Zippy (wrong)
  6 6.16 4.72 Klunky (right)
  7 5.67 1.39 Klunky (right)
  . . . .
  . . . .
  . . . .

 98 8.40 9.39 Zippy (wrong)
 99 7.70 1.54 Klunky (right)
100 4.64 1.17 Klunky (right)

FIGURE 10.2
One Zippy vs. two Klunkys, as described in Examples 10.1 and 10.2.

} n � 1

} n � 5

} n � 10

} n � 20

Simulated   Expected

2 Klunkys

1 Zippy

0 5 10 15

Average delay in queue
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X2(n) are the sample means of the X1j’s and X2j’s, respectively, we would recommend 
the system with the smaller Xi(n). (The method of Example 10.1 is thus a special case, 
taking n 5 1.) Table 10.2 shows the proportion of 100 independent pairs of n-replication 
averages in which the one-Zippy system appeared better, i.e., would result in the wrong 
recommendation, for n 5 1, 5, 10, and 20. The chance of making an error falls as n 
increases, but at a corresponding higher cost of simulating. The four pairs of plots in 
Fig. 10.2 also indicate that as n rises, the distributions of the n-replication averages 
(each circle represents such an average) tighten up around their expectations, but there 
is still considerable overlap even for n 5 20, where the proportion of incorrect recom-
mendations is still 0.34.

Examples 10.1 and 10.2 illustrate the need for careful design and analysis of 
comparative simulations. Indeed, even with n 5 20 replications of each system 
design, Example 10.2 indicates that there is substantial room for error. One way of 
sharpening the comparison will be discussed in Sec. 11.2, and the above examples 
will be reworked in that context; see Example 11.3 in Sec. 11.2.4.

Note that both Examples 10.1 and 10.2 dealt with terminating simulations (see 
Secs. 9.3 and 9.4). As we shall see in this chapter, a basic requirement for using 
many statistical methods for comparing alternative confi gurations is the ability to 
collect IID observations with expectation equal to the desired measure of perfor-
mance. For terminating simulations, this is easily accomplished by simply making 
independent replications; e.g., a basic unit of observation in Examples 10.1 and 10.2 
was the average of the 100 delays in a single entire replication of the model. If 
we want to compare alternative systems on the basis of steady-state behavior (see 
Secs. 9.3 and 9.5), however, the situation becomes more complicated since we can-
not easily obtain IID observations having expectation (approximately) equal to the 
desired steady-state measure of performance. There are different ways of dealing 
with steady-state comparisons, which will be discussed throughout the chapter, 
specifi cally in Secs. 10.2.4 and 10.4.3.

Our purpose in this chapter is to present several different types of comparison 
and selection problems that have been found useful in simulation, together with 
appropriate statistical procedures for their solution, and numerical examples. We 
assume for this chapter that the various alternative systems are simply given. In 
many situations care should be taken in choosing which particular system variants 
to simulate; see Chap. 12 for discussion of how to choose appropriate alternative 
systems for comparison.

TABLE 10.2

Proportion of wrong recommendations in the 
n-replication method of Example 10.2

 Proportion of experiments favoring 
n the one-Zippy system

 1 0.52
 5 0.43
10 0.38
20 0.34
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In Sec. 10.2 we treat the special but important case of comparing just two sys-
tems by constructing a confi dence interval for the difference between their perfor-
mance measures. These ideas are extended in Sec. 10.3 to confi dence-interval 
comparisons of more than two systems. Section 10.4 introduces some procedures 
for selecting the “best” of several alternative systems, as well as for choosing a 
subset of the alternatives that contains the “best” system. Appendixes 10A and 10B 
treat certain technical issues related to the selection procedures of Sec. 10.4.

10.2 
CONFIDENCE INTERVALS FOR THE DIFFERENCE 
BETWEEN THE EXPECTED RESPONSES OF TWO SYSTEMS

Here we consider the special case of comparing two systems on the basis of some 
performance measure, or expected response. We effect this comparison by forming 
a confi dence interval for the difference in the two expectations, rather than by doing 
a hypothesis test to see whether the observed difference is signifi cantly different 
from zero. Whereas a test results in only a “reject” or “fail-to-reject” conclusion, a 
confi dence interval gives us this information (according as the interval misses or 
contains zero, respectively) as well as quantifi es how much the expectations differ, 
if at all. (In many cases, the two expectations will be different. Thus, the null hy-
pothesis of equality of expectations is false.) Also, we shall take a parametric, i.e., 
normal-theory, approach here, even though nonparametric analogues could be used 
instead [see, for example, Conover (1999, pp. 281–283)]. The parametric approach 
is simple and familiar, and moreover should be quite robust in this context, since 
troublesome skewness (see Sec. 9.4.1) in the underlying distributions of the output 
random variables should be ameliorated upon subtraction (assuming the two output 
distributions are skewed in the same direction).

For i 5 1, 2, let Xi1, Xi2, . . . , Xini
 be a sample of ni IID observations from sys-

tem i, and let mi 5 E(Xij) be the expected response of interest; we want to construct 
a confi dence interval for z 5 m1 2 m2. Whether or not X1j and X2j are independent 
depends on how the simulations are executed, and could determine which of the two 
confi dence-interval approaches discussed in Secs. 10.2.1 and 10.2.2 is used.

10.2.1 A Paired-t Confi dence Interval

If n1 5 n2 (5n, say), or we are willing to discard some observations from the 
system on which we actually have more data, we can pair X1j with X2j to defi ne 
Zj 5 X1j 2 X2j, for j 5 1, 2, . . . , n. Then the Zj’s are IID random variables and 
E(Zj) 5 z, the quantity for which we want to construct a confi dence interval. 
Thus, we can let

 Z (n) 5

^
n

j51

Zj

n
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and

 Var
^

[Z (n)] 5

^
n

j51

[Zj 2 Z (n)]2

n(n 2 1)

and form the (approximate) 100(1 2 a) percent confi dence interval

 Z(n) 6 tn21,12ay22Var
^

[Z(n)] (10.1)

If the Zj’s are normally distributed, this confi dence interval is exact, i.e., it covers z 
with probability 1 2 a; otherwise, we rely on the central limit theorem (see Sec. 4.5), 
which implies that this coverage probability will be near 1 2 a for large n. An im-
portant point here is that we did not have to assume that X1j and X2j are independent; 
nor did we have to assume that Var(X1j) 5 Var(X2j). Allowing positive correlation 
between X1j and X2j can be of great importance, since this leads to a reduction in 
Var(Zj) (see Prob. 4.13) and thus to a smaller confi dence interval. Section 11.2 dis-
cusses a method (common random numbers) that can often induce this positive cor-
relation between the observations on the different systems. The confi dence interval 
in (10.1) will be called the paired-t confi dence interval, and in its derivation we es-
sentially reduced the two-system problem to one involving a single sample, namely, 
the Zj’s. In this sense, the paired-t approach is the same as the method discussed in 
Sec. 9.4.1 for analysis of a single system. (Thus, the sequential confi dence-interval 
procedures of Sec. 9.4.1 could be applied here.) It is important to note that the 
Xij’s are random variables defi ned over an entire replication; for example, X1j might 
be the average of the 100 delays on the jth replication of the Zippytel system of 
Example 10.2; it is not the delay of some individual customer.

E X A M P L E  1 0 . 3 .  For the inventory model of Sec. 1.5, suppose we want to compare 
two different (s, S) policies in terms of their effect on the expected average total cost per 
month for the fi rst 120 months of operation, where we assume that the initial inventory 
level is 60. For the fi rst policy (s, S) 5 (20, 40), and the second policy sets (s, S) 5 
(20, 80). Here, Xij is the average total cost per month of policy i on the jth indepen-
dent replication. We made the runs for policy 1 and policy 2 independently of each other 
and made n 5 n1 5 n2 5 5 independent replications of the model under each policy; 
Table 10.3 contains the results. Using the paired-t approach, we obtained Z(5) 5 4.98 
and Var

^
[Z(5)] 5 2.44, leading to the (approximate) 90 percent confi dence interval 

TABLE 10.3

Average total cost per month for fi ve independent 
replications of two inventory policies, and the 
differences

j X1 j X2 j Zj

1 126.97 118.21 8.76
2 124.31 120.22 4.09
3 126.68 122.45 4.23
4 122.66 122.68 20.02
5 127.23 119.40 7.83
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[1.65, 8.31] for z 5 m1 2 m2. Thus, with approximately 90 percent confi dence, we can 
say that m1 differs from m2, and it furthermore appears that policy 2 is superior, since it 
leads to a lower average operating cost (between 1.65 and 8.31 lower, which would not 
have been evident from a hypothesis test). We must use the word “approximate” to 
 describe the confi dence level, since n1 5 n2 5 5 may or may not be “large” enough for 
this model for the central limit theorem to have taken effect. (See also the discussion 
in Sec. 10.4.1.)

10.2.2 A Modifi ed Two-Sample-t Confi dence Interval

A second approach to forming a confi dence interval for z does not pair up the ob-
servations from the two systems, so n1 can now be different from n2. Assume that 
the X1j’s are normally distributed, the X2j’s are normally distributed, and that the 
X1j’s are independent of the X2j’s. Normality should not be a problem in many cases, 
since Xij will be an average of many individual observations (e.g., the average cost 
in Example 10.3). We will use an old but reliable approximate solution in this 
 situation due to Welch (1938). As usual, let

 Xi(ni) 5

^
ni

j51

Xij

ni

and S2
i (ni) 5

^
ni

j51

[Xij 2 Xi(ni)]
2

ni 2 1

for i 5 1, 2. Then compute the estimated degrees of freedom

 f̂ 5
[S2

1 (n1)yn1 1 S2
2(n2)yn2]2

[S2
1 (n1)yn1]2y(n1 2 1) 1 [S2

2(n2)yn2]2y(n2 2 1)

and use X1(n1) 2 X2(n2) 6 tf̂ ,12ay2 B
S2

1 (n1)

n1
1

S2
2(n2)

n2
 (10.2)

as an approximate 100(1 2 a) percent confi dence interval for z. Since f̂  will not, 
in general, be an integer, interpolation in printed t tables will probably be neces-
sary, though statistical software usually allows for noninteger degrees of free-
dom. The confi dence interval given by (10.2), which we will call the Welch 
confi dence interval, can also be used to validate a simulation model of an exist-
ing system (see Sec. 5.6.2). If “system 1” is the real-world system on which we 
have physically collected data and “system 2” is the corresponding simulation 
model from which we have simulation output data, it is likely that n1 will be far 
less than n2. Finally, if we are comparing two simulated systems and want a 
“small” confi dence interval, a sequential procedure due to Robbins, Simons, and 
Starr (1967) can be used, which is effi cient in the sense of minimizing the fi nal 
value of n1 1 n2. It is also asymptotically correct in the sense that the confi dence 
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interval will have approximately the correct coverage probability as the prespeci-
fi ed confi dence-interval width becomes small.

E X A M P L E  1 0 . 4 .  Since the runs for the two different inventory policies of Example 10.3 
were done independently, we can apply the Welch approach to form an approximate 
90 percent confi dence interval for z; we use the same Xij data as given in Table 10.3. 
We get X1(5) 5 125.57, X2 (5) 5 120.59, S2

1 (5) 5 4.00, S2
2 (5) 5 3.76, and f̂ 5 7.99. 

Interpolating in printed t tables leads to t7.99,0.95 5 1.860. Thus, the Welch confi dence 
interval is [2.66, 7.30].

10.2.3 Contrasting the Two Methods

Since the inventory data of Table 10.3 were collected so that n1 5 n2 and the X1j’s 
were independent of the X2j’s, we could apply either the paired-t or Welch approach 
to construct a confi dence interval for z. It happened that the confi dence interval for 
the Welch approach was smaller in this case, but in general we will not know which 
confi dence interval will be smaller.

The choice of either the paired-t or the Welch approach will usually be made 
according to the situation. One consideration is that using common random numbers 
(CRN) (see Sec. 11.2) for simulating the two systems can often lead to a consider-
able reduction in Var(Zj) and, thus, to a much smaller confi dence interval; this 
implies that n1 5 n2 and that X1j and X2j will not be independent, so the paired-t 
approach is required.

On the other hand, if n1 fi n2 (and we want to use all the available data), the 
Welch approach should be used. This requires independence of the X1j’s from the 
X2j’s and so in particular would preclude the use of CRN. Note that assuring inde-
pendence of the results from the two systems by using separate random numbers 
across the systems may actually require explicit action, since the default setup in 
most simulation packages is that the same random-number streams and seeds (see 
Sec. 7.2) are used unless specifi ed otherwise. Thus, by default, the two systems 
would actually use the same random numbers, though not necessarily properly syn-
chronized (see Sec. 11.2.3), rendering the Welch approach invalid.

10.2.4 Comparisons Based on Steady-State Measures of Performance

As mentioned in Sec. 10.1, the basic ingredient for most comparison techniques is 
a sample of IID observations with expectation equal to the performance measure on 
which the comparison is to be made. The examples so far in this chapter have all 
been terminating simulations, so such observations come naturally by simply repli-
cating the simulation some number of times.

In other cases, however, we might want to compare two (or more) systems on 
the basis of a steady-state measure of performance (see Secs. 9.3 and 9.5). Here we 
can no longer simply replicate the models, since initialization effects may bias the 
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564 comparing alternative system configurations

output, as discussed in Sec. 9.5.1. Thus, it is more diffi cult to effect a valid compari-
son based on steady-state performance measures, and many of the concerns dis-
cussed in Sec. 9.5 arise. The following two examples illustrate how the replication/
deletion approach for steady-state analysis, as described in Sec. 9.5.2, can be 
adapted to the problem of constructing a confi dence interval for the difference be-
tween two steady-state means.

E X A M P L E  1 0 . 5 .  The manufacturing company in Example 9.25 is thinking of buying 
a new piece of inspection equipment that will reduce inspection times by 10 percent, so 
that they would be distributed uniformly between 0.675 minute and 0.720 minute. A 
simulation study could help determine whether this change will signifi cantly reduce the 
steady-state mean time in system. Let Tijp be the time in system of the pth departing part 
in the jth replication ( j 5 1, 2, . . . , n) for system i (i 5 1 and 2 for the original and pro-
posed systems, respectively). Let li and mi be the length of the warmup period and the 
minimum number of Tijp’s in any replication, both for system i. Using the data from 
Example 9.35, we have n 5 20, l1 5 2286, and m1 5 9407. We next make 20 replica-
tions of length 160 hours for the proposed system (i 5 2), and the moving average 
T2p (1300) is plotted in Fig. 10.3. From these runs and the plot, we determined that 
l2 5 2093 and m2 5 9434. Let

 Xij 5

^
mi

p5li11

Tijp

mi 2 li

  for i 5 1, 2

and Zj 5 X1j 2 X2j for j 5 1, 2, . . . , 20. Also, let ni be the steady-state mean time in 
system for system i. Then, from the 20 replications of each system, we used (10.1) to 

FIGURE 10.3
Time-in-system moving average (w 5 1300) for the proposed system.

T̄ 2p(1300)
8

4

0
1 9434 p

l2 � 2093

Law01323_ch10_556-586.indd Page 564  21/09/13  7:23 PM user Law01323_ch10_556-586.indd Page 564  21/09/13  7:23 PM user /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



chapter ten 565

obtain 2.36 6 0.31 as an approximate 90 percent confi dence interval for n1 2 n2. Thus, 
since this confi dence interval does not contain zero, the difference between the two 
steady-state mean system times appears to be statistically signifi cant, and represents a 
decrease of about 38 percent (3.80 vs. 6.16). (Recall that the mean inspection time was 
reduced by only 10 percent; see Prob. 10.9.)

E X A M P L E  1 0 . 6 .  Consider again the communications network of Examples 9.26 
and 9.31. Recall that if two links emanate from a node, then each one is chosen with a 
probability of 0.5. A new routing policy has been proposed in which a message is routed 
to that link with the smallest total number of messages present (in transmission plus in 
queue). In the case of a tie, each link is chosen with a probability of 0.5. We made fi ve 
independent replications of each policy of length m 5 65 seconds and used a warmup 
period of length l 5 5 seconds (see Example 9.26); the replications for the two policies 
were also made independently of each other and of the replications used to determine 
the warmup period. Let Xij be the average end-to-end delay of all messages that were 
completed in the time interval [5, 65] seconds for policy i (i 5 1 and 2 for the original 
and proposed routing policies, respectively) on replication j ( j 5 1, 2, . . . , 5), and let 
Zj 5 X1j 2 X2j. Also, let ni be the steady-state mean end-to-end delay for policy i. Then 
we used Eq. (10.1) to obtain [20.12, 0.31] (in millisecond) as an approximate 90 per-
cent confi dence interval for n1 2 n2. Since the confi dence interval contains 0, the differ-
ence between the two steady-state means is not statistically signifi cant. We will revisit 
this example in Sec. 11.2.

The approach used in Examples 10.5 and 10.6 basically attempted to use the 
replication/deletion approach to obtain IID observations for each system with mean 
equal to the respective steady-state measure of performance. Several of the other 
single-system methods for steady-state analysis discussed in Sec. 9.5.3 could also 
be considered. For example, if the warmup period is long, we might want to use 
batch means on each alternative system as a different approach toward obtaining 
IID unbiased observations. Since the critical factor for success of the batch-means 
approach is eliminating correlation between batches, we must take care to defi ne the 
batches appropriately, as discussed in Sec. 9.5.3. Another possibility would be 
Chen and Sargent’s (1987) two-model adaptation of the standardized time-series 
approach (see Sec. 9.5.3).

10.3 
CONFIDENCE INTERVALS FOR COMPARING 
MORE THAN TWO SYSTEMS

If there are just two systems to compare, the methods in Sec. 10.2 provide ways of 
constructing confi dence intervals for the difference between their performance 
measures. In many studies, however, there may be more than two systems, but we 
can still use a confi dence-interval approach.

We will be making several confi dence-interval statements simultaneously, so 
their individual levels will have to be adjusted upward so that the overall confi dence 
level of all intervals’ covering their respective targets is at the desired level 1 2 a. 
We will use the Bonferroni inequality [see (9.12) in Sec. 9.7] to ensure that the 
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566 comparing alternative system configurations

overall confi dence level is at least 1 2 a. Recall, the Bonferroni inequality implies 
that if we want to make some number c of confi dence-interval statements, then we 
should make each separate interval at level 1 2 ayc, so that the overall confi dence 
level associated with all intervals’ covering their targets will be at least 1 2 a. For 
instance, if we want to make c 5 10 intervals and get an overall confi dence level of 
100(1 2 a) percent 5 90 percent, we must make each individual interval at the 
99 percent level. Clearly, for large c, this implies that the individual intervals may 
become quite wide.

Although there are many goals that could be formulated for comparing the 
means of k systems, we will focus primarily, in Secs. 10.3.1 and 10.3.2, on two 
problems: comparisons with a “standard,” and all pairwise comparisons. In 
Sec. 10.3.3 we briefl y describe a different goal, in which we compare each sys-
tem with the best of the other systems. For other problems and procedures, see 
Hochberg and Tamane (1987), Hsu (1996), Goldsman and Nelson (1998), and 
Swisher et al. (2003).

10.3.1 Comparisons with a Standard

Suppose that one of the model variants is a “standard,” perhaps representing the 
existing system or policy. If we call the standard system 1 and the other variants 
systems 2, 3, . . . , k, the goal is to construct k 2 1 confi dence intervals for the k 2 1 
differences m2 2 m1, m3 2 m1, . . . , mk 2 m1, with overall confi dence level 1 2 a. 
Thus, we are making c 5 k 2 1 individual intervals, so they should each be con-
structed at level 1 2 ay(k 2 1). Then we can say (with a confi dence level of at least 
1 2 a) that for all i 5 2, 3, . . . , k, system i differs from the standard if the interval 
for mi 2 m1 misses 0, and that system i is not signifi cantly different from the 
 standard if this interval contains 0.

E X A M P L E  1 0 . 7 .  Table 10.4 defi nes k 5 5 different (s, S) policies for the inventory 
system of Sec. 1.5; policies 1 and 2 are those used in Examples 10.3 and 10.4. Suppose 
that policy 1, where (s, S) 5 (20, 40), is the current policy, and the other four policies 
are being considered as possible alternatives.
 Which of these would differ from the standard? To fi nd out, we made fi ve indepen-
dent replications of each policy, with the runs for the different policies being independent 

TABLE 10.4

The fi ve alternative (s, S) 
inventory policies

Policy (i) s S

1 20 40
2 20 80
3 40 60
4 40 100
5 60 100
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of each other as well. The individual-replication results appear in Table 10.5, along with 
the sample means and variances (of the Xij’s) for each policy. Since there are k 2 1 5 4 
intervals to construct, we made each interval at level 97.5 percent to yield an overall 
confi dence level of at least 90 percent. Table 10.6 shows the differences in the sample 
means, as well as 97.5 percent confi dence intervals for mi 2 m1, for i 5 2, 3, 4, and 5. 
For illustration, we used both the paired-t (Sec. 10.2.1) and Welch (Sec. 10.2.2) ap-
proaches to confi dence-interval formation, which are both valid since the runs for the 
different models were independent. The asterisks indicate those intervals not containing 
zero, i.e., corresponding to those alternative systems that appear to differ from the stan-
dard. Note that the two approaches for forming the individual intervals may lead to 
different conclusions; e.g., the paired-t interval for m2 2 m1 does not indicate a differ-
ence (see Prob. 10.10), whereas the Welch interval does. Furthermore, neither method is 
dominant in terms of interval smallness. At any rate, it does appear that models 4 and 5 
are signifi cantly different (actually, worse, since the output is an operating cost) than the 
standard, and that model 3 is not different from the standard. It is not clear from these 
results whether model 2 differs from the standard.

Implicit in the above example and discussion is that the individual confi dence in-
tervals have the correct probability [1 2 ay(k 2 1) in this case] of covering their re-
spective targets. Thus, we should bear in mind the robustness concerns of Sec. 9.4.1. 
Also, since the Bonferroni inequality is quite general, it does not matter how the indi-
vidual confi dence intervals are formed; they need not result from the same number 
of replications of each model, nor must they be independent. For example, we could 

TABLE 10.5

Average total cost per month for fi ve independent replications of each of the fi ve 
inventory policies, with sample means and variances

j X1 j X2 j X3 j X4 j X5 j

1 126.97 118.21 120.77 131.64 141.09
2 124.31 120.22 129.32 137.07 143.86
3 126.68 122.45 120.61 129.91 144.30
4 122.66 122.68 123.65 129.97 141.72
5 127.23 119.40 127.34 131.08 142.61

Mean 125.57 120.59 124.34 131.93 142.72
Variance 4.00 3.76 15.23 8.79 1.87

TABLE 10.6

Individual 97.5 percent confi dence intervals for all comparisons with the standard 
system (Mi 2 M1, i 5 2, 3, 4, 5); * denotes a signifi cant difference

 Paired-t Welch

i Xi 2 X1 Half-length Interval Half-length Interval

2 24.98 5.45 (210.44, 0.48) 3.54 (28.52, 21.44)*
3 21.23 7.58 (28.80, 6.34) 6.21 (27.44, 4.97)
4 6.36 6.08 (0.27, 12.46)* 4.55 (1.82, 10.91)*
5 17.15 3.67 (13.48, 20.81)* 6.15 (14.07, 20.22)*
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attempt to reduce the intervals’ widths by making more replications of high-variance 
models, or by using CRN (Sec. 11.2) to reduce the variances of the paired differences. 
In addition, the above approach could be used for steady-state comparisons by using 
a technique for constructing individual confi dence intervals for steady-state 
 differences, as discussed in Sec. 10.2.4, with the individual confi dence levels adjusted 
upward by the Bonferroni inequality. Finally, one can always resolve ambiguities 
(confi dence intervals covering zero, as occurred in three of the eight intervals in 
Table 10.6) by making more replications (or longer runs); the rate of decrease of the 
intervals’ widths, however, may be slow as additional simulation is done—to cut an 
interval width in half generally requires about four times as many replications.

10.3.2 All Pairwise Comparisons

In some studies, we might want to compare each system with every other system to 
detect and quantify any signifi cant pairwise differences. For example, there may not 
be an existing system, and all k alternatives represent possible implementations that 
should be treated in the same way. One approach would be to form confi dence 
intervals for the differences mi2

2 mi1
, for all i1 and i2 between 1 and k, with i1 , i2. 

Here, there will be k(k 2 1)y2 individual intervals, so each must be made at level 
1 2 ay[k(k 2 1)y2] in order to have a confi dence level of at least 1 2 a for all the 
intervals together.

E X A M P L E  1 0 . 8 .  Now suppose that the fi ve inventory policies in Table 10.4 are all 
to be compared against each other, using the data in Table 10.5. Since there are 
5(5  2  1)y2 5 10 possible pairs, we must make each individual interval at level 
99 percent in order to achieve 90 percent overall confi dence. Table 10.7 gives the  resulting 

TABLE 10.7

Individual 99 percent confi dence intervals for all pairwise comparisons (Mi2
2 Mi1

 for 
i1 , i2); * denotes a signifi cant difference

 Paired-t

 i2

  2 3 4 5

 1 24.98 6 7.18 21.23 6 9.99  6.36 6 8.01 17.15 6 4.83*
 2    3.75 6 9.58 11.34 6 8.38* 22.12 6 3.80*
i1

  3    7.60 6 5.66* 18.38 6 7.73*
 4    10.78 6 5.85*

 Welch

 i2

  2 3 4 5

 1 24.98 6 4.36* 21.23 6 7.91  6.36 6 5.60* 17.15 6 3.80*
 2    3.75 6 7.86 11.34 6 5.88* 22.12 6 3.72*
i1

  3    7.60 6 7.67 18.38 6 8.51*
 4    10.78 6 5.89*
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99 percent intervals, using both the paired-t and Welch approaches, with asterisks 
 indicating those intervals missing zero, i.e., those pairs of systems that appear to have 
different expected operating costs. Once again, note that the two approaches do not 
 always agree in terms of which differences are signifi cant, and neither approach gives 
intervals with uniformly smaller half-lengths. Furthermore, it is possible to arrive at 
apparent contradictions in the conclusions. For instance, using the Welch approach we 
would conclude that neither m1 nor m2 differs signifi cantly from m3, so that we might 
(crudely) want to say something like “m1 5 m3 5 m2” and thus think logically that 
“m1 5 m2.” But the confi dence interval for m2 2 m1 misses zero, indicating that we 
cannot regard m1 as being equal to m2. The problem here is that we dare not interpret 
the confi dence-interval statements as constituting “proof” of equality or inequality; in 
the above discussion we just could not resolve a difference between either m1 or m2 
in comparison with m3, but we could detect a difference between m1 and m2. Such appar-
ent contradictions become less likely as the intervals become smaller, which could 
occur by making more replications of the systems or perhaps by using CRN, discussed 
in Sec. 11.2.

As at the end of Sec. 10.3.1, we note the importance of ensuring the validity of the 
individual confi dence intervals, the possibility of using CRN across the different 
models, and of taking the above approach for steady-state comparisons by using an 
appropriate steady-state methodology for the individual intervals.

10.3.3 Multiple Comparisons with the Best

Finally, we mention another kind of comparison goal that forms simultaneous con-
fi dence intervals for the differences between the means of each of the k alternatives 
and that of the best of the other alternatives, even though we do not know which of 
the others really is the best. This is known as multiple comparisons with the best 
(MCB), and it has as its objective to form k simultaneous confi dence intervals on 
mi 2 min

l≠i
 ml for i 5 1, 2, . . . , k, assuming that smaller means are better (if larger is 

better, then “min” is replaced by “max”).
Hsu (1984) gives a technique for addressing the MCB goal, and Hochberg 

and Tamane (1987) and Hsu (1996) are comprehensive books on multiple- 
comparison procedures. Nelson (1993) gives a treatment of MCB that allows the 
use of CRN (see Sec. 11.2) for improved effi ciency. Damerdji and Nakayama 
(1999), Nakayama (1997, 2000), and Yuan and Nelson (1993) address the steady-
state MCB problem.

While MCB is useful in its own right, it is also intimately related to the ranking-
and-selection procedures discussed in Sec. 10.4.1 [see Nelson and Matejcik (1995)].

10.4 
RANKING AND SELECTION

In this section we consider goals that are different—and more ambitious—than 
 simply making a comparison between several alternative systems. In Sec. 10.4.1 
we describe procedures whose goal is to select one of the k systems as being the 

Law01323_ch10_556-586.indd Page 569  21/09/13  7:23 PM user Law01323_ch10_556-586.indd Page 569  21/09/13  7:23 PM user /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



570 comparing alternative system configurations

best one, in some sense, and to control the probability that the selected system re-
ally is the best one. Section 10.4.2 considers a different goal, picking a subset of m 
of the k systems so that this selected subset contains the best system, again with a 
specifi ed probability. (The validity of two of these selection procedures is consid-
ered in App. 10A.) Further problems and methods are discussed in Sec. 10.4.3, 
including the issue of ranking and selection based on steady-state measures of 
performance.

10.4.1 Selecting the Best of k Systems

As in Secs. 10.2 and 10.3, let Xij be the random variable of interest from the jth 
replication of the ith system, and let mi 5 E(Xij). For this selection problem, as well 
as that in Sec. 10.4.2, the Xij’s are assumed to be independent for different replica-
tions of the ith system. Except for the Nelson and Matejcik (1995) procedure dis-
cussed later in this section, the replications for different systems are also to be made 
independently. For example Xij could be the average total cost per month for the jth 
replication of policy i for the inventory model of Examples 10.7 and 10.8.

Let mil
 be the lth smallest of the mi’s, so that mi1

# mi2
# . . . # mik

. Our goal in 
this section is to select a system with the smallest expected response, mi1

. (If we 
want the largest mean mik

, the signs of the Xij’s and mi’s can simply be reversed.) Let 
“CS” denote this event of “correct selection.”

The inherent randomness of the observed Xij’s implies that we can never 
be absolutely sure that we shall make the CS, but we would like to be able to pre-
specify the probability of CS. Further, if mi1

 and mi2
 are actually very close

together, we might not care if we erroneously choose system i2 (the one with mean 
mi2

), so that we want a method that avoids making a large number of replications 
to resolve this unimportant difference. The exact problem formulation, then, is that 
we want P(CS) $ P* provided that mi2

2 mi1
$ d*, where the minimal CS proba-

bility P* . 1yk and the “indifference” amount d* . 0 are both specifi ed by the 
 analyst. It is natural to ask what happens if mi2

2 mi1
, d*. (The value d* is the 

smallest actual difference that we care about detecting.) The procedure stated 
below has the nice property that, with probability at least P*, the expected re-
sponse of the selected system will be no larger than mi1

1 d* [see sec. 18.2.3 in 
Kim and Nelson (2006a)]. Thus, we are protected (with probability at least P*) 
against selecting a system with mean that is more than d* worse than that of the 
best system (see Fig. 10.4).

The statistical procedure for solving this problem, developed by Dudewicz and 
Dalal (1975), involves “two-stage” sampling from each of the k systems. In the fi rst 
stage we make a fi xed number of replications of each system, then use the resulting 
variance estimates to determine how many more replications from each system are 
necessary in a second stage of sampling in order to reach a decision. It must be as-
sumed that the Xij’s are normally distributed, but (importantly) we need not assume 
that the values of s2

i  5 Var(Xij) are known; nor do we have to assume that the s2
i ’s 

are the same for different i’s. [Assuming known or equal variances (see Table 10.5) 
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is very unrealistic when simulating real systems.] The procedure’s performance 
should be robust to departures from the normality assumption, especially if the Xij’s 
are averages. (We have verifi ed this robustness when Xij is the average of a fi xed 
number of delays in queue for an M/M/1 queueing system.)

In the fi rst-stage sampling, we make n0 $ 2 replications of each of the k systems 
and defi ne the fi rst-stage sample means and variances

 X (1)
i (n0) 5

^
n0

j51

Xij

n0

and

 S2
i (n0) 5

^
n0

j51

[Xij 2 X (1)
i (n0)]2

n0 2 1

for i 5 1, 2, . . . , k. Then we compute the total sample size Ni needed for system i 
as

 Ni 5 max e n0 1 1, l
h2

1S
2
i (n0)

(d*)2 m f  (10.3)

where <x= is the smallest integer that is greater than or equal to the real number x, 
and hl (which depends on k, P*, and n0) is a constant that can be obtained from 
Table 10.11 in App. 10B. Next, we make Ni 2 n0 more replications of system 
i (i 5 1, 2, . . . , k) and obtain the second-stage sample means

 X (2)
i (Ni 2 n0) 5

^
Ni

j5n011

Xij

Ni 2 n0

Choose system i1 with probability P*

Choose system i1 or i2 with probability P*

(a)

�i1
�i1

 � d* �i2

(b)

�i1
�i1

 � d*�i2
�i3

FIGURE 10.4
Selected system(s): (a) mi2

. mi1
1 d*; (b) mi2

, mi1
1 d* and mi3

. mi1
1 d*.
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Then defi ne the weights

 Wi1 5
n0

Ni

 e1 1 B1 2
Ni

n0
 c1 2

(Ni 2 n0) (d*)2

h2
1S

2
i (n0)

d  f

and Wi2 5 1 2 Wi1, for i 5 1, 2, . . . , k. Finally, defi ne the weighted sample means

 X̃i(Ni) 5 Wi1X
(1)
i (n0) 1 Wi2X (2)

i (Ni 2 n0)

and select the system with the smallest X̃i(Ni). (See App. 10A for an explanation of 
the seemingly bizarre defi nition of Wi1.)

The choices of P* and d* depend on the analyst’s goals and the particular 
systems under study; specifying them might be tempered by the computing cost of 
obtaining a large Ni associated with a large P* or small d*. However, choosing n0 is 
more troublesome, and we can only say, on the basis of our experiments and various 
statements in the literature, that n0 be at least 20. If n0 is too small, we might get a 
poor estimate S2

i (n0) of s2
i ; in particular, it could be that S2

i (n0) is much greater than 
s2

i , leading to an unnecessarily large value of Ni. On the other hand, if n0 is too large, 
we could “overshoot” the necessary numbers of replications for some of the sys-
tems, which is wasteful. Table 10.11, in App. 10B, gives values of h1 for P* 5 0.90 
and 0.95, n0 5 20 and 40, and for k 5 2, 3, . . . , 10. If values of h1 are needed 
for other P*, n0, or k values, we refer the reader to Dudewicz and Dalal (1975) or 
Koenig and Law (1985).

E X A M P L E  1 0 . 9 .  For the inventory model of Sec. 1.5 (and Examples 10.7 and 10.8), 
suppose that we want to compare the k 5 5 different (s, S) policies, as given in 
Table 10.4, on the basis of their corresponding expected average total costs per month for 
the fi rst 120 months of operation, which we denote by mi for the ith policy. Our goal is to 
select a system with the smallest mi and to be 100P* 5 90 percent sure that we have 
made the correct selection provided that mi2

2 mi1
$ d* 5 1. We made n0 5 20 initial 

independent replications of each system, so that h1 5 2.747 from Table 10.11. The results 
of the fi rst-stage sampling are given in the X (1)

i (20) and S2
i (20) columns of Table 10.8. 

From the S2
i (20)’s, h1, and d*, we next computed the total sample size Ni for each sys-

tem, as shown in Table 10.8. Then we made Ni 2 20 additional replications for each pol-
icy, i.e., 90 more replications for policy 1, 41 more for policy 2, etc., and computed the 
second-stage sample means X (2)

i (Ni 2 20), as shown. Finally, we calculated the weights 
Wi1 and Wi2 for each system and the weighted sample means X̃i(Ni). Since X̃2(N2) is 
the smallest weighted sample mean, we select policy 2 (s 5 20 and S 5 80) as being 
the lowest-cost confi guration. Note from the S2

i (20) and Ni columns of Table 10.8 that 

TABLE 10.8

Selecting the best of the fi ve inventory policies

i X (1)
i (20) S2

i (20) Ni X 
(2)
i (Ni 2 20) Wi1 Wi2 X̃i (Ni)

1 126.48 14.52 110 124.45 0.21 0.79 124.87
2 121.92 7.96 61 121.63 0.39 0.61 121.74
3 127.16 9.45 72 126.11 0.32 0.68 126.44
4 130.71 8.25 63 132.03 0.37 0.63 131.54
5 144.07 6.20 47 144.83 0.46 0.54 144.48
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the procedure calls for a higher value of the fi nal Ni if the variance estimate S2
i (20) is 

high; this is simply refl ecting the fact that we need more data on the more variable 
 systems. Note that if d* 5 2, then 28, 21, 21, 21, and 21 total replications are required for 
policies 1 through 5, respectively.

There is another popular procedure for selecting the best of k systems that is 
due to Rinott (1978) (denoted r). It uses the usual sample means (based on all fi rst-
stage and second-stage replications) from the k systems to make its selection, 
whereas the Dudewicz and Dalal (dd) procedure uses the weighted sample means 
from the k systems. However, the dd procedure generally requires fewer replica-
tions than the computationally simpler r procedure, since h1 is smaller than the 
comparable “h value” for the r procedure.

*The dd and r procedures discussed above for selecting the best system 
assume that the k systems are simulated independently. However, in some cases 
it might be advantageous (in terms of the sample sizes required to make the cor-
rect selection) to use CRN in simulating the k systems. In this regard, Nelson and 
Matejcik (1995) introduced a two-stage procedure (denoted nm) for selecting 
the best system that explicitly allows for the use of CRN. Let S denote the cova-
riance matrix (see Sec. 6.10.1) of the random variables X1j, X2j, . . . , Xkj. The nm 

procedure assumes that S has a particular structure called sphericity, which is 
defi ned by

 S 5 ≥

2c1

c2

ck

1

1

o
1

t2

c1

c1

  

c1

2c2

ck

1

1

o
1

c2

t2

c2

  

p
p

p

  

c1

c2

2ck

1

1

o
1

ck

ck

t2

¥

where the ci’s and t2 are constants, and t2 . 2k Sk
i51 
c2

i 2 Sk
i51 ci is required to 

make S positive defi nite. Sphericity implies that Var(Xij 2 Xlj) 5 2t2 for i fi l 
(see Prob. 10.11). This means that the variances of all pairwise differences across 
the systems are equal, even though the marginal variances and covariances may be 
unequal.

As for the dd procedure, let n0 be the fi rst-stage sample size, d* the indiffer-
ence amount, and P* 5 1 2 a the probability of correct selection. Also, let g 5  
T12a

k21,(k21)(n021),0.5 be the (1 2 a)-quantile of the maximum of a (k 2 1)-dimensional 
multivariate t distribution with (k 2 1)(n0 2 1) degrees of freedom and a common 
correlation of 0.5. Values of g are given in table B.3 of Bechhofer et al. (1995) and 
in table 4 of Hochberg and Tamhane (1987). Then the following is a statement of the 
nm procedure:

1. In the fi rst-stage sampling, make n0 $ 2 independent replications of the ith sys-
tem using CRN across the k systems (for i 5 1, 2, . . . , k).

*The remainder of this section may be skipped on a fi rst reading.
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2. Based on the assumption of sphericity, compute the sample variance of the pair-
wise differences as 

 S2 5

2 ^
k

i51
^
n0

j51

 (Xij 2 Xi. 2 X.j 1 X..)2

(k 2 1)(n0 2 1)

 where Xi. denotes the sample mean of Xi1, Xi2, . . . , Xin0
; X.j denotes the sample 

mean of X1j, X2j, . . . , Xkj, etc. (see Prob. 10.12).

3. Compute the total required sample size N (constant for all k systems) as

 N 5 max e n0, l
g2S2

(d*)2 m f  (10.4)

4. In the second-stage sampling, make N 2 n0 independent replications of the 
ith system using CRN across the k systems (for i 5 1, 2, . . . , k).

5. Compute the overall sample mean for the ith system as

 Xi(N  ) 5

^
N

j51

Xij

N
  for i 5 1, 2, . . . , k

6. Select the system with the smallest Xi(N) as being the best alternative.

Nelson and Matejcik show that the probability of correct selection for the nm 
procedure is at least P* when mi2

2 mi1
$ d*, provided that S satisfi es the property 

of sphericity. If mi2
2 mi1

, d*, then a system is returned whose mean is within d* 
of the best mean. They also show that their procedure is robust to departures 
from sphericity when the covariances sij are nonnegative, which is the assumed 
effect of CRN.

E X A M P L E  1 0 . 1 0 .  Consider the problem of selecting the best of the fi ve inventory 
policies in Example 10.9, where 100P* 5 90 percent and d* 5 1. We made n0 5 20 fi rst-
stage independent replications for each of the fi ve policies using partial CRN as de-
scribed in Example 11.7; specifi cally, we made the interdemand times and demand sizes 
the same across the policies, but generated the delivery lags independently. From the re-
sulting Xij’s, we found that S2 5 3.71 and computed the required total sample size N as

 N 5 max en0, l
g2 S2

(d*)2 m f 5 max e20, 
(1.86)2(3.71)

(1)2 f 5 20

where the value of g 5 1.86 was taken from table B.3 of Bechhofer et al. (1995). Since 
N 5 20 5 n0, it was not necessary to make any second-stage replications. Furthermore, 
since the fi ve fi rst-stage sample means (i.e., the Xi.’s) were 125.64, 121.48, 126.16, 
131.61, and 144.52, respectively, we once again selected policy 2 as being the best. 
Note that the nm procedure using CRN required 100 total replications to select policy 
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2 as being the best, whereas the dd procedure required a total of 353 independent 
replications in Example 10.9. Thus, the nm procedure reduced the computational 
effort by approximately 72 percent.

In Sec. 10.3.3 we briefl y discussed multiple comparisons with the best (MCB), 
which has the objective of forming k simultaneous confi dence intervals on mi 2 
min

l≠i
 ml for i 5 1, 2, . . . , k. Nelson and Matejcik (1995) showed that the output of 

most indifference-zone procedures (e.g., dd and nm) can be used to construct 
MCB confi dence intervals, and simultaneously guarantee both the correct selection 
and the coverage of the MCB differences with overall confi dence level P*. This 
 approach allows one to pick the system with the smallest mean and to draw infer-
ences about the differences between the means of the systems, which may facilitate 
decision making based on a secondary criterion. For example, if the mean of the 
second-best system does not differ much from the mean of the best system, then it 
may be desirable to choose the second-best system because of political or economic 
reasons.

To make these ideas more concrete, consider once again the nm procedure. 
Then the following seventh step can be appended to their procedure:

7. For i 5 1, 2, . . . , k, construct the MCB confi dence interval for mi 2 min
l≠i

 ml as

 [2(Xi. 2 min
l≠i

 Xl. 2 d*)2, (Xi. 2 min
l≠i

 Xl. 1 d*)1]

where 2x2 5 min(0, x) and x1 5 max(0, x).

E X A M P L E  1 0 . 1 1 .  For the fi ve inventory policies of Example 10.10, the calculations 
for the MCB confi dence intervals are given in Table 10.9. Overall we are at least 90 per-
cent confi dent that policy 2 is the best and that the fi ve confi dence intervals contain their 
respective MCB differences. From the second confi dence interval, we conclude that 
policy 2 is no worse than the other policies (the upper endpoint is 0), and it may be as 
much as $5.16 less expensive than the others (the lower endpoint is 25.16). The other 
confi dence intervals tell us that policies 1, 3, 4, and 5 are no better than policy 2 (the 
lower endpoints of their intervals are 0) and may be as much as $5.16, $5.68, $11.13, 
and $24.04 more expensive, respectively.

The dd and nm procedures are typically used when the number of alternative 
systems, k, is 20 or fewer. These procedures are designed to produce the desired 

TABLE 10.9

MCB confi dence intervals for the fi ve inventory policies

i Lower MCB endpoint Xi. 2 min
lê i

 Xl. Upper MCB endpoint

1 0 4.16 5.16
2 25.16 24.16 0
3 0 4.68 5.68
4 0 10.13 11.13
5 0 23.04 24.04
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probability of correct selection, P*, when mi1
1 d* 5 mi2

5 . . . 5 mik
 (see 

App. 10A), an arrangement of the mi’s known as the least-favorable confi guration 
(LFC). This is the worst-case situation in that it makes the best system as hard to 
distinguish from the others as possible, given that it’s at least d* better than every-
thing else. {This assumption is made because it makes the calculation of Ni or N [see 
Eqs. (10.3) and (10.4), respectively] independent of the true and sample means.} 
Thus, when k is “large” and the mi’s differ widely, the dd and nm procedures may 
prescribe larger sample sizes than needed to deliver the desired probability of correct 
selection. As a result of these considerations, Nelson et al. (2001) introduced a 
screen-and-select procedure (denoted nsgs) for use when k is large. The screening 
stage fi rst produces a subset (of random size) that excludes clearly inferior systems. 
Then in the succeeding selection stage an indifference-zone procedure (e.g., dd or 
nm) is applied to the set of remaining systems to choose the “best” system, and the 
combined procedure guarantees an overall probability of correct selection. Because 
no selection-stage observations are collected on inferior systems, the combined pro-
cedure may require fewer observations than the use of an indifference-zone proce-
dure alone. The screening part of this procedure has been implemented in the Process 
Analyzer for the Arena simulation package (see Sec. 3.5.1).

10.4.2 Selecting a Subset of Size m Containing the Best of k Systems

Now we consider a different kind of selection problem, that of selecting a subset of 
exactly m of the k systems (m is prespecifi ed) so that, with probability at least P*, 
the selected subset will contain a system with the smallest mean response mi1

. This 
could be a useful goal in the initial stages of a simulation study, where there may be 
a large number (k) of alternative systems and we would like to perform an initial 
screening to eliminate those that appear to be clearly inferior. Thus, we could avoid 
expending a large amount of computer time getting precise estimates of the behav-
ior of these inferior systems.

We defi ne Xij, mi, mil
, and s2

i as in Sec. 10.4.1. Here we assume that all Xij’s are 
independent and normal (CRN is not allowed), and for fi xed i, Xi1, Xi2, . . . are IID; 
the s2

i’s are unknown and need not be equal. Here, correct selection (CS) is defi ned 
to mean that the subset of size m that is selected contains a system with mean mi1

 
and we want P(CS) $ P* provided that mi2

2 mi1
$ d*; here we must have 1 # m #

k 2 1, P* . myk, and d* . 0. (If mi2
2 mi1

, d*, then with probability at least P*, 
the subset selected will contain a system with expected response that is no larger 
than mi1

1 d*.)
The procedure is very similar to the $$ procedure of Sec. 10.4.1, and has been 

derived by Koenig and Law (1985). We take a fi rst-stage sample of n0 $ 2 replica-
tions from each system and defi ne X (1)

i (n0) and S2
i (n0) for i 5 1, 2, . . . , k exactly as 

in Sec. 10.4.1. Next we compute the total number of replications, Ni, needed for the 
ith system exactly as in Eq. (10.3), except that h1 is replaced by h2 (which depends 
on m as well as on k, P*, and n0), as found in Table 10.12 in App. 10B. [For values 
of h2 that might be needed for other P*, n0, k, or m values, see Koenig and Law 
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(1985).] Then we make Ni 2 n0 more replications, form the second-stage sample 
means X (2)

i (Ni 2 n0), weights Wi1 and Wi2, and weighted sample means X̃i(Ni), 
exactly as in Sec. 10.4.1. Finally, we defi ne the selected subset to consist of the 
m systems corresponding to the m smallest values of the X̃i(Ni)’s.

E X A M P L E  1 0 . 1 2 .  Consider again our fi ve inventory systems of Example 10.9, as 
defi ned in Table 10.4. Now, however, suppose that we want to select a subset of size 
m 5 3 from among the k 5 5 systems and be assured with confi dence level at least 
P* 5 0.90 that the selected subset contains the best (least-cost) system provided that 
mi2

2 mi1
$ d* 5 1. Again we made n0 5 20 initial replications of each system (inde-

pendent of those used in Example 10.9); the complete results for the subset-selection 
procedure are given in Table 10.10. (From Table 10.12, h2 5 1.243.) The subset selected 
consists of policies 1, 2, and 3.

Comparing the value of h2(5 1.243) used here with that of h1(5 2.747) used in 
Example 10.9, we see from the form of Eq. (10.3) that the more modest goal of 
selecting a subset of size 3 containing the best system requires considerably fewer 
replications on average than does the more ambitious goal of selecting the best 
system. (In fact, the selection problem of Sec. 10.4.1 is really just a special case of 
the present subset-selection problem, with m 5 1.) This effect exemplifi es what we 
meant at the beginning of this section by referring to this subset-selection problem 
as a relatively inexpensive initial “screening.”

10.4.3 Additional Problems and Methods

In Sec. 10.4.1 we discussed the indifference-zone approach for selecting the system 
with the smallest mean out of k systems, so that the probability of correct selection 
P(CS) $ P*. One problem with this approach is that it does not make use of any 
sample-mean information from the fi rst stage in deciding how many replications to 
make in the second stage, which seems ineffi cient. We now discuss two other general 
approaches to this ranking-and-selection problem. Chen et al. (2000) discuss the 
optimal computing budget allocation (ocba) multistage (sequential) approach for 
maximizing the probability of correct selection given that a total budget B of repli-
cations is available to simulate the k systems. They show that the number of replica-
tions allocated to system i should be proportional to the square of the noise-to-signal 
ratio, where the noise refers to the sample standard deviation for system i and the 

TABLE 10.10

Selecting a subset of size 3 containing the best of the 5 inventory policies

i X (1)
i (20) S2

i (20) Ni X (2)
i (Ni 2 20) Wi1 Wi2 X̃i (Ni)

1 124.71 17.16 27 125.64 0.80 0.20 124.89
2 121.20 12.64 21 125.69 1.01 20.01 121.15
3 125.57 9.07 21 123.51 1.10 20.10 125.78
4 132.39 6.22 21 133.37 1.18 20.18 132.21
5 144.27 4.23 21 143.67 1.27 20.27 144.43
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signal refers to the difference between system i’s sample mean and the minimum 
sample mean. At stage 0 of their approach, n0 replications of each system are made, 
and the corresponding sample means and variances are computed. (The budget B is 
reduced by k ? n0 replications.) Then at stage l (for l 5 1, 2, . . .), a total of D replica-
tions is allocated to the k systems, with ¢l

i(¢l
i $ 0) being the allocation to system i 

and ^k
i51¢l

i 5 ¢. (Note that the total allocation D is the same at each stage l $ 1.) 
The values of the ¢l

i’s are chosen to maximize a Bayesian approximation to the 
P(CS), and the optimization algorithm uses the latest values for the  sample means 
and variances in its computations. Then the specifi ed ¢l

i additional replications are 
made for system i, and the sample mean and variance are recomputed using all 
available replications at stage l. This iterative process is continued until the remain-
ing budget of replications reaches a value of 0. (The overall budget is reduced by D 
replications at each stage.) At this point, the system with the smallest overall sample 
mean is chosen as best. [See Chen et al. (2010) for a detailed algorithm.]

The ocba approach and the two-stage r procedure were both applied to the 
inventory model of Example 10.9, but with a planning horizon of 60 rather than 
120 months to increase the variability of the performance measure, average cost per 
month. Using n0 5 5, D 5 10, P* 5 0.90, and d* 5 3.08 (5 mi2

2 mi1
), the r 

procedure required an average of 118.8 replications and achieved an estimated 
P(CS) of 0.967 (based on 10,000 independent experiments). On the other hand, the 
ocba approach achieved an estimated P(CS) of 0.969 with an average budget of 
B 5 65 replications, which is a 45.3 percent reduction in computational effort. In 
general, the ocba approach may achieve greater computational effi ciency when 
there is a larger number of systems, because it will then have more fl exibility in 
allocating the computing budget.

It should be noted that the goal of the ocba procedure is to maximize the 
P(CS) for a specifi ed computing budget B. However, for a particular value of B it 
does not guarantee that a particular P(CS) (e.g., 0.90) will be achieved. Additional 
references for ocba are Chen (1996), and Chen & Lee (2011).

Chick (1997) proposes a third general approach to ranking and selection prob-
lems, which is based on Bayesian decision-theoretic ideas. Chick and Inoue (2001a) 
introduce a new two-stage procedure that allocates replications to maximize the 
expected probability of correct selection, rather than to achieve a specifi ed P(CS) in 
the conservative LFC, which is the goal of indifference-zone approaches. They also 
introduce a second two-stage procedure that allocates replications to reduce the 
expected opportunity cost of potentially incorrect decisions. (Both procedures use 
fi rst-stage sample-mean information in determining how many replications to make 
in the second stage.) They tested these procedures along with the two-stage r and 
nsgs procedures on the inventory model with a 60-month planning horizon, and 
found that the new procedures achieved a higher estimated P(CS). Chick and Inoue 
(2001b) propose analogues of these procedures that allow the use of CRN. Addi-
tional references for these Bayesian value of information procedures (vip) are 
Chick (2006), Chick and Frazier (2012), and Chick and Gans (2009).

Several additional ranking-and-selection procedures that use fi rst-stage sample-
mean information in determining sample sizes are discussed by Chen and Kelton 
(2005).
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A reasonably complete and easy-to-read survey on ranking and selection (as 
well as on multiple-comparison procedures) can be found in Swisher et al. (2003). 
Other general-purpose references are Bechhofer et al. (1995), Goldsman and Nelson 
(1998), and Kim and Nelson (2006a). Applications of selection procedures are 
described in Gray and Goldsman (1988) and Swisher et al. (2003).

Boesel et al. (2003) and Pichitlamken et al. (2006) use ranking-and-selection 
methods to provide a statistical guarantee that the system confi guration returned by 
a heuristic search method attempting to fi nd an optimal system confi guration (see 
Sec. 12.5) is at least the best of the confi gurations actually simulated. The sequential-
selection-with-memory procedure discussed in the latter paper has been imple-
mented in the OptQuest optimization package (see Sec. 12.5.2).

Subset Selection

The procedures in Sec. 10.1 and 10.2 used an indifference-zone approach, 
where the analyst prespecifi es an amount d* representing a threshold below which 
errors resulting from incorrect selection are deemed inconsequential. The result 
was the selection of a fi xed, prespecifi ed number (perhaps 1) of the alternatives as 
“good” in some sense. This was extended to selecting a subset of size m of the k 
systems that contains the m best of the systems by Koenig and Law (1985). An 
ocba procedure for solving this problem is discussed in Chen et al. (2008). See 
also the paper by Chen (2009).

On the other hand, Gupta (1956, 1965) developed a procedure producing a 
subset of random size that contains the best system, with prespecifi ed probability P*, 
without specifying an indifference amount (i.e., setting d* 5 0). Although the size 
of the selected subset is not controlled, this could be a useful fi rst step in screening 
out those of a large number of alternatives that are clearly not inferior. Gupta and 
Santner (1973) and Santner (1975) extended this method to allow for prespecifying 
the maximum size m of the selected subset, and they also showed the relationship of 
this method to indifference-zone approaches. A major limitation of these proce-
dures in simulation is that they assume known and equal variances, which is un-
likely to be satisfi ed in practice. Sullivan and Wilson (1989) developed a much more 
general restricted-subset-selection procedure that allows for unknown and unequal 
variances, as well as specifi cation of an indifference amount. In all these formula-
tions, the advantage of defi ning m as the maximum size of the selected subset, in-
stead of insisting that exactly m alternatives be selected, is that far fewer than m 
systems could be chosen in situations where it is fairly clear that only a few of the 
systems could be the best. Finally, as discussed in Sec. 10.4.1, Nelson et al. (2001) 
combine a subset-selection procedure with indifference-zone approaches to obtain 
the nsgs procedure, which has greater statistical effi ciency.

Fully Sequential Procedures

The ranking-and-selection procedures discussed in Secs. 10.4.1 and 10.4.2 
involved two-stage sampling, where a variance estimate was computed from the 
fi rst-stage observations and used to determine the number of additional observa-
tions required in the second stage. One drawback of this approach is that if the 
fi rst-stage variance estimate happens to be a lot larger than the actual variance, 
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580 comparing alternative system configurations

a perhaps unnecessarily large amount of sampling in the second stage will be 
prescribed. As a result, fully sequential procedures have been proposed, where a 
single “observation” (e.g., the average response over an entire replication) is taken 
from each alternative system that is still in the running at the current stage of 
sampling, and inferior systems are eliminated from further consideration until a 
best system is identifi ed. The goal of such procedures is to reduce the number of 
observations required to choose the best system with a specifi ed probability of 
correct selection.

Kim and Nelson (2001) developed an indifference-zone-based fully sequen-
tial procedure (denoted kn) that assumes the ability to collect IID normal ob-
servations from each system, and allows the use of CRN across the alternative 
systems. Kim and Nelson (2007) applied the r and kn procedures to the 
 inventory problem of Sec. 10.4.1 with a planning horizon of 30 months, and 
they used n0 5 10, P* 5 0.95, and d* 5 1. The r procedure required 1556 
replications for the two stages and the kn procedure required a total of 232 
replications for all stages. (The dd procedure would require 1423 replications 
for this problem.)

A shortcoming of sequential procedures is the time and effort required to switch 
among the simulations corresponding to the alternative systems. In this regard, 
Hong and Nelson (2005) developed a sequential procedure that is designed to balance 
the cost of sampling and switching. Also, the kn procedure has been implemented 
in the Simio simulation package (see Sec. 3.5.3).

The ocba procedures discussed above are sequential (multistage), where a 
total of D replications (observations) are allocated to the k systems at each stage. 
(For the inventory example discussed at the beginning of this section, D 5 10 obser-
vations were allocated at each stage to the k 5 5 inventory policies.)

Criteria Other Than Expectations

The comparison and selection methods we have considered have all been based 
on looking at an expected system response, e.g., the expected average delay in queue 
or the expected average operating cost per month. However, in some situations other 
criteria may be more appropriate. Goldsman (1984a, 1984b) describes an inventory 
system where policy 1 results in a profi t of 1000 with probability 0.001 and a profi t 
of 0 with probability 0.999; policy 2, on the other hand, always gives profi t 0.999. 
Thus, the expected profi ts from policies 1 and 2 are 1 and 0.999, respectively, so that 
policy 1 would be preferable on this basis. However, policy 2 will yield higher profi t 
(0.999 instead of 0) with probability 0.999, so it could be considered preferable 
even though its expected profi t is lower. Thus, we might reconsider what we regard 
as the “best” system, defi ning it to be the one that has the largest probability of pro-
ducing a “good” outcome.

Goldsman (1984a, 1984b) surveys indifference-zone methods with this goal in 
mind, while Chen (1988) considers this problem from a subset-selection perspec-
tive. Miller et al. (1998) propose a procedure for this problem that requires smaller 
sample sizes to achieve a specifi ed probability of correct selection. See Kim and 
Nelson (2006a) for additional discussion of this problem. Also see Chick and Inoue 
(2001a) and He et al. (2007) for additional discussions of selection criteria.
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Correlation Between Alternatives

We saw in Sec. 10.4.1 that the use of CRN across the simulated systems can 
reduce the number of observations required to achieve a specifi ed probability 
of correct selection. In particular, for the inventory problem, the nm procedure 
with CRN required 72 percent fewer replications than the dd procedure, which 
requires the systems of interest to be simulated independently. The kn proce-
dure of Kim and Nelson (2001) also allows the use of CRN. Additionally, 
Fu et al. (2007) and Peng et al. (2013) discuss ocba procedures that allow the 
use of CRN.

It is important that the common-random-numbers technique, in fact, induce 
the desired positive correlation between the output responses, X1j, X2j, . . . , 
Xkj,  for the k systems, and not “backfi re” to induce negative correlation (see 
Sec.  11.2); Koenig and Law (1982) observed backfiring in testing selection 
procedures on inventory models, resulting in signifi cant degradation in correct-
selection probabilities.

Correlation Within an Alternative

Another type of independence that we have been assuming is for the observa-
tions from a particular alternative system. This poses no diffi culty when the simu-
lation is terminating, since we simply make independent replications of the model, 
and each replication produces an unbiased estimate for the desired expected 
response. However, in the case of a steady-state parameter for a nonterminating 
simulation (see Sec. 9.3), such unbiased independent observations do not come as 
easily. One approach to selection for steady-state parameters would be to use the 
replication/deletion approach to produce Xij’s that are independent and approxi-
mately unbiased for the steady-state mean of system i, as was done in Examples 10.5 
and 10.6. Another possibility would be to make a single long run of system i and 
then let Xij be the sample mean of the observations in the jth batch within this run 
(see the discussion of batch means in Sec. 9.5.3); the critical issue here is how to 
choose the batch size so that the batch means are approximately uncorrelated. Addi-
tionally, Goldsman et al. (2002) developed a sequential procedure (denoted kn++) 
based on one long run of each system, where basic observations (e.g., the delays in 
queue of individual customers) from each system are added one at a time. This 
procedure does not allow the use of CRN. The asymptotic validity of the kn++ 
procedure is shown in Kim and Nelson (2006b).

Constraints on Secondary Performance Measures

There has been a fair amount of recent interest in constrained ranking and se-
lection, where the goal is to fi nd which of k systems has the smallest (largest) mean 
response subject to constraints on secondary mean responses (performance mea-
sures). For example, in scheduling surgery for a hospital the goal might be to mini-
mize the mean idle time of resources, subject to an upper bound on the mean waiting 
time of patients. Papers that address such problems include Andradóttir and Kim 
(2010), Healey et al. (2013), Hunter and Pasupathy (2013), Lee et al. (2012), and 
Pujowidanto et al. (2009).
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APPENDIX 10A 
VALIDITY OF THE SELECTION PROCEDURES

The purpose of this appendix is to give a brief indication of how the procedures 
of Secs. 10.4.1 and 10.4.2 (except the nm procedure) are justifi ed and how the 
values for h1 and h2 in App. 10B were computed. For a more complete discus-
sion, we refer the interested reader to Dudewicz and Dalal (1975) and Koenig 
and Law (1985).

Both procedures are based on the fact that for i 5 1, 2, . . . , k,

 Ti 5
X̃i(Ni) 2 mi

d*yh

has a t distribution with n0 2 1 df, where h is either h1 or h2 depending on which 
selection procedure is used; the Ti’s are also independent. The rather curious form 
of the expression for the weight Wi1 was chosen specifi cally to make X̃i(Ni) such 
that Ti would have this t distribution. [Other ways of defi ning Wi1 and X̃i(Ni) also 
result in the Ti’s having this t distribution; see Dudewicz and Dalal (1975).]

For the selection problem of Sec. 10.4.1 assume that mi2
2 mi1

$ d*. Then cor-

rect selection occurs if and only if X̃i1
(Ni1

) is the smallest of the X̃i(Ni)’s (where i1 
is the index of a system with smallest expected response, mi1

). Thus if we let f and 
F denote the density and distribution function, respectively, of the t distribution with 
n0 2 1 df, we can write

  P(CS) 5 P[X̃i1
(Ni1

) , X̃il
(Nil

) for l 5 2, 3, . . . , k]

  5 P c
X̃i1

(Ni1
) 2 mi1

d*yh1

#
X̃il

(Nil
) 2 mil

d*yh1

1
mil

2 mi1

d*yh1

 for l 5 2, 3, . . . , k d

  5 P aTil
$ Ti1

2
mil

2 mi1

d*yh1

 for l 5 2, 3, . . . , kb

  5 #
`

2`
q

k

l52

F a
mil

2 mi1

d*yh1

2 tb f (t) dt (10.5)

[The last line in Eq. (10.5) follows by conditioning on Ti1
5 t and by the indepen-

dence of the Ti’s.] Now since we assumed that mi2
2 mi1

$ d* and the mil
’s are 

 increasing with l, we know that mil
2 mi1

$ d* for l 5 2, 3, . . . , k. Thus, since F is 
monotone increasing, Eq. (10.5) yields (after a change of variable in the integral)

 P(CS) $ #
`

2`
 [F(t 1 h1)]k21

 f (t) dt (10.6)

and equality holds in (10.6) exactly when mi1
1 d* 5 mi2

5 . . . 5 mik
, an arrange-

ment of the mi’s called the LFC. Table 10.11 was thus obtained by setting the inte-
gral on the right-hand side of (10.6) to P* and solving (numerically) for h1.
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Demonstrating the validity of the subset-selection procedure of Sec. 10.4.2 is 
more complicated but follows a similar line of reasoning. We can show [see Koenig 
and Law (1985)] ultimately that

 P(CS) $ (k 2 m)a
k 2 1

k 2 m
b #

`

2`
F(t 1 h2)[F(t)]m21[F(2t)]k2m21

 f (t) dt

and we equate the right-hand side to P* to solve for h2, as given in Table 10.12. The 
LFC for this problem [in which case P(CS) 5 P*] is the same as that for the  problem 
in Sec. 10.4.1.

APPENDIX 10B 
CONSTANTS FOR THE SELECTION PROCEDURES

TABLE 10.11

Values of h1 for the procedure of Sec. 10.4.1

P* n0 k 5 2 k 5 3 k 5 4 k 5 5 k 5 6 k 5 7 k 5 8 k 5 9 k 5 10

0.90 20 1.896 2.342 2.583 2.747 2.870 2.969 3.051 3.121 3.182
0.90 40 1.852 2.283 2.514 2.669 2.785 2.878 2.954 3.019 3.076
0.95 20 2.453 2.872 3.101 3.258 3.377 3.472 3.551 3.619 3.679
0.95 40 2.386 2.786 3.003 3.150 3.260 3.349 3.422 3.484 3.539

TABLE 10.12

Values of h2 for the procedure of Sec. 10.4.2
For m 5 1, use Table 10.11

m k 5 3 k 5 4 k 5 5 k 5 6 k 5 7 k 5 8 k 5 9 k 5 10

 P* 5 0.90, n0 5 20

2 1.137 1.601 1.860 2.039 2.174 2.282 2.373 2.450

3  0.782 1.243 1.507 1.690 1.830 1.943 2.038

4   0.556 1.012 1.276 1.461 1.603 1.718

5    0.392 0.843 1.105 1.291 1.434

6     0.265 0.711 0.971 1.156

7      0.162 0.603 0.861

8       0.075 0.512

9        † 

 P* 5 0.90, n0 5 40

2 1.114 1.570 1.825 1.999 2.131 2.237 2.324 2.399

3  0.763 1.219 1.479 1.660 1.798 1.909 2.002

4   0.541 0.991 1.251 1.434 1.575 1.688

5    0.381 0.824 1.083 1.266 1.408

6     0.257 0.693 0.950 1.133

7      0.156 0.587 0.841

8       0.072 0.497

9        †

(continued)
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PROBLEMS

 10.1. In Examples 10.1 and 10.2, what if the bank did want to count the service times, in 
addition to the delays in queue? That is, suppose that the performance measure is the 
expected average total time in system of the fi rst 100 customers, instead of the ex-
pected average delay in queue. What is the “best” system in this case? Which  criterion 
do you think is more appropriate? Discuss.

 10.2. Consider the two systems of Example 10.1, with the same initial conditions and 
 performance measures given there; let z 5 dZ(l00) 2 dK(100).
(a) Make n1 5 n2 5 5 independent replications of each system and construct an 

 approximate 90 percent confi dence interval for z. (Perform the simulations for 
the two systems independently of each other.) Use the paired-t approach.

(b) Make n1 5 5 replications of the Zippytel system and n2 5 10 replications of the 
Klunkytel system, and construct an approximate 90 percent confi dence interval 
for z. (Again make the runs of the two systems independently.)

(c) Use the dd procedure of Sec. 10.4.1 to select the best of the k 5 2 systems. Let 
n0 5 20, P* 5 0.90, and d* 5 0.4.

 10.3. For the time-shared computer model of Sec. 2.5, suppose that the company is consid-
ering a change in the service quantum length q in an effort to reduce the steady-state 

TABLE 10.12 (continued)

m k 5 3 k 5 4 k 5 5 k 5 6 k 5 7 k 5 8 k 5 9 k 5 10

 P* 5 0.95, n0 5 20

2 1.631 2.071 2.321 2.494 2.625 2.731 2.819 2.894

3  1.256 1.697 1.952 2.131 2.267 2.378 2.470

4   1.021 1.458 1.714 1.894 2.033 2.146

5    0.852 1.284 1.539 1.720 1.860

6     0.721 1.149 1.402 1.583

7      0.615 1.038 1.290

8       0.526 0.945

9        0.449

 P* 5 0.95, n0 5 40

2 1.591 2.023 2.267 2.435 2.563 2.665 2.750 2.823

3  1.222 1.656 1.907 2.082 2.217 2.325 2.415

4   0.990 1.420 1.672 1.850 1.987 2.098

5    0.824 1.248 1.499 1.678 1.816

6     0.695 1.114 1.363 1.541

7      0.591 1.004 1.252

8       0.505 0.913

9        0.430

† Recall that for this selection problem we must have P* . myk. [If P* 5 0.90, m 5 9, and k 5 10, we can obtain 
P(CS) 5 P* by selecting nine systems at random, without any data collection at all.]
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mean response time of a job; the values for q under consideration are 0.05, 0.10, 0.20, 
and 0.40. Assume that there are n 5 35 terminals and that the other parameters and 
initial conditions are the same as those in Sec. 2.5. To obtain IID observations with 
expectation approximately equal to the steady-state mean response time of a job, it is 
felt that warming up the models for 50 response times is adequate, after which the 
next 640 response times are averaged to obtain a basic Xij observation; independent 
replications of these 690 response times are then made as needed. Use an appropriate 
selection procedure from Secs. 10.4.1 and 10.4.2 (other than the nm procedure) with 
n0 5 20, P* 5 0.90, and d* 5 0.7 to solve each of the following problems.
(a) Select the best of the four values for q.
(b) Select two values of q, one of which is the best.

 10.4. For the job-shop model of Sec. 2.7, we can now carry out a better analysis for the 
question of deciding which workstation should be given an additional machine. (See 
Sec. 2.7.3 and note from Fig. 2.46 that, on the basis of a single replication of the 
 existing system, workstations 1, 2, and 4 appear to be the three most congested 
 stations.) Use the dd procedure of Sec. 10.4.1 to recommend whether a machine 
should be added to station 1, 2, or 4, assuming that these are the only three possibili-
ties; let n0 5 20, P* 5 0.90, and d* 5 1. Use the steady-state expected overall aver-
age job total delay as the measure of performance; to obtain the Xij observations, 
warm up the model for 10 eight-hour days and use the data from the next 90 days, as 
in Prob. 2.7. Compare your conclusions with those at the end of Sec. 2.7.3. From the 
moral of Example 10.1, how might this entire study be improved?

 10.5. Consider the original time-shared computer model of Sec. 2.5 and the alternative 
processing policy described in Prob. 2.18, both with n 5 35 terminals. Use the dd 
procedure of Sec. 10.4.1 with n0 5 20 to recommend which processing policy results 
in the smallest steady-state mean response time of a job. To obtain the Xij’s here, 
warm up the model for 50 response times, then use the average of the next 640 
 response times, and replicate as needed. Choose your own P* and d*, perhaps based 
on cost considerations, or your own feeling about what constitutes an “important” 
difference in mean response time.

 10.6. For the manufacturing shop of Prob. 1.22, use the selection procedure of Sec. 10.4.2 
to choose three out of the fi ve values of s (the number of repairmen), one of which 
results in the smallest expected average cost per hour. Use n0 5 20, P* 5 0.90, and 
d* 5 5.

 10.7. For the four alternatives of Prob. 10.3, construct confi dence intervals for all com-
parisons with the current (q 5 0.10) system, using an overall confi dence level of 
90 percent. Make as many replications as you think are needed to get meaningful 
results.

 10.8. For the manufacturing shop of Probs. 1.22 and 10.6, form confi dence intervals for 
all pairwise differences of the expected average costs per hour for the fi ve values 
of s; use an overall confi dence level of 0.90. Replicate as needed to get meaningful 
results.

 10.9. For Example 10.5 the mean inspection time was reduced by only 10 percent. How, 
then, could the steady-state mean time in system be reduced by 38 percent?
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10.10. In Example 10.3, the difference between m1 and m2 was statistically signifi cant, but 
in Example 10.7 it was not. Why are the outcomes different?

10.11. Show that sphericity implies that Var(Xij 2 Xlj) 5 2t2 for i fi l (see Sec. 10.4.1).

10.12. Consider the nm procedure of Sec. 10.4.1. Assume that X1j, X2j, . . . , Xkj (for j 5 1, 
 2, . . . , n0) has a multivariate normal distribution with covariance matrix S, which 

has the property of sphericity. Then it can be shown [see Lemma 2 in Nelson and 
Matejcik (1995)] that S2 is distributed as 2t2x2

(k21)(n021)y[(k 2 1)(n0 2 1)], where 
 x2

n is a chi-square random variable with n degrees of freedom. Under these assump-
tions, show that S2 is an unbiased estimator of Var(Xij 2 Xlj) 5 2t2.
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C H A P T E R  1 1

Variance-Reduction Techniques

Recommended sections for a fi rst reading: 11.1, 11.2

11.1 
INTRODUCTION

One of the points we have tried to emphasize throughout this book is that simula-
tions driven by random inputs will produce random output. Thus, appropriate sta-
tistical techniques applied to simulation output data are imperative if the results 
are to be properly analyzed, interpreted, and used (see Chaps. 9, 10, and 12). Since 
large-scale simulations may require great amounts of computer time and storage, 
appropriate statistical analyses (possibly requiring multiple replications of the 
model, for example) can become quite costly. Sometimes the cost of even a mod-
est statistical analysis of the output can be so high that the precision of the results, 
perhaps measured by confi dence-interval width, will be unacceptably poor. The 
analyst should therefore try to use any means possible to increase the simulation’s 
effi ciency.

Of course, “effi ciency” mandates careful programming to expedite execution 
and minimize storage requirements. In this chapter, however, we focus on statisti-
cal effi ciency, as measured by the variances of the output random variables from a 
simulation. If we can somehow reduce the variance of an output random variable of 
interest (such as average delay in queue or average cost per month in an inventory 
system) without disturbing its expectation, we can obtain greater precision, e.g., 
smaller confi dence intervals, for the same amount of simulating, or, alternatively, 
achieve a desired precision with less simulating. Sometimes such a variance- 
reduction technique (VRT), properly applied, can make the difference between an 
impossibly expensive simulation project and a frugal, useful one.
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588 variance-reduction techniques

As we shall see, the method of applying VRTs usually depends on the particular 
model (or models) of interest. Therefore, a thorough understanding of the workings 
of the model(s) is required for proper use of VRTs. Furthermore, it is generally 
impossible to know beforehand how great a variance reduction might be realized, 
or (worse) whether the variance will be reduced at all in comparison with straight-
forward simulation. However, preliminary runs could be made (if affordable) to 
compare the results of applying a VRT with those from straightforward simulation. 
Finally, some VRTs themselves will increase computing cost, and this decrease in 
computational effi ciency must be traded off against the potential gain in statistical 
effi ciency [see Glynn and Whitt (1992a) and Prob. 11.1]. Almost all VRTs require 
some extra effort on the part of the analyst (if only to understand the technique) and 
this, as always, must be considered.

VRTs were developed originally in the early days of computers, to be applied 
in Monte Carlo simulations or distribution sampling [see Sec. 13.5, as well as 
Hammersley and Handscomb (1964) and Morgan (1984, chap. 7)]. However, many 
of these original VRTs have been found not to be directly applicable to simulations 
of complex dynamic systems.

In the remainder of this chapter we will discuss in some detail fi ve general types 
of VRTs that would appear to have the most promise of successful application to a 
wide variety of simulations. We refer the reader to Kleijnen (1974), Morgan (1984, 
chap. 7), and Bratley, Fox, and Schrage (1987, chap. 2) for detailed discussions 
of other VRTs, such as stratifi ed sampling and importance sampling (see also 
Sec. 11.6). There is a very large literature on VRTs, and we do not attempt an 
exhaustive treatment here. Fortunately, there are several comprehensive surveys 
that provide useful ways of classifying VRTs and also contain extensive bibliogra-
phies; Wilson (1984), Nelson (1985, 1986, 1987a, 1987c), L’Ecuyer (1994a), and 
Kleijnen (1998, sec. 6.3.5 and app. 6.2) are particularly recommended to the reader 
interested in going further with this subject. In addition, special issues of the 
 journals Management Science (Volume 35, Number 11, November 1989, edited by 
G. S. Fishman) and the Association for Computing Machinery (ACM) Transactions 
on Modeling and Computer Simulation (Volume 3, Number 3, July 1993, edited by 
P. Glasserman and P. Heidelberger), were devoted to research on VRTs. While our 
discussion will focus on the different VRTs by themselves, it is possible to use them 
together; see Kwon and Tew (1994), Avramidis and Wilson (1996), and Yang and 
Liou (1996).

11.2 
COMMON RANDOM NUMBERS

The fi rst VRT we consider, common random numbers (CRN), is actually different 
from the others in that it applies when we are comparing two or more alternative 
system confi gurations (see Chap. 10) instead of investigating a single confi guration. 
Despite its simplicity, CRN is the most useful and popular VRT of all. In fact, as 
mentioned at the end of Sec. 10.2.3, the default setup in most simulation packages 
is that the same random-number streams and seeds (see Sec. 7.2) are used unless 
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specifi ed otherwise. Thus, by default, the two confi gurations would actually use 
the same random numbers, though not necessarily properly synchronized (see 
Sec. 11.2.3), which is critical for the success of CRN.

11.2.1 Rationale

The basic idea is that we should compare the alternative confi gurations “under 
similar experimental conditions” so that we can be more confi dent that any observed 
differences in performance are due to differences in the system confi gurations rather 
than to fl uctuations of the “experimental conditions.” In simulation, these “experi-
mental conditions” are the generated random variates that are used to drive the 
models through simulated time. In queueing simulations, for instance, these would 
include interarrival times and service times of customers; in inventory simulations 
we might include interdemand times and demand sizes. The name of this technique 
stems from the possibility in many situations of using the same basic U(0, 1) ran-
dom numbers (see Chap. 7) to drive each of the alternative confi gurations through 
time. As we shall see later in this section, however, certain programming techniques 
are often needed to facilitate proper implementation of CRN. In the terminology of 
classical experimental design, CRN is a form of blocking, i.e., “comparing like with 
like.” CRN has also been called correlated sampling.

To see the rationale for CRN more clearly, consider the case of two alternative 
confi gurations, as in Sec. 10.2, where X1j and X2j are the observations from the fi rst 
and second confi gurations on the jth independent replication, and we want to esti-
mate z 5 m1 2 m2 5 E(X1j) 2 E(X2j). If we make n replications of each system and 
let Zj 5 X1j 2 X2j for j 5 1, 2, . . . , n, then E(Zj) 5 z so

 Z(n) 5

^
n

j51

Zj

n

is an unbiased estimator of z. Since the Zj’s are IID random variables,

 Var[Z(n)] 5
Var(Zj)

n
5

Var(X1j) 1 Var(X2j) 2 2 Cov(X1j, X2j)

n

[see Eq. (4.5) and Prob. 4.13]. If the simulations of the two different confi gurations 
are done independently, i.e., with different random numbers, X1j and X2j will be 
 independent, so that Cov(X1j, X2j) 5 0. On the other hand, if we could somehow 
do the simulations of confi gurations 1 and 2 so that X1j and X2j are positively correlated, 
then Cov(X1j, X2j) . 0, so that the variance of our estimator Z(n) is reduced. Thus, 
when Z(n) is observed in a particular simulation experiment, its value should be 
closer to z. CRN is a technique where we try to induce this positive correlation by 
using (carefully, as discussed in Sec. 11.2.3 below) the same random numbers to 
simulate both confi gurations. (This does not change the probability distributions 
of X1j and X2j and, in particular, their means and variances.) What makes this 
possible is the deterministic, reproducible nature of random-number generators 
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590 variance-reduction techniques

(see Sec. 7.1); irreproducible gimmicks such as seeding the random-number gen-
erator by the square root of the computer’s clock value would generally preclude the 
use of CRN as well as many other valuable VRTs.

11.2.2 Applicability

Unfortunately, there is no completely general proof that CRN “works,” i.e., that 
it will always reduce the variance. Even if it does work, we usually will not know 
beforehand how great a reduction in variance we might experience. The effi cacy 
of CRN depends wholly on the particular models being compared, and its use 
presupposes the analyst’s (perhaps implicit) belief that the different models will 
respond “similarly” to large or small values of the random variates driving the 
models. For example, we would expect that smaller interarrival times for several 
designs of a queueing facility would result in longer delays and queues for each 
system.

There are, however, some classes of models for which CRN’s success is guar-
anteed. Heidelberger and Iglehart (1979) showed this for certain types of regen-
erative simulations, and Bratley, Fox, and Schrage (1987, chap. 2) derive results 
indicating conditions under which CRN will work. See also Gal, Rubinstein, and 
Ziv (1984), Rubinstein, Samorodnitsky, and Shaked (1985), and Glasserman and 
Yao (1992) for additional results of this type.

Figure 11.1 schematically illustrates the concept in principle, where the hori-
zontal axis shows possible values of a particular Uk used for a particular purpose in 
both of the simulations; for instance, this Uk might be used to generate a service 
time. The curves indicate how the results of the simulations might react, all other 
things being equal, to possible values of this Uk. In either of the two situations in the 
top row of plots, both X1j and X2j react monotonically in the same direction to Uk, 
and we would expect CRN to induce the desired positive correlation, and thus re-
duce the variance. In the bottom two plots, however, X1j and X2j react in opposite 
directions to Uk, so CRN could induce negative correlation and thus “backfi re,” 
leading to Cov(X1j, X2j) , 0 and an actual increase in the variance. Problem 11.2 
considers a specifi c instance of this issue.

Usually, random numbers are fi rst used to generate variates from other distri-
butions (see Chap. 8), which are then used to drive the simulation models. In 
order to give CRN the best chance of working, we should thus try fi rst to ensure 
that the generated variates themselves react monotonically to the Uk’s in this 
 intermediate variate-generation step; we then must assume that the measures of 
performance react monotonically to the generated variates. For this reason, the 
inverse- transform method of variate generation (Sec. 8.2.1) is recommended, 
since it guarantees monotonicity of the generated input variates to the random 
numbers; it further provides the strongest possible positive correlation among all 
variate-generation methods [see Bratley et al. (1987, pp. 53–54) or Whitt (1976)]. 
Since the inverse-transform method can be slow, however, for some distributions 
(perhaps  involving numerical methods to invert the distribution function), its 
computational in effi ciency could offset its statistical effi ciency. For this reason, 
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Schmeiser and Kachitvichyanukul (1990) developed faster non-inverse- transform 
methods that still induce positive correlation in the generated variates, as re-
quired for CRN to work.

If affordable, a small pilot study could provide a preliminary check on the effi -
cacy of CRN for the alternative confi gurations. In the case of two confi gurations, 
make n replications of each, using CRN, to obtain output observations X1j and X2j 
for j 5 1, 2, . . . , n. Let S2

1(n) and S2
2(n) be the sample variances [using Eq. (4.4)] 

of the X1j’s and X2j’s, respectively, and let S2
Z(n) be the sample variance of the 

differences, Zj 5 X1j 2 X2j; since the runs were made using CRN, S2
Z(n) is an unbi-

ased estimator of the variance of a Zj under CRN. Regardless of the fact that we 
used CRN, S2

1(n) is unbiased for Var(X1j) and S2
2(n) is unbiased for Var(X2j), so 

S2
1(n) 1 S2

2(n) is an unbiased estimator of the variance of a Zj if we were to make 
the runs without CRN. Thus, if CRN is working, we would expect to observe that 
S2

Z(n) , S2
1(n) 1 S2

2(n), and the difference estimates how much CRN is reducing 
the variance of a Zj. Of course, any extra programming that might be necessary to 
implement CRN would have to be done for such a pilot study, whether or not CRN 
is ultimately adopted. While there are some examples of CRN’s backfi ring, as 

FIGURE 11.1
Model responses for CRN to work (top row) and backfi re 
(bottom row).
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592 variance-reduction techniques

 observed by Wright and Ramsay (1979) and Koenig and Law (1982) for inventory 
simulations, we feel that CRN is generally a valuable tool that should be given 
 serious consideration by an analyst faced with the task of comparing two or more 
alternative confi gurations.

Another possible drawback to CRN is that formal statistical analyses can 
be  complicated by the induced correlation. Adaptations for standard analysis- 
of-variance tests in the presence of this correlation are discussed by Heikes, 
 Montgomery, and Rardin (1976) and by Kleijnen (1979). Further issues regarding 
statistical analysis in the presence of CRN-induced correlation are discussed by 
Nelson (1987b), who also deals with similar problems created by the antithetic-
variates VRT treated in Sec. 11.3. Nozari, Arnold, and Pegden (1987) address the 
issue of statistical analysis in the general framework of Schruben and Margolin 
(1978) for correlation induction in simulation experiments, and Tew and Wilson 
(1992) develop tests for applicability of their methods. Nelson and Hsu (1993) con-
sider CRN with the MCB procedure of Sec. 10.3.3, and Kleijnen (1992) discusses 
the effect of CRN on regression metamodels of simulations (described in Sec. 12.4). 
See also the discussion in Sec. 10.4.3 under the heading “Correlation Between 
 Alternatives,” relating to CRN in ranking-and-selection procedures.

11.2.3 Synchronization

To implement CRN properly, we must match up, or synchronize, the random num-
bers across the different system confi gurations on a particular replication. Ideally, a 
specifi c random number used for a specifi c purpose in one confi guration is used for 
exactly the same purpose in all other confi gurations. For instance, if a specifi c Uk is 
used in the fi rst of two alternative queueing confi gurations to generate a specifi c 
service time, then it should be used in the second confi guration to generate the same 
service time (rather than an interarrival time or some other service time) as well; 
otherwise, the benefi t of CRN could be lost, or (worse) backfi ring might occur. 
In particular, it is generally not enough just to start off the simulations of all con-
fi gurations with the same seed of a random-number stream, which results in all 
simulations using the same random numbers U1, U2, . . . . This is illustrated by the 
following example.

E X A M P L E  1 1 . 1 .  Recall the two competing designs for the automated teller machine 
of Examples 10.1 and 10.2. The fi rst confi guration (one Zippytel machine) is an M/M/1 
queue, and the second (two Klunkytels) is an M/M/2 queue, both with utilization factor 
r 5 0.9. The performance measure of interest is the expected average delay in queue 
for the fi rst 100 customers given that the fi rst customer fi nds the system empty and idle. 
Thus, Xij is the average delay in the M/M/i queue on the jth replication, for i 5 1, 2. In 
Examples 10.1 and 10.2, we generated X1j and X2j independently for the 100 indepen-
dent replications, but we could have used CRN.
 In an attempt to do so, we used a single random-number stream (see Secs. 2.3 
and 7.1) to generate both interarrival and service times, and we simply reset the stream’s 
seed back to its original value before simulating the second confi guration. For the 
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M/M/1 case, the program logic of Sec. 1.4 was used. In particular, when a customer 
 arrives, we fi rst generate the time of arrival of the next customer. If the server is idle 
when a customer arrives, then we generate the customer’s service time immediately and 
schedule the departure event for this customer. On the other hand, if the server is busy, 
then the arriving customer joins the queue and we do not generate his or her service 
time until the customer enters service, after a delay in queue. The M/M/2 queue was 
 programmed similarly. To see how the usage of random numbers can get out of syn-
chronization, suppose, e.g., that customers 2 and 3 arrive before customer 1 departs. In 
Table 11.1 we give the usage of the fi rst fi ve random numbers for the two simulations, 
as well as the time that these random numbers are used. The random number U1 is used 
at time 0 in both simulations to generate A1, so that the time of the fi rst arrival can be 
scheduled into the event list. The fi rst customer arrives in both simulations at time A1, 
and the random number U2 is then used to generate A2 and to schedule the arrival of the 
second customer. Since there is an idle server in both simulations when the fi rst 
 customer arrives, U3 is used to generate S1 and to schedule the time of departure of the 
fi rst customer. The second customer arrives at time A1 1 A2 (before the fi rst customer 
departs), at which time U4 is used to generate A3. Since there is an idle server when the 
second customer arrives for the M/M/2 simulation, U5 is used at this time to generate S2. 
However, in the M/M/1 simulation, there is no available server when the second 
 customer arrives, and so this customer joins the queue and his or her service time is not 
generated at this time. The next event in this simulation is the arrival of the third cus-
tomer at time A1 1 A2 1 A3, at which time U5 is used to generate A4. Thus, U5 is used to 
generate A4 and S2 in the M/M/1 and M/M/2 simulations, respectively, and the usage of 
the random numbers is no longer synchronized.
 In Table 11.2 we show how the interarrival times and service times are actually gener-
ated from the Uk’s. (Recall from Sec. 8.3.2 that an exponential random variate is generated 
as minus the desired mean times the natural log of a random number.) Note from this table 
that the correlation between the fi rst service time for the M/M/1 queue and the fi rst service 
time for the M/M/2 queue is a perfect 11 (see Prob. 4.11), which is highly desirable. On the 
other hand, the correlation between A4 for the M/M/1 queue and S2 for the M/M/2 queue is 
also 11. Thus, a large value of U5 will make A4 small and tend to make X1j larger for the 
M/M/1 queue. On the other hand, a large value of U5 will make S2 small and tend to make 
X2j smaller for the M/M/2 queue. This is not the intended effect.

Thus, we cannot in general expect CRN to be implemented properly if we 
merely recycle the same random numbers without paying attention to how they are 

TABLE 11.1

Use of the fi rst fi ve random numbers for the M/M/1 and M/M/2 simulations

 Usage in  Time of Usage in Time of
Random number M/M/1 usage M/M/2 usage

 U1 A1 0 A1 0
 U2 A2 A1 A2 A1

 U3 S1 A1 S1 A1

 U4 A3 A1 1 A2 A3 A1 1 A2

 U5 A4 A1 1 A2 1 A3 S2 A1 1 A2
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used. The poor synchronization in Example 11.1 is due in part to the particular way 
we programmed the simulations. We did not, however, consciously try to destroy 
the synchronization, but wrote code in a way that seems reasonable and is in fact 
correct. The issue of coding for correct synchronization is considered below and 
in Example 11.4, which also illustrates the statistical consequences of ignoring 
synchronization.

How diffi cult it is to maintain proper synchronization in general depends en-
tirely on the model structure and parameters, and on the methods used to generate 
the random variates needed in the simulations. Several programming “tricks” could 
be considered to maintain synchronization in a given simulation:

• If there are multiple streams of random numbers available (see Secs. 2.3 and 
7.1), or if there are several different random-number generators operating 
 simultaneously, we could “dedicate” a stream (or generator) to producing the 
random numbers for each particular type of input random variate. In a queue-
ing simulation, for instance, one stream could be dedicated to generating the 
interarrival times, and a different stream could be dedicated to service times. 
Stream dedication is generally a good idea, and most simulation packages have 
facility for separate random-number streams. (The number of different streams 
readily available, however, may not be entirely adequate for large simulations.) 
Moreover, since streams are usually just adjacent segments of a single random-
number generator’s output and thus have a particular length, care should be 
taken to avoid overlapping them when doing long simulations or when repli-
cating intensively. A back-of-the-envelope calculation might indicate roughly 
how many random numbers will be used from a stream, and appropriate as-
signments can then be made. For example, in a simple single-server queueing 
simulation where about 5000 customers are expected to pass through the system, 
each will need an interarrival time and a service time. If the inverse-transform 
method (see Sec. 8.2.1) is used to generate all these variates, we would need 
about 5000 random numbers from each stream; if we were to replicate the 
simulation 30 times, we would go through some 150,000 random numbers 
from each stream. If the streams are, say, 100,000 long and we dedicated 
stream 1 to interarrival times and stream 2 to service times (as usual), we see 
that the last 50,000 random numbers used for the interarrival times would actu-
ally be the same as the fi rst 50,000 used for the service times, destroying the 
replications’ independence:

TABLE 11.2

Computation of the Ak’s and the Sk’s for the M/M/1 and M/M/2 queues

Random number M/M/1 queue M/M/2 queue

 U1 A1 5 2ln U1  A1 5 2ln U1

 U2 A2 5 2ln U2 A2 5 2ln U2

 U3 S1 5 20.9 ln U3 S1 5 21.8 ln U3

 U4 A3 5 2ln U4 A3 5 2ln U4

 U5 A4 5 2ln U5 S2 5 21.8 ln U5
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 Stream 1 Stream 2 Stream 3

U1. . . . . . . . U100,000  U100,001. . . . . . . . U200,000  U200,001. . . . . . . . U300,000

    Interarrival Times

               Service Times

 The remedy is, of course, to skip some stream assignments: Keep stream 1 (and 
the fi rst half of stream 2) for the interarrival times, and use, for example, stream 6 
(and the fi rst half of stream 7) for the service times.

• The inverse-transform method for generating random variates (see Sec. 8.2.1) can 
facilitate synchronization since we always need exactly one random number to 
produce each value of the desired random variable. By contrast, the acceptance-
rejection method (Sec. 8.2.4), for example, uses a random number of U(0, 1) 
random numbers to produce a single value of the desired random variable. The 
inverse-transform method, moreover, monotonically transforms the random 
numbers (see Sec. 11.2.2), and induces the strongest possible positive correlation 
between the generated variates that then serve as input to the simulations, as 
discussed in Sec. 8.2.1; this correlation will hopefully propagate through to the 
simulation output to yield the strongest variance reduction.

• It might be helpful to “waste” some random numbers at certain points in simulat-
ing some models. Problem 11.4 gives such an example.

• In some queueing simulations we could generate all of the service require-
ments of a customer at the time of arrival instead of when the customer actu-
ally needs them, and store them as attributes of the customer. Example 11.5 
below illustrates this idea for implementing CRN for the alternative job-shop 
models of Sec. 2.7.3. Also, this approach would have ensured synchronization 
of the M/M/1 vs. M/M/2 systems in Example 11.1, preventing the mix-up of 
random-number usage depicted in Table 11.1. However, this approach could 
have the practical disadvantage of requiring a lot of computer memory if there 
are many attributes per entity and the number of concurrent entities in the 
simulation becomes large. And the diffi culty of taking this approach will gen-
erally depend on the model’s particular logic; for instance, if there is an in-
spection of entities at some juncture in the model with the possibility of 
multiple failures and feedback loops, it might not be clear how to pre-generate 
and store as attributes all of the inspection times that might be required for 
such an entity (see Prob. 11.19).

It is important when using CRN with multiple replications to make sure that the 
random numbers are synchronized across the different models for replications 
beyond just the fi rst one, as will be illustrated by the following example.

E X A M P L E  1 1 . 2 .  Consider the inventory model of Sec. 1.5, and suppose we want to 
compare the results for (s, S ) 5 (20, 40), which we call model 1, vs. (s, S ) 5 (20, 100), 
which we call model 2. There are three sources of randomness: the times between 
 successive demands, the sizes of those demands, and the delivery lag when an order 
is  placed to the supplier. If we dedicate stream 1 to generating interdemand times, 
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stream 2 to generating demand sizes, and stream 3 to generating delivery lags, we will en-
sure proper synchronization of all random-number usage across models 1 and 2 in replica-
tion 1. Furthermore, due to the nature and logic of this model, we will be using the same 
number of random numbers from stream 1 to generate the interdemand times for both 
models 1 and 2, and the same number of random numbers from stream 2 to generate the 
demand sizes for both models. However, since the reorder point s is 20 for both models, and 
the order-up-to level S is only 40 for model 1 but 100 for model 2, the order amounts in 
model 1 will tend to be considerably smaller than in model 2, so we will be placing more 
(small) orders in model 1 than in model 2, requiring generation of more delivery lags 
in model 1 than in model 2. As a result, we will use up more of stream 3 in simulating 
model 1 than we will use in simulating model 2. So if we begin replication 2 of both mod-
els where streams 1, 2, and 3 left off after fi nishing the fi rst replications of models 1 and 2, 
we will indeed get proper synchronization across the models for the interdemand times 
(stream 1) and demand sizes (stream 2), but not for the delivery lags (stream 3); thus, we 
will not have synchronization for delivery lags across the two models for replication 2 and 
beyond. One possible remedy is to abandon streams 1, 2, and 3 after the fi rst replication, 
and start the second replication with (say) streams 4, 5, and 6 for interdemand times, de-
mand sizes, and delivery lags, respectively, then move on to streams 7, 8, and 9 for replica-
tion 3, etc. Assuming that we do not use up more than a whole stream for any source of 
randomness on any replication, and that we have enough random-number streams available 
to carry out the desired number of replications, this will bring the delivery lags back into 
proper synchronization for all replications, possibly strengthening the effect of CRN. What 
is another remedy that requires fewer streams (see Prob. 11.17)? Example 11.7 discusses 
whether delivery lags should, in fact, be the same across the two models.

It might be mentioned that the Arena [Kelton et al. (2010, p. 518)], AutoMod 
[Banks (2004, p. 367)], and WITNESS [Lanner (2013)] simulation packages have spe-
cial features for facilitating synchronization beyond the fi rst replication (see Sec. 7.3.2).

Even if one is armed with programming tricks such as those discussed above, it 
may simply be impossible to attain full synchronization across all confi gurations 
under study. Also, the extra programming effort, computation time, or storage require-
ments needed for full synchronization might not be worth the realized variance reduc-
tion. Thus, we might consider synchronizing some of the input random variates and 
generating others independently across the various confi gurations. For instance, it 
might be convenient to synchronize interarrival times but not service times in a com-
plicated network of queues. In the fi nal analysis, the benefi t of using common random 
numbers and the degree to which we synchronize depend on the situation.

11.2.4 Some Examples

Since the applicability, power, and appropriate synchronization methods for CRN 
can be quite model-dependent, we will present several examples of its use in 
particular situations.

E X A M P L E  1 1 . 3 .  We now rework the M/M/1 vs. M/M/2 comparison of Example 11.1, 
but this time we synchronize correctly and present the actual simulation results. Using 
separate streams to implement CRN, we estimated the effect of various degrees of syn-
chronization in four sequences of 100 pairs of simulations each. In the fi rst sequence, 
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 denoted “I” in Table 11.3, all runs were independent; i.e., CRN was not used at all. In the 
second sequence (“A” in Table 11.3), the interarrival times for the two models were gener-
ated using CRN, but we generated the service times independently. For the third sequence 
(“S”), the interarrival times were independent but the service times were generated using 
CRN, so both systems experienced the “same” ordered sequence of arriving service 
demands, with those for the M/M/2 being exactly twice as great as those for the M/M/1. 
Finally, the fourth sequence (“A & S”) was fully synchronized, matching up both interar-
rival and service times. We can think of these four schemes in physical terms like this:

I  Different customers (in terms of their service requirements) arrive to the two 
confi gurations, and at different times.

A Different customers arrive to the two confi gurations, but at the same times.
S The same customers arrive to the two confi gurations, but at different times.
A & S  The same customers arrive at the same times to both confi gurations. (The 

ith customer to arrive is the ith customer to begin service for both systems, 
since there is a single queue.)

 From the 100 pairs of simulations in each of the four cases we estimated Var(Zj) 
by the usual unbiased variance estimator S2(100), from Eq. (4.4) applied to the Zj’s. 
From this, the half-length of a nominal 90 percent confi dence interval for z is 
1.6452S2(100)y100. We computed as well the proportion p̂ of the 100 pairs for which 
the “wrong” decision would be made, i.e., when X1j , X2j [since E(X1j) . E(X2j), as 
discussed in Example 10.1]. As a more direct check on whether CRN is inducing the 
desired positive correlation, we also estimated the correlation between X1j and X2j by

 Cor
^

(X1j, X2j) 5

1

99 ^
100

j51

[X1j 2 X1(100)][X2j 2 X2(100)]

2S2
1 (100)S2

2(100)

where Xi(100) is the sample mean of the Xij’s over j, and S2
i (100) is the sample variance 

of the Xij’s over j (see Prob. 4.29).
 It is clear from Table 11.3 that the estimated variance reduction attained by full 
synchronization (A & S) compared with independent sampling (I) is quite signifi cant here, 
being a reduction of over 99 percent, probably since the two systems are quite similar. 
Accordingly, the confi dence-interval half-length fell from 0.70 (I) to 0.04 (A & S), a 
reduction of almost 95 percent. Looked at another way, we ask how many replications of 
each system under independent sampling we would need in order to achieve a precision 
in our estimator Z(n) for z (perhaps measured by confi dence-interval half-length) equal 
to that from fully synchronized CRN. If we made nI replications of each system under 

TABLE 11.3

Statistical results of CRN for the M/M/1 queue vs. the M/M/2 queue

 I A S A & S

S2(100) 18.00 9.02 8.80 0.07

90% confi dence-interval half-length 0.70 0.49 0.49 0.04

p̂ 0.52 0.37 0.40 0.03

Cor
^

(X1j, X2 j) 20.17 0.33 0.44 0.995
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598 variance-reduction techniques

independent sampling, the half-length would be approximately proportional to 118.00ynI 
(ignoring degrees of freedom); on the other hand, if we made nC replications of each 
system under completely synchronized CRN, the half-length would be approximately 
proportional to 10.07ynC. Equating the two square roots, we fi nd that nIynC 5 257.14; 
i.e., we would need more than 250 times as many replications under independent sam-
pling to get the same precision we would get with fully synchronized CRN.
 The estimated probability of making the wrong decision is reduced from 52 percent 
to 3 percent (see Example 10.1). Looking at the estimated correlations, we see that fully 
synchronized CRN induced an extremely strong correlation between the two confi gura-
tions’ output measures, explaining the large reduction in variance. For the two partial 
synchronization schemes, we experienced weaker (but still positive) correlations, and 
correspondingly weaker variance reductions and only limited drops in p̂.
 The effect of CRN (completely synchronized) in this example can be expressed 
graphically in several ways. In Fig. 11.2a are the individual-replication results for the 

FIGURE 11.2
M/M/1 vs. M/M/2: individual replications.
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100 pairs of runs under independent sampling, versus the replication number. The solid 
circles are the average delays in queue for the M/M/1 model (X1j’s), and the hollow 
 circles are for the M/M/2 case (X2j’s); for each fi xed j, X1j and X2j are connected by a 
vertical line, whose length is thus 0  Zj 

0 . Note in particular that there are 52 pairs for 
which the hollow circle (M/M/2) is at the top of a line and the solid circle (M/M/1) is at 
the bottom, which is the wrong order (in terms of their expectations), and corresponds 
to p̂ 5 0.52 in the “I” column of Table 11.3. Figure 11.2b does likewise, but under 
completely synchronized CRN. The better-behaved nature of the Zj’s is apparent, with 
none of the very long vertical lines that appear in Fig. 11.2a, and with the line lengths 
being much more consistent within themselves. This is because the variance of 0  X1j 2 X2j 

0  
is smaller when there is positive correlation, since a large value of X1j tends to be ac-
companied by a large value of X2j, and small values of X1j and X2j tend to occur together 
as well. Moreover, there are only three cases in Fig. 11.2b where a line has the M/M/2 
hollow circle at the top and the M/M/1 solid circle at the bottom, corresponding to 
p̂ 5 0.03 in the “A & S” column of Table 11.3.
 A direct way of seeing the correlation that CRN induced in this example is shown 
in Fig. 11.3, where we plot the pairs (X1j, X2j) for both independent sampling (hollow 
triangles) and completely synchronized CRN (solid triangles). While there is no apparent 
pattern in the independent pairs, we note an extremely straight (and positively sloping) 
alignment of the CRN pairs, corresponding to the very strong positive correlation 
estimate (0.995) in the “A & S” column of Table 11.3.

FIGURE 11.3
Correlation plot of M/M/2 average delays (vertical axis) vs. M/M/1 
average delays (horizontal axis).
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600 variance-reduction techniques

 In the “n 5 1” pair of dot plots at the bottom of Fig. 11.4, each square represents a 
Zj, plotted according to the scale shown at the bottom, with the hollow squares being the 
results of independent sampling, and the solid squares (which run together in the plot) 
being the results of fully synchronized CRN. The spread of the CRN Zj’s about their 
expectation (z) is much narrower than for the independent-sampling case. We also show 
in Fig. 11.4 plots of 100 observations on Z(n) for n 5 5, 10, and 20, plotted on the same 
scale (these correspond to the similar cases in Fig. 10.2 in the case of independent 
sampling). It is striking to note that we do much better in terms of spread for CRN with 
n 5 1 than we do for independent sampling for n as high as 20. Thus, CRN here gave us 
much better results than we could have gotten by spending more than 20 times as much 
with independent sampling!

Unlike Example 11.1, we implemented CRN in Example 11.3 with proper 
synchronization techniques, using separate streams for the two different sources of 
randomness. The next example illustrates the statistical importance of maintaining 
proper synchronization.

E X A M P L E  1 1 . 4 .  We reran the experiments of Example 11.3, supposedly using the 
full “A & S” CRN, except this time we generally ignored synchronization. Our codes 
are all still “correct,” i.e., faithfully simulate the two models, and represent programs 
that one could actually write, without malice aforethought to disrupt synchronization in-
tentionally. In “Code 1” we generated service requirements upon arrival, and we used 
the same random-number stream throughout. As it happens, this still results in proper 
synchronization, as evidenced in Table 11.4. (The numbers differ from the “A & S” col-
umn of Table 11.3 since separate streams were used there.) “Code 2” of Table 11.4 uses 
a single stream but does not generate the service times upon arrival, waiting until a cus-
tomer enters service to generate the service time; in this case, the random numbers will 
get mixed up in terms of their usage, as demonstrated in Example 11.1. As seen in 
Table 11.4, the results are not much better than the “I” case in Table 11.3, since we have 
lost the benefi t (apparently nearly all) of CRN. “Code 3” is the same as Code 2, except that 
the next interarrival time is generated at the end of the arrival subprogram (see Sec. 1.4), 
representing yet another valid but nonsynchronized code; again, no benefi t is seen.

}
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}
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�15 �10 �5 0
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FIGURE 11.4
M/M/1 vs. M/M/2: differences.
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The examples so far in this chapter (except 11.2) have involved the same M/M/1 vs. 
M/M/2 confi gurations. These are very simple systems for which properly synchro-
nized CRN is relatively easy to implement. They are also quite similar to each other, 
probably accounting for the dramatic variance reductions through CRN that we have 
seen. The next two examples involve models that are considerably more complicated, 
and consider as well using CRN for steady-state parameters (see Secs. 9.3 and 9.5).

E X A M P L E  1 1 . 5 .  In the manufacturing-system model of Sec. 2.7, recall the discussion 
at the end of Sec. 2.7.3. As in the last three rows of Table 2.1, let confi gurations 1, 2, and 
3 be, respectively, the manufacturing system obtained by adding a machine to station 1, 
2, and 4; and let ni be the steady-state expected overall average job total delay in con-
fi guration i for i 5 1, 2, and 3. Suppose that we want to estimate z12 5 n1 2 n2, z13 5 
n1 2 n3, and z23 5 n2 2 n3 by making simulations of length 100 eight-hour days of each 
of the three confi gurations but using the fi rst 10 of these 100 days as a warmup period 
and collecting data on only the last 90 days (see Prob. 2.7). Let Xij be the overall average 
job total delay over these 90 days for confi guration i as observed on the jth replication, 
and let Z12j 5 X1j 2 X2j, Z13j 5 X1j 2 X3j, and Z23j 5 X2j 2 X3j. We assume that the 10-day 
warmup period is suffi cient, so that E(Zi1i2 j) < zi1i2

.
 We made the runs of the different confi gurations completely independent of each 
other (denoted “I” in Table 11.5 below), and also used CRN across the three confi gura-
tions, as follows. For each confi guration, we used the same interarrival times for the jobs 
and made the sequence of job types the same. Further, when a job arrived at the system 
and its type was determined, we immediately generated its service requirements that 
will be needed later as it moves along its route through the system and stored them as 
additional attributes of this job. Thus, when a job entered service at a particular station, 
its service time was taken from its appropriate attribute for this station. In this way, we 

TABLE 11.4

Statistical results of properly (Code 1) and improperly 
(Codes 2 and 3) synchronized CRN for the M/M/1 queue 
vs. the M/M/2 queue

 Code 1 Code 2 Code 3

S2(100) 0.07 16.80 12.00

90% confi dence-interval half-length 0.04 0.67 0.57

p̂ 0.07 0.43 0.42

Cor
^

(X1j, X2 j) 0.997 0.02 20.03

TABLE 11.5

CRN for the three manufacturing-system 
confi gurations

   Variance 
 I CRN reduction (%)

S2
12(10) 6.27 1.46 77

S2
13(10) 10.40 2.35 77

S2
23(10) 23.08 0.87 96
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used synchronized CRN for all sources of randomness. Note also that in this example 
all types of random variates are generated at the same instant in simulated time (when a 
job arrives), so a single random-number stream could have been used for all sources of 
randomness.
 Let S2

i1i2
(10) be the usual unbiased estimator of Var(Zi1i2 j), which we computed 

from 10 independent replications using both independent sampling and CRN, as given 
in Table 11.5. Here, CRN led to variance reductions ranging from 77 percent to 96 per-
cent, depending on which two confi gurations are being compared. In terms of the re-
quired number of replications to achieve a desired confi dence-interval half-width, we 
can proceed as in Example 11.3 to fi nd that independent sampling would need 4.29 
(5 6.27y1.46) times as many replications as CRN to compare confi gurations 1 and 2, 
4.43 times as many for confi gurations 1 and 3, and more than 26 times as many if we are 
interested in the difference between confi gurations 2 and 3.

E X A M P L E  1 1 . 6 .  In Example 10.5 we compared two confi gurations of the manufactur-
ing facility from Example 9.25. In the second confi guration, the mean inspection time 
was smaller. We are again interested in the steady-state mean time in system of parts, so 
we followed the replication/deletion approach (Sec. 9.5.2) and made moving-average 
plots for both confi gurations as in Fig. 10.3. Again letting li and mi be the length (in parts) 
of the warmup period and the minimum replication length for confi guration i, we 
obtained m1 5 m2 5 9445, l1 5 1929, and l2 5 1796. As in Example 10.5, we made 
n 5 20 independent pairs of runs, but we now used separate streams to synchronize the 
random numbers for all six sources of randomness in this model [interarrival times, 
machine processing times, inspection times, good/bad decisions, machine operating 
(up) times, and machine repair (down) times]. Again, we formed a 90 percent confi dence 
interval for the difference between the steady-state mean times in system from these 
20 replications, and obtained 1.98 6 0.18; recall that in Example 10.5 the correspond-
ing interval was 2.36 6 0.31, from 20 replications of each confi guration that were close to 
the same length and from which close to the same amount of initial data were deleted. 
Thus, CRN reduced the size of the confi dence interval on the difference between the 
performance measures by 42 percent of its original size, corresponding to an estimated 
variance reduction of 66 percent. As more direct evidence that CRN is working prop-
erly, we estimated the correlation (see Example 11.3) between X1j and X2j to be 0.98.

The next pair of examples of CRN involves an inventory model, for which 
complete synchronization of all sources of randomness is of debatable correctness; 
thus, we generated some inputs using properly synchronized CRN and others 
independently.

E X A M P L E  1 1 . 7 .  For the inventory model (defi ned in Sec. 1.5) that we considered in 
Example 10.3, recall that (s, S) was (20, 40) for confi guration 1, and was (20, 80) for con-
fi guration 2. For each confi guration we can arrange for demands of the same size to occur 
at the same times; i.e., we use CRN (via separate streams) for the demand-size and inter-
demand-time sources of randomness. Due to the different values of S, however, orders 
will generally be placed at different times and for different amounts for the two policies, 
and so the number of orders placed will also differ under the two policies. Thus, it is not 
clear how we could reasonably match up the delivery-lag random variates (or whether it 
even makes sense to match them up), so we just generated them independently across the 
confi gurations. (In Example 11.2 we attempted to synchronize the delivery lags to illus-
trate how the random numbers could get out of synchronization on replications 2, 3 . . . .)
 As in Example 10.3, we made n 5 5 independent pairs of simulations, but here 
with (partial) CRN as just described. We obtained Z(5) 5 3.95 and Var

^
[Z(5)] 5 0.27, 
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so that the paired-t 90 percent confi dence interval is [2.84, 5.06]. Comparing this with 
the independent-sampling results of Example 10.3, the estimated variance is reduced by 
about 89 percent, and the confi dence-interval half-length is some 67 percent smaller. 
Thus, it would take about 45 replications of each system under independent sampling to 
get a confi dence interval as small as the one we got from partial CRN with only 5 repli-
cations of each.

The following example illustrates how the multiple confi dence-interval  methods 
described in Sec. 10.3 can be sharpened with CRN.

E X A M P L E  1 1 . 8 .  Consider now the fi ve different policy confi gurations defi ned in 
Table 10.4. As in Example 10.7, we fi rst regard policy 1, where (s, S) 5 (20, 40), as 
the standard against which the other four are to be compared. We reran the analysis of 
Example 10.7, again with n 5 5 replications of each policy confi guration, but now 
using  the partial CRN sampling plan described in Example 11.7, across all fi ve 
 policies. Desiring overall confi dence of at least 90 percent, we used the Bonferroni 
 inequality (see Sec. 10.3) to form four individual 97.5 percent confi dence intervals for 
mi 2 m1, exactly as described in Example 10.7; here, however, CRN implies that the 
results on a given replication ( j) across the fi ve policies are not independent, pre-
cluding use of the Welch approach to confi dence-interval formation. Thus, Table 11.6 
contains only the paired-t intervals corresponding to Table 10.6. The half-lengths ob-
tained here are all quite a bit smaller than those in Table 10.6. Moreover, comparing 
the paired-t approaches only, CRN enabled us to identify one more statistically sig-
nifi cant difference (between policy 2 and the standard) than we were able to in 
Example 10.7.
 We can also effect the all-pairwise-comparisons analysis of Sec. 10.3.2 using CRN; 
this was done with independent sampling in Example 10.8, with the results given in 
Table 10.7. Since there are now 10 individual confi dence intervals, we make each at 
level 99 percent to attain overall confi dence of at least 90 percent. The intervals result-
ing from CRN (again, only the paired-t approach is valid) in Table 11.7 indicate once 
again that CRN markedly reduced confi dence-interval length in all cases except one 
(i2 5 5, i1 5 2). In this case the paired-t interval under independent sampling (22.12 6 
3.80) from Table 10.7 is smaller than the CRN interval (23.64 6 5.02) from Table 11.7. 
Looking back at Table 10.7, the interval in this case was the smallest one observed, pos-
sibly due to simple sampling fl uctuation, and at any rate the difference is signifi cant both 
there and here. Perhaps more important, we see in Table 11.7 that 8 of the 10 CRN-based 
intervals miss zero (indicating a statistically signifi cant difference between the 

TABLE 11.6

Individual 97.5 percent confi dence intervals 
for all comparisons with the standard policy 
(Mi 2 M1, i 5 2, 3, 4, 5) using CRN; * denotes 
a signifi cant difference

 Paired-t

i Xi 2 X1 Half-length Interval

2 23.95 1.83 (25.78, 22.12)*
3 1.02 2.65 (21.63, 3.68)
4 5.94 1.41 (4.53, 7.35)*
5 19.69 2.28 (17.41, 21.97)*
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 corresponding confi gurations), whereas only 6 or 7 of the 10 in Table 10.7 (depending 
on the approach) missed zero. Thus, with no more sampling we were able to sharpen our 
comparisons among these policies.

E X A M P L E  1 1 . 9 .  Consider again the problem of comparing the original and proposed 
routing policies for the communications network of Example 10.6. We once again made 
fi ve independent replications of each policy of length m 5 65 seconds and used a 
warmup period of length l 5 5 seconds, but now partial CRN was used across the two 
policies. For each confi guration, we generated outgoing messages for a particular SP at 
the same times, and with the messages having the same sizes and destinations. However, 
when each of two links had to be chosen with a probability of 0.5, we used different 
random numbers for the two confi gurations. We used (10.1) to obtain [0.05, 0.12] (in 
millisecond) as an approximate 90 percent confi dence interval for n1 2 n2. Since the 
confi dence interval does not contain 0, the difference in the two steady-state means is 
statistically signifi cant, whereas it was not in Example 10.6. Furthermore, the sample 
variance of the Zj’s has been reduced by about 97 percent, the confi dence-interval half-
length is some 83 percent smaller, and the estimated correlation (see Example 11.3) 
between X1j and X2j is 0.94.

In summary, we have found that we could realize at least partial synchroni-
zation across the different system confi gurations in many real-world simulation 
studies that we have performed.

11.3 
ANTITHETIC VARIATES

Antithetic variates (AV) is a VRT that is applicable to simulating a single system, as 
are the rest of the VRTs in this chapter. As in CRN, we try to induce correlation 
between separate runs, but now we seek negative correlation.

The central idea, dating back at least to Hammersley and Morton (1956) in the 
context of Monte Carlo simulation, is to make pairs of runs of the model such that 
a “small” observation on one of the runs in a pair tends to be offset by a “large” 
observation on the other one; i.e., the two observations are negatively correlated. 
Then if we use the average of the two observations in the pair as a basic data point 
for analysis, it will tend to be closer to the common expectation m of an observation 

TABLE 11.7

Individual 99 percent confi dence intervals for all pairwise comparisons (Mi2
2 Mi1

 for 
i1 , i2) using CRN; * denotes a signifi cant difference

 Paired-t

 i2

  2 3 4 5

 1 23.95 6 2.41* 1.02 6 3.49 5.94 6 1.86* 19.69 6 3.00*
 2  4.97 6 5.62 9.89 6 3.68* 23.64 6 5.02*
i1 3   4.92 6 2.39* 18.67 6 1.69*
 4    13.75 6 2.03*
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(which we want to estimate) than it would be if the two observations in the pair were 
independent.

In its simplest form, AV tries to induce this negative correlation by using 
complementary random numbers to drive the two runs in a pair. That is, if Uk is 
a particular random number used for a particular purpose (e.g., to generate the ith 
service time) in the fi rst run, we use 1 2 Uk for this same purpose in the second run. 
It is valid to use 1 2 Uk instead of simply a direct draw from the random-number 
generator, since U , U(0, 1) implies that 1 2 U , U(0, 1) as well.

An important point is that the use of a Uk in one replication and its complement 
1 2 Uk in the paired replication must be synchronized, i.e., used for the same 
purpose; the benefi t of AV could otherwise be lost, or it could even backfi re. For 
 instance, if Uk happens to be large and is used via the (literal) inverse-transform 
method to generate a service time, this would result in a large service time and have 
the effect of increasing the queue’s congestion in the fi rst run of the pair. In this 
case, 1 2 Uk would be small, so if it were used erroneously to generate an inter- 
arrival time in the second run, this interarrival time would be small and would 
 increase congestion on that run as well, which is the opposite of the intended effect. 
Most of the programming tricks mentioned in Sec. 11.2 for synchronizing random 
numbers, such as random-number stream dedication, using the inverse-transform 
method of variate generation wherever possible, judicious wasting of random num-
bers, pre-generation, and advancing the stream numbers across multiple replica-
tions, can be used here as well. Moreover, we could consider “partial” AV, generating 
some inputs antithetically and others independently within a pair if full synchroni-
zation proves too diffi cult or there does not seem to be a sensible way to use AV for 
all inputs (see Example 11.12 below). To be sure, then, it is not enough just to go 
through the simulation code and replace each “U” with a “1 2 U.”

As with CRN, there is a mathematical basis for AV. Suppose that we make 
n  pairs of runs of the simulation resulting in observations (X1

(1), X1
(2)), . . . , 

(Xn
(1), Xn

(2)), where Xj
(1) is from the fi rst run (using just the “U”s) of the jth pair, and 

Xj
(2) is from the antithetic run (using the “1 2 U”s, properly synchronized) of the jth 

pair. Both Xj
(1) and Xj

(2) are legitimate observations of the simulation model, so that 
E(Xj

(1)) 5 E(Xj
(2)) 5 m. Also, each pair is independent of every other pair; i.e., for 

j1 fi j2, X
(l1)
j1

 and X (l2)
j2

 are independent, regardless of whether l1 and l2 are equal. 
(Note that the total number of replications is thus 2n.) For j 5 1, 2, . . . , n, let 
Xj 5 (Xj

(1) 1 Xj
(2))y2, and let the average of the Xj’s, X(n), be the (unbiased) point 

estimator of m 5 E(X (l)
j ) 5 E(Xj) 5 E[X(n)]. Then since the Xj’s are IID,

 Var[X(n)] 5
Var(Xj)

n
5

Var(X (1)
j ) 1 Var(X (2)

j ) 1 2 Cov(X (1)
j , X (2)

j )

4n

If the two runs within a pair were made independently, then Cov(Xj
(1), Xj

(2)) 5 0. 
On the other hand, if we could indeed induce negative correlation between Xj

(1) and 
Xj

(2), then Cov(Xj
(1), Xj

(2)) , 0, which reduces Var[X(n)]; this is the goal of AV.
Yet another feature that AV shares with CRN is that we cannot be completely 

sure that it will work, and its feasibility and effi cacy are perhaps even more model-
dependent than for CRN. In some cases, however, AV has been shown analytically 
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to lead to variance reductions, although the magnitude of the reduction is not known; 
see Andréasson (1972), George (1977), Hammersley and Handscomb (1964), 
Mitchell (1973), Wilson (1979), Rubinstein, Samorodnitsky, and Shaked (1985), and 
Bratley, Fox, and Schrage (1987, chap. 2). In general, we cannot know before-
hand how great a variance reduction might be achieved. A pilot study like that de-
scribed for CRN might be useful to assess whether AV is a good idea in a specifi c case.

The fundamental requirement that a model should satisfy for AV to work is that 
its response to a random number used for a particular purpose be monotonic, in 
either direction. In most queueing-type models, for instance, a large random num-
ber used to generate a service time (via the literal inverse-transform method) will 
produce a large service time and lead to increased congestion; thus, we would ex-
pect that the response of congestion measures to random numbers used to generate 
service times would be monotonically increasing. Backfi ring of AV could occur, for 
example, if a model’s response were large for small Uk’s, smaller for Uk’s near 0.5, 
and then rose again for large Uk’s (see Prob. 11.3). We urge the analyst to provide 
some kind of evidence that AV will work, either by arguing from “physical” proper-
ties of the model’s structure or by initial experimentation. As with CRN, the inverse-
transform method of generating a model’s input variates is suggested in order 
to promote the required monotonicity by ensuring it at least in this intermediate 
variate-generation step. Franta (1975) gives examples of the failure of AV if other 
methods are used, but Schmeiser and Kachitvichyanukul (1990) develop fast non-
inverse-transform methods that do lead to the desired negative correlation at this 
intermediate level.

E X A M P L E  1 1 . 1 0 .  Consider the M/M/1 queue with r 5 0.9, as in Examples 11.1, 
11.3, and 11.4, so that now an “observation” Xj

(l) is the average of 100 customer delays. 
From the model’s structure it seems reasonable to assume that large interarrival times 
would tend to make Xj

(l) smaller (and vice versa), and large service times would gen-
erally result in a larger Xj

(l). Further, if we use the method of Sec. 8.3.2 to generate the 
exponential interarrival-time and service-time variates, we would expect AV to work. 
We made n 5 100 independent pairs of runs using both independent sampling within 
a pair [so Cov(Xj

(1), Xj
(2)) 5 0], as well as using AV, synchronizing by dedicating sep-

arate random-number streams to generating the interarrival and service times. The re-
sults are in Table 11.8, and show that AV reduced the estimated variance S2(100) of an 
Xj by 60 percent. If we used the 100 Xj’s to form an approximate 90 percent confi dence 
interval for m, it would have a half-length of 0.36 under independent sampling, which 
would be reduced to 0.23 under AV, a reduction of 36 percent. That AV is inducing the 
desired negative correlation is confi rmed by noting the estimated correlation of 20.52 
between Xj

(1) and Xj
(2) in the AV case. Note that the extra cost of AV over independent 

sampling is negligible here, since AV requires almost no extra programming and only 

TABLE 11.8

Statistical results for AV in the case of the M/M/1 queue

 Independent AV

S2(100) 4.84 1.94

90% confi dence-interval half-length 0.36 0.23

Cor
^

(X (1)
j , X (2)

j ) 20.07 20.52
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the subtraction of the random numbers from 1; both methods required 200 separate 
simulation runs.
 Figure 11.5a shows the individual values of the independently sampled Xj

(1)’s 
(solid circles) and the Xj

(2)’s (hollow circles) for each j. The heavy line connects the 
values of Xj across j. Figure 11.5b does likewise, except for the fact that AV was used, 
and we see that the heavy line appears somewhat less twitchy, indicating the lower vari-
ance of the Xj’s in the AV case. We can also see in Fig. 11.5b that under AV there appears 
to be a tendency for an Xj

(1) on one side of the dashed line (at height m) to be offset by 
an Xj

(2) on the other side of the line, while this is less so in the independent-sampling plot 
in Fig. 11.5a. The lower variability of the Xj’s under AV is confi rmed more clearly in 
Fig. 11.6, where their narrower spread is evident. Finally, Fig. 11.7 gives a correlation 
plot of the pairs (Xj

(1), Xj
(2)) under both independent sampling (hollow triangles) and AV 

(solid triangles). There does appear to be some negative correlation in the AV case, since 
the solid triangles show some tendency to slope downward.
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FIGURE 11.5
Individual replications of the M/M/1 queue: (a) independent sampling; (b) AV.
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FIGURE 11.6
Within-pair averages for the M/M/1 queue with independent sampling and AV.
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FIGURE 11.7
Correlation plot for pairs of runs of the M/M/1 queue with independent 
sampling and AV.
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The magnitude of the correlation induced by AV in Example 11.10 was not as 
strong as we observed in using CRN to compare the M/M/1 and M/M/2 queues in 
Example 11.3, and so the variance reduction from AV was weaker than that obtained 
via CRN. This is a good illustration of how a VRT’s success generally depends on 
model characteristics. In Example 11.3 the only difference in the input variates to 
the two confi gurations (under fully synchronized CRN, called “A & S” there) was 
that the service times for the M/M/2 queue were in every case exactly twice those 
for the M/M/1 queue, and were thus linearly related (see Prob. 4.11). In the AV 
scheme of Example 11.10, however, the input variates for the fi rst and second runs 
of a pair were not linearly related, coming basically down to using ln U vs. ln(1 2 U), 
where U is a random number, since exponential variate generation was done by tak-
ing natural logarithms of random numbers, as described in Sec. 8.3.2. In both the 
CRN and AV examples, the input variates are then transformed nonlinearly by the 
simulation model itself. Remembering that covariances and correlations, which fi g-
ure prominently in the variance-reduction amount for both CRN and AV, measure 
linear relationships only, we see that the greater linearity in the CRN application of 
Example 11.3 evidently accounts for the stronger variance reduction than that ob-
served in the less linear AV application of Example 11.10.

E X A M P L E  1 1 . 1 1 .  In the particular case of applying AV to queueing simulations, Page 
(1965) suggested another type of antithetic sampling that does not involve substituting 
1 2 U for U in the second of a pair of runs. Since performance measures for queueing 
systems usually react to large interarrival times oppositely from the way they react to large 
service times, Page suggested that the random numbers used to generate the interarrival 
times in the fi rst run of a pair be used instead to generate the service times in the second 
run, and vice versa. Implementing this idea on the M/M/1 model of Example 11.10, we 
experienced a variance reduction of 65 percent. This general method of interchanging 
the use of random numbers might be useful in inducing negative correlation for other 
types of models as well.

Our last example of AV illustrates its use in a nonqueueing model, and for 
which only partial synchronization is meaningful.

E X A M P L E  1 1 . 1 2 .  Although somewhat more work is needed to see a physical ratio-
nale for response monotonicity and the potential success of AV (see Prob. 11.5), it can 
also be applied to the inventory model of Sec. 1.5. Take the case (s, S) 5 (20, 40), and 
assume the same parameters and output variables as in Example 11.7. Also as done in 
Example 11.7, we shall apply AV to only the interdemand times and the demand sizes, 
and generate the delivery lags independently between the two runs of a pair. Again we 
made n 5 100 independent pairs of runs, fi rst making Xj

(1) and Xj
(2) independent, and 

obtained 8.55 as an estimate of Var(Xj), whereas the comparable variance estimate under 
AV was 3.26, a reduction of some 62 percent. Thus we see that an AV scheme that is 
only partially synchronized can still yield worthwhile variance reductions.

Due to the similarities between CRN and AV, the idea reasonably comes to mind 
of using them together when several alternative system confi gurations are to be 
compared. At fi rst it would appear that we might obtain stronger variance reductions 
by using AV for each confi guration separately and CRN across the different con-
fi gurations. However, upon closer examination [see Kleijnen (1974, pp. 207–238), 
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and Prob. 11.11] we fi nd that if both AV and CRN work properly, i.e., induce cor-
relations of the desired sign, certain “cross covariances” (specifi cally, the covari-
ance between the fi rst run of an antithetic pair of runs for confi guration 1 and the 
second run of the corresponding antithetic pair for confi guration 2, and vice versa) 
enter the relevant variance expression with the wrong sign, which might increase 
the variance. Thus, it is by no means clear that combining AV with CRN for com-
paring alternative system confi gurations is a good idea. Schruben and Margolin 
(1978) and Schruben (1979) consider in more generality the issue of random-
number assignment in correlation-induction strategies for variance reduction in a 
variety of simulation experiments.

More general versions of AV have been developed, in terms of both the quantities 
to be estimated (other than expectations) as well as in the method to induce the de-
sired negative correlation (other than using complementary random numbers); see 
Cheng (1982, 1984), Fishman and Huang (1983), and Wilson (1983) for specifi cs. 
A potential side benefi t of AV was noted by Nelson (1990b), who showed that AV 
(combined with control variates, discussed in Sec. 11.4) can improve both point- 
and interval-estimator performance when initialization bias is present. Avramidis 
and Wilson (1998) use AV to improve estimators of quantiles (see Sec. 9.4.2).

11.4 
CONTROL VARIATES

Like CRN and AV, the method of control variates (CV) attempts to take advantage 
of correlation between certain random variables to obtain a variance reduction. 
Depending on the specifi c type of CV technique used, this correlation might arise 
naturally during the course of a simulation, or might be induced by using CRN in an 
auxiliary simulation.

In principle, at least, there is an appealing intuition to CV. Let X be an output 
random variable, such as the average of the fi rst 100 customer delays in queue, and 
assume we want to estimate m 5 E(X). Suppose that Y is another random variable 
involved in the simulation that is thought to be correlated with X (either positively 
or negatively), and that we know the value of n 5 E(Y ). For instance, Y could be the 
average of the service times of the fi rst 99 customers who complete their service in the 
queueing model mentioned above, so we would know its expectation since we gen-
erated the service-time variates from some known input distribution. (Problem 11.12 
mentions a subtle issue in this regard concerning the precise defi nition of Y.) It is 
reasonable to suspect that larger-than-average service times (i.e., Y . n) tend to lead 
to longer-than-average delays (X . m) and vice versa; i.e., Y is correlated with X, in 
this case positively. Thus if we run a simulation and notice that Y . n (which we can 
tell for sure since we know n), we might suspect that X is above its expectation m as 
well (although we would not know this for sure unless the correlation between Y 
and X were perfect), and accordingly adjust X downward by some amount. If it 
turned out, on the other hand, that Y , n, we would suspect that X , m as well and 
so adjust it upward instead. In this way, we use our knowledge of Y’s expectation to 
pull X (down or up) toward its expectation m, thus reducing its variability about m from 

Law01323_ch11_587-628.indd Page 610  24/09/13  8:14 PM user Law01323_ch11_587-628.indd Page 610  24/09/13  8:14 PM user /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



chapter eleven 611

one run to the next. We call Y a control variate for X since it is used to adjust X, or 
partially “control” it.

Unlike CRN and AV, the success of CV does not depend on the correlation 
being of a particular sign. If Y and X were negatively correlated, which we might 
imagine if Y were the average of the fi rst 100 generated interarrival times in the 
example of the preceding paragraph (widely separated arrivals tend to produce 
lower congestion levels), we would simply adjust X upward if Y . n and downward 
if Y , n.

To carry out the above idea, we must quantify the amount of the upward or down-
ward adjustment to X. It is convenient to express this amount in terms of the devia-
tion, Y 2 n, of Y from its expectation n. Let a be a constant (to be determined below) 
that has the same sign as the correlation between Y and X. In the earlier example 
where X is the average queueing delay and Y is the average service time, a would 
thus be some positive number. We use a to scale (magnify or shrink) the deviation 
Y 2 n to arrive at an adjustment to X and thus defi ne the “controlled” estimator

 XC 5 X 2 a(Y 2 n)

Note that if Y and X are positively correlated, so that a . 0, we would adjust X 
downward whenever Y . n and upward when Y , n, as desired; the opposite is true 
when Y and X are negatively correlated, in which case a , 0.

Since E(X) 5 m and E(Y ) 5 n, it is clear that for any real number a, E(XC) 5 m; 
that is, XC is an unbiased estimator of m that might have lower variance than X. 
Specifi cally,

 Var(XC) 5 Var(X  ) 1 a2 Var(Y  ) 2 2a Cov(X, Y  ) (11.1)

so that XC is less variable than X if and only if

 2a Cov(X, Y  ) . a2 Var(Y  )

which may or may not be true, depending on the choice of Y and a. In many treatments 
of CV, only the special cases a 5 1 [if we think that Cov(X, Y ) . 0] or a 5 21 
[if we feel that Cov(X, Y ) , 0] are considered, but this requires the more stringent 
condition that 0 Cov(X, Y ) 0  . Var(Y)y2 for a variance reduction to be realized. Thus, 
simply setting a 5 61 places the entire burden for success upon the choice of Y; by 
allowing other values for a we can do better.

To fi nd the “best” value of a for a given Y, we can view the right-hand side of 
Eq. (11.1) as a function g(a) of a and set its derivative to zero; i.e.,

 
dg

da
5 2a Var(Y  ) 2 2 Cov(X, Y   ) 5 0

and solve for the optimal (variance-minimizing) value

 a* 5
Cov(X, Y  )

Var(Y  )
 (11.2)

[d 2gyda2 5 2 Var(Y), which is of course positive, a suffi cient condition for a* to be 
a minimizer of g(a), as opposed to a maximizer or an infl ection point.] One of the 
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implications of Eq. (11.2) is that if Y is strongly correlated with X, that is, 0Cov(X, Y) 0 
is large, the value of a* is increased, and so we are willing to make more drastic 
adjustments to X since we feel more confi dent about what Y’s deviation from n is 
telling us about what X’s deviation from m might be. Also, if Y is itself less variable, 
that is, Var(Y ) is small, we may get a larger value of a* (and a more drastic adjust-
ment to X) since we have more confi dence in the precision of the observed value of 
Y itself.

Plugging a* from Eq. (11.2) into the right-hand side of Eq. (11.1), we get that 
the minimum-variance adjusted (or controlled) estimator X*C over all choices of a 
has variance

 Var(X 
*C) 5 Var(X  ) 2

[Cov(X, Y )]2

Var(Y )
5 (1 2 r2

XY) Var(X  )

where rXY is the correlation between X and Y. Thus, using the optimal value a* for a, 
the optimally controlled estimator X*C can never be more variable than the uncon-
trolled X, and will in fact have lower variance if Y is at all correlated with X. More-
over, the stronger the correlation between X and Y, the greater the variance 
reduction—in the extreme, as rXY S 61, we see in fact that Var(X*C) S 0. Intui-
tively, this says that if the correlation between Y and X were nearly perfect (61), we 
could control X almost exactly to m every time, thereby eliminating practically all 
of its variance.

In practice, though, things are not quite so rosy. Depending on the source and 
nature of the control variate Y, we may or may not know the value of Var(Y ), and 
we will certainly not know Cov(X, Y ), making it impossible to fi nd the exact value 
of a*. Accordingly, several methods have been proposed to estimate a* from simu-
lation runs, and we next describe one of the simpler of these, due to Lavenberg, 
Moeller, and Welch (1982) and Lavenberg and Welch (1981), which can also be 
used to form a confi dence interval for m. [As stated, the method applies to termi-
nating simulations (see Sec. 9.3) that are simply replicated, although it might be 
applicable to steady-state parameters by using the replication/deletion approach of 
Sec. 9.5.2 or by replacing the replication averages by batch means, as discussed in 
Sec. 9.5.3.]

The method simply replaces Cov(X, Y ) and Var(Y ) in Eq. (11.2) by their sample 
estimators. Suppose that we make n independent replications to obtain the n IID 
observations X1, X2, . . . , Xn on X and the n IID observations Y1, Y2, . . . , Yn on Y. Let 
X(n) and Y(n) be the sample means of the Xj’s and Yj’s, respectively, and let S2

Y(n) 
be the unbiased sample variance of the Yj’s. The covariance between X and Y is 
estimated by (see Prob. 4.29)

 ĈXY 
(n) 5

^
n

j51

[Xj 2 X(n)] [Yj 2 Y(n)]

n 2 1

and the estimator for a* is then

 â*(n) 5
ĈXY 

(n)

S 
2
Y 
(n)
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to arrive at the fi nal point estimator for m,

 X*C  (n) 5 X(n) 2 â*(n) [Y(n) 2 n]

Immediately, we must note that since the constant a* has been replaced by the ran-
dom variable â*(n), which is generally not independent of Y(n) (having been com-
puted from the same simulation output data), we cannot blithely take expectations 
across the factors in the second term of X*C(n). Unfortunately, then, X*C(n), unlike 
XC and X*C, will in general be biased for m. The severity of this bias, as well as the 
amount of variance reduction that might be obtained from this scheme, are investi-
gated by Lavenberg, Moeller, and Welch (1982).

Alternative estimators of a*, based on jackknifi ng to reduce the bias in X*C(n), 
are discussed by Kleijnen (1974) as well as by Lavenberg, Moeller, and Welch 
(1982). Cheng and Feast (1980) and Bauer (1987) consider CV problems when we 
know the variance of the control variate. Nelson (1989, 1990a) considers CV with 
batch means for steady-state simulation, and surveys and evaluates several alterna-
tive approaches to dealing with the problem of point-estimator bias, as well as re-
lated problems; Yang and Nelson (1992) extend this analysis to multivariate batch 
means in conjunction with CV. Avramidis and Wilson (1993) discuss splitting up 
the simulation output data to estimate a*.

E X A M P L E  1 1 . 1 3 .  To solidify the example we have been discussing informally in this 
section, let X be the average delay in queue of the fi rst 100 customers arriving to an 
M/M/1 queue that starts out empty and idle, has mean interarrival time 1 minute, and 
mean service time 0.9 minute; this is the same model we have used in Examples 11.1, 
11.3, 11.4, 11.10, and 11.11. As a control variate for X, let Y be the average of the 
99 service times that would be needed to complete a replication of this model; since 
the simulation ends when the 100th service time begins, its value will have no impact 
on the output and so is not included in Y. Since Y is thus the average of a fi xed number 
(see Prob. 11.12) of IID service times that have expectation 0.9, n 5 E(Y ) 5 0.9 as well.
 We made n 5 10 independent replications and observed the 10 Xj’s and 10 corre-
sponding Yj’s given in Table 11.9. From these data, X(10) 5 3.78 and Y(10) 5 0.89; 

TABLE 11.9

Average delays (Xj’s) and average 
service times (Yj’s) using CV for 
the M/M/1 queue

 j Xj Yj

 1 13.84 0.92
 2  3.18 0.95
 3  2.26 0.88
 4  2.76 0.89
 5  4.33 0.93
 6  1.35 0.81
 7  1.82 0.84
 8  3.01 0.92
 9  1.68 0.85
10  3.60 0.88

Law01323_ch11_587-628.indd Page 613  24/09/13  8:14 PM user Law01323_ch11_587-628.indd Page 613  24/09/13  8:14 PM user /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



614 variance-reduction techniques

thus, the average service time is a bit lower than its expectation n 5 0.9, and the average 
delay in queue is also low compared to its expectation m 5 4.13 (which we actually 
know in this artifi cial example), as suggested at the beginning of this section. Further, 
we got SX

2(10) 5 13.33, SY
2(10) 5 0.002, and ĈXY 

(10) 5 0.07, leading to an estimated 
value of 0.43 for the correlation between X and Y, confi rming our feeling that they 
should be positively correlated. Finally, we get â*(10) 5 35.00 and so X*C (10) 5 4.13, 
which is indeed closer to m than is the uncontrolled estimator X(10) 5 3.78.
 To see whether Var[X*C (10)] is in fact smaller than Var[X(10)], we repeated the 
entire 10-replication experiment of the preceding paragraph 100 times, getting 100 in-
dependent observations on both X(10) and X*C (10). From these data we estimated 
Var[X(10)] to be 0.99, whereas our estimate of Var[X*C (10)] was 0.66, a reduction of a 
third. The correlation between X(10) and Y(10) was estimated to be 0.67, which is 
positive, as anticipated. At the same time, we estimated from the 100 observations on 
X*C (10) that a 95 percent confi dence interval for E[X*C (10)] is 4.18 6 0.16, which con-
tains m, indicating that whatever bias in the controlled estimator was introduced by 
estimating a* by â*(10) is evidently not noticeable in this case.

In Example 11.13 we chose the average of the service times as our control vari-
ate, but, as the following two examples show, the issue of what to use as a control 
variate is by no means clear.

E X A M P L E  1 1 . 1 4 .  We repeated the experiments of Example 11.13 but used instead as 
a control variate Y the average of the fi rst 100 interarrival times. We can be sure that 
there will always be at least this many and thus get a control variate based on a fi xed 
number of generated interarrival times (see Prob. 11.12), so we know that E(Y ) 51. 
Carrying out a set of 100 experiments of n 5 10 replications each, as described in 
Example 11.13, we estimated Var[X*C (10)] based on this control variate to be 0.89, a 
reduction of only 10 percent in comparison with the estimated variance of 0.99 for 
X(10). Thus, it appears that our original choice of the average service time as a control 
variate was a better idea than using the average interarrival time.

E X A M P L E  1 1 . 1 5 .  Could we somehow make use of both? Let Y (1) be the average-
service-time control variate used in Example 11.13, and let Y (2) be the average-interarrival-
time control variate used in Example 11.14. Then, since Cov(X, Y (1)) and Cov(X, Y (2)) 
probably have opposite signs, we could perhaps incorporate information from both if 
we defi ne a new control variate Y 5 Y (1) 2 Y (2); we anticipate that Cov(X, Y ) . 0, being 
supported by both Y (1) and Y (2). Indeed, when using this scheme in 100 new experiments 
of n 5 10 replications each, the estimated correlation between X(10) and Y(10) was 
0.77, and the estimate of the variance of the controlled estimator was 0.56, being a 
43 percent reduction in variance from the 0.99 fi gure for the uncontrolled estimator, and 
better than either Y (1) or Y (2) alone. However, there was evidently some point-estimator 
bias introduced in this case, as a 95 percent confi dence interval for E[X*C (10)] was 
4.38 6 0.15, which misses m 5 4.13; whether or not this is worrisome depends on how 
one chooses to trade off bias against variance in the point estimator.

There were really two different control variates in Example 11.15 that we were 
able to combine in a sensible way to get a single control variate. However, why did we 
subtract them rather than divide one by the other? Or, why not let Y 5 Y (1) 2 2Y (2) 
instead? In complex models there will be many potential control variates available, 
and it could be diffi cult to suggest the best way to roll them all into one. Moreover, 
even if we could combine them in a reasonable way, we might not be using their 
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information to our best advantage. In Example 11.15, we let the control variate 
Y 5 Y (1) 2 Y (2), so that the controlled estimator is

  XC 5 X 2 a(Y 2 n)

  5 X 2 a(Y 
(1) 2 n(1)) 2 a(2Y 

(2) 1 n(2))

where n(l ) 5 E(Y (l )). In this formulation, then, we are forcing both individual control 
variates (Y (1) and 2Y (2)) to enter the adjustment using the same coeffi cient, a, which 
may not be the best use of their information. A logical modifi cation would be to 
allow the two control variates to have different weights, and redefi ne

 XC 5 X 2 a1(Y 
(1) 2 n(1)) 2 a2(Y 

(2) 2 n(2))

We could then derive (and estimate) the weights a1 and a2 that minimize Var(XC), as 
we did before when there was just a single control variate.

This idea is easily generalized to the case where we have m control variates 
Y (1), . . . , Y (m) with respective known expectations n(1), . . . , n(m). The general 
(linearly) controlled estimator is

 XC 5 X 2 ^
m

l51

al 
(Y 

(l ) 2 n(l ))

where the al’s are real numbers to be determined (and estimated). Allowing for cor-
relation not only between X and the control variates but also between the control 
variates themselves, we get

  Var(XC) 5 Var(X  ) 1 ^
m

l51

a2
l  Var (Y 

(l )) 2 2 ^
m

l51

al  
Cov(X, Y 

(l ))

  1 2 ^
m

l152

 ^
l121

l251

al1
al2

Cov(Y 
(l1), Y 

(l 2))  (11.3)

Taking partial derivatives of the right-hand side of Eq. (11.3) with respect to each of 
the al’s and equating them to zero leads to a set of m linear equations to solve for the 
m variance-minimizing weights (see Prob. 11.13). As in the case of a single control 
variate, these optimal weights must be estimated, and bias introduction in the con-
trolled estimator is again a possibility. Lavenberg and Welch (1981) and Nelson 
(1990a) discuss these and related problems. The estimates of the optimal weights turn 
out to be identical to least-squares estimates of the coeffi cients in a certain linear-
regression model, and so CV is sometimes referred to as regression sampling.

We close this section with a brief discussion of fi nding and selecting control 
variates. As we have seen, a good control variate should be strongly correlated with 
the output random variable X, in order to give us a lot of information about X and to 
make a good adjustment to it. We would also like the control variates themselves to 
have low variance. Finding such control variates could proceed by an analysis of the 
model’s structure, or through initial experimentation. With these goals in mind, 
three general sources of control variates have been suggested:

• Internal. Input random variates, or simple functions of them (such as averages), 
are often used as control variates. All the control variates used in Examples 11.13 
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616 variance-reduction techniques

through 11.15 were internal. Their expectations will generally be known (see the 
caveat of Prob. 11.12), and a simple analysis of their role in the model could sug-
gest how they might be correlated with the output random variable. Most impor-
tant, internal control variates must be essentially generated anyway to run the 
simulation, so they add basically nothing to the simulation’s cost; thus, they will 
prove worthwhile even if they do not reduce the variance greatly (see Prob. 11.1 
for an economic model of the effi cacy of VRTs). Detailed accounts of various 
kinds of internal CV applications can be found in Iglehart and Lewis (1979), 
Lavenberg, Moeller, and Sauer (1979), Lavenberg, Moeller, and Welch (1982), 
and Wilson and Pritsker (1984a, 1984b).

• External. Presumably, we are simulating since we cannot compute m 5 E(X) 
analytically. Perhaps, though, if we altered the model by making some additional 
simplifying assumptions, we would be able to compute the expectation n of the 
simplifi ed model’s output random variable Y. While we may be unwilling to make 
these simplifying assumptions in our actual model since they could materially 
impair the model’s validity, Y could serve as a control variate for X. We would then 
simulate the simplifi ed model alongside the actual model, using CRN (Sec. 11.2), 
and hope that Y is correlated with X, presumably positively. Unlike internal CV, 
this approach is not costless since it involves a second simulation to get the con-
trol variate; thus, the correlation between Y and X would have to be stronger for 
external CV to pay off than would be the case if Y were an internal CV. Examples 
of external CV can be found in Burt, Gaver, and Perlas (1970), Gaver and Shedler 
(1971), Gaver and Thompson (1973), Schmeiser and Taaffe (1994), Nelson et al. 
(1997), and Irish et al. (2003), as well as in Prob. 11.14.

• Using multiple estimators. In some situations we may have several unbiased 
estimators X (1), . . . , X (k) for m, where the X (i)’s may or may not be independent. 
This might arise, for instance, when we can use the method of indirect estimation, 
to be discussed in Sec. 11.5. If b1, . . . , bk are any real numbers (not necessarily 
positive) that sum to 1, then

 XC 5 ^
k

i51

bi 
X 

(i)

 is also unbiased for m. Since b1 5 1 2 ^k
i52 bi, we can express XC as

  XC 5 a1 2 ^
k

i52

bib
 

X 
(1) 1 ^

k

i52

bi X
 (i)

  5 X 
(1) 2 ^

k

i52

bi(X 
(1) 2 X 

(i))

 so that we can view Yi 5 X (1) 2 X (i), for i 5 2, 3, . . . , k, as k 2 1 control variates 
for X (1).

As can be seen from the above, there may be a very large number of possible 
control variates for a complex model. However, it is not necessarily a good idea to 
use them all, since the variance reduction they may bring is accompanied by vari-
ance contributions associated with the need to estimate the optimal al’s. Bauer and 
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Wilson (1992) propose a method for selecting the best subset from the available 
control variates, under a variety of assumptions about what we know concerning 
their variances and covariances. See also Rubinstein and Marcus (1985), Venkatraman 
and Wilson (1986), and Porta Nova and Wilson (1993).

Our discussion of control variates has centered on estimation of means. For a 
discussion of using CV to sharpen estimators of probabilities and quantiles, as de-
scribed in Sec. 9.4.2, see Hsu and Nelson (1990) and Hesterberg and Nelson (1998).

11.5 
INDIRECT ESTIMATION

This VRT has been developed for queueing-type simulations when the quantities to be 
estimated are steady-state performance measures, such as d, w, Q, and L (see App. 1B). 
Proofs that variance reductions are obtained have been given for these kinds of models 
[see Law (1974, 1975), Carson and Law (1980), and Glynn and Whitt (1989)], but the 
idea might be applicable to other situations as well; again, initial experimentation 
could reveal whether worthwhile variance reductions are being experienced. The 
basic tools are the theoretical relations between d, w, Q, and L given in App. 1B.

Let Di and Wi, respectively, be the delay in queue and the total wait in system of 
the ith customer arriving to a GI/G/s queue. Thus, if Si is the service time of the 
ith customer, Wi 5 Di 1 Si. Also, let Q(t) and L(t), respectively, be the number of 
customers in queue and in system at time t. From a simulation run in which a fi xed 
number n of customers complete their service and which lasts for T(n) units of 
simulated time, the direct estimators of d, w, Q, and L are, respectively,

 d̂ (n) 5
1
n ^

n

i51

Di,  ŵ(n) 5
1
n ^

n

i51

Wi

 Q̂(n) 5
1

T(n)
 #

T (n)

 0
 Q(t) dt,  L̂(n) 5

1

T(n)
 #

T (n)

 0
 L(t) dt

Now ŵ(n) 5 d̂ (n) 1 S(n), where S(n) 5 ^n
i51 Si 

yn and E[S(n)] 5 E(S ), the 
known expected service time. Thus, an alternative estimator of w might be

 w̃(n) 5 d̂ (n) 1 E(S)

i.e., we replace the estimator S(n) by its known (and zero-variance) expectation 
E(S). We call w̃(n) an indirect estimator of w, and it seems reasonable to suspect 
that w̃(n) might be less variable than ŵ(n), since the random term S(n) in ŵ(n) is 
replaced by the fi xed number E(S) to obtain w̃(n). For any GI/G/s queue and for any 
n, this is indeed the case, as shown by Law (1974), although the proof is not as 
simple as it might seem since S(n) and d̂ (n) are not independent. Thus, the indirect 
estimator w̃(n) is better than the more obvious direct estimator.

The variance reduction of the previous paragraph is suggested by the additive 
relation w 5 d 1 E(S), and it seems intuitive that there is no point in using the 
random variable S(n) in the estimator of w when we could use its expectation E(S) 
instead, thereby avoiding an additional source of variation. What is perhaps not 

Law01323_ch11_587-628.indd Page 617  24/09/13  8:14 PM user Law01323_ch11_587-628.indd Page 617  24/09/13  8:14 PM user /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



618 variance-reduction techniques

so intuitive is that better indirect estimators of Q and L can be obtained from the 
multiplicative relations in the two conservation equations

  Q 5 ld  (11.4)

  L 5 lw (11.5)

where l is the arrival rate (see App. 1B), which would again be known in a simula-
tion. An indirect estimator of Q that Eq. (11.4) suggests is

 Q̃(n) 5 l d̂ (n)

and it is shown by Carson (1978) and Carson and Law (1980) that asymptotically 
[as both n and T(n) become infi nite] Q̃(n) has smaller variance than the direct esti-
mator Q̂(n). Similarly, using Eq. (11.5) and the superior indirect estimator w̃(n) of w, 
we can show that the indirect estimator

 L̃(n) 5 lw̃(n) 5 l[d̂ (n) 1 E(S)]

asymptotically has smaller variance than the direct estimator L̂(n). Thus we see that 
it is better to estimate w, Q, and L by simple deterministic functions of d̂ (n) than to 
estimate them directly. This is one of the reasons we have emphasized estimation of 
the delay in queue in our examples throughout this book. Another appeal of indirect 
estimation is that only the delays D1, D2, . . . , and not Wi, Q(t), or L(t), need be col-
lected during the simulation, even if we really want to estimate w, Q, or L.

E X A M P L E  1 1 . 1 6 .  The exact asymptotic variance reductions obtained by estimating Q 
(for example) indirectly with Q̃(n) rather than directly with Q̂(n) can be calculated for 
M/G/1 queues [see Law (1974)]. Table 11.10 gives these reductions (in percent) for 
exponential, 4-Erlang, and hyperexponential (see Sec. 4.5) service times, and for r 5 0.5, 
0.7, and 0.9.

One weakness of the above indirect-estimation technique is that as r S 1, the 
variance reductions decrease to 0. This is evident in reading across each row of 
Table 11.10, and was shown analytically for the M/G/1 queue by Law (1974). But 
since highly congested systems are also highly variable, it is in this case that we 
need variance reduction the most. A more general use of indirect estimators devel-
oped by Carson (1978), which is related to techniques devised by Heidelberger 
(1980), does better for r near 1, and generally achieves stronger variance reductions. 
Again taking the example of estimating Q, we note that there are two estimators 

TABLE 11.10

Exact asymptotic variance reductions for indirect 
estimation of Q, M/G/1 queue

 Reduction, percent

Service-time distribution R 5 0.5 R 5 0.7 R 5 0.9

Exponential 15 11 4
4-Erlang 22 17 7
Hyperexponential  4  3 2
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Q̂(n) and Q̃(n) that could be combined to get a linear-combination estimator 
Q(a1, a2, n) 5 a1Q̂(n) 1 a2Q̃(n), where a1 1 a2 5 1; it is not necessary that both 
a1 and a2 be nonnegative. Then a1 and a2 could be chosen to minimize Var[Q(a1, a2, n)] 
subject to the constraint that a1 1 a2 5 1. Note that Q(1, 0, n) 5 Q̂(n) and 
Q(0, 1, n) 5 Q̃(n), so that this technique includes both the direct and indirect 
estimators as special cases; thus, for the optimal (a1, a2), Var[Q(a1, a2, n)] #
min{Var[Q̂(n)], Var[Q̃(n)]}. As with CV (Sec. 11.4), however, the optimal (a1, a2) 
must be estimated. Carson (1978) gives an asymptotically valid way to do this, based 
on the regenerative method, and also allows more than two alternative estimators; 
see the discussion on using multiple estimators in Sec. 11.4. His analytical and em-
pirical studies indicate that variance reductions of at least 40 percent, in comparison 
with direct estimators, are often achieved.

Additional papers that discuss indirect estimation are by Srikant and Whitt 
(1999) and Wang and Wolff (2003, 2005).

11.6 
CONDITIONING

The fi nal VRT we consider, conditioning, shares a feature with indirect estimation in 
that we exploit some special property of a model to replace an estimate of a quantity by 
its exact analytical value. In removing this source of variability, we hope that the fi nal 
output random variable will be more stable, although there is no absolute guarantee of 
this; again, pilot studies comparing the conditioning technique with straightforward 
simulation could indicate whether and to what extent the variance is being reduced. 
The general conditioning technique as we shall discuss it is in the same spirit as the 
“conditional Monte Carlo” method treated by Hammersley and Handscomb (1964).

As usual, let X be an output random variable, such as the delay in queue of a 
customer, whose expectation m we want to estimate. Suppose that there is some 
other random variable Z such that, given any particular possible value z for Z, we can 
analytically compute the conditional expectation E(X Z Z 5 z). Note that E(X Z Z 5 z) 
is a (known) deterministic function of the real number z, but E(X Z Z ) is a random 
variable that is this same function of the random variable Z. Then by conditioning 
on Z [see, e.g., Ross (2003, p. 106)], we see that m 5 E(X) 5 EZ[E(X Z Z )] (the outer 
expectation is denoted EZ since it is taken with respect to the distribution of Z), so 
that the random variable E(X Z Z ) is also unbiased for m. For instance, if Z is discrete 
with probability mass function p(z) 5 P(Z 5 z), then

 EZ[E(X Z Z  )] 5
ẑ

E(X Z Z 5 z)p(z)

where we assume that the p(z)’s are unknown. Further,

 VarZ[E(X Z Z )] 5 Var(X  ) 2 EZ[Var(X Z Z  )] # Var(X  ) (11.6)

[see Ross (2003, p. 118), for example], indicating that if we observe the random 
variable E(X Z Z ) (as computed from an observation z on Z), instead of observing X 
directly, we will get a smaller variance. In other words, it is suggested that we simulate 
to get a random observation z on Z (since its distribution is not known), plug this 
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620 variance-reduction techniques

observation into the known formula for E(X Z Z 5 z), and use this as a basic obser-
vation; of course, this entire scheme could then be replicated some number of times 
in the case of a terminating simulation.

Naturally, the trick here is specifying a random variable Z so that:

• Z can be easily and effi ciently generated, since we still have to simulate it.
• E(X Z Z 5 z) as a function of z can be computed analytically and effi ciently for any 

possible value of z that Z can take on.
• EZ[Var(X Z Z )] is large, thus soaking up a lot of Var(X) in Eq. (11.6). In words, 

EZ[Var(X Z Z)] is the mean conditional variance of X over the possible values for Z, 
and since we have a formula for E(X Z Z 5 z) we never have to simulate X given Z, 
so we are not affected by its variance.

Since this VRT is so heavily model-dependent, our illustrations describe two 
successful implementations from the literature. The following example, taken from 
Lavenberg and Welch (1979), illustrates conditioning to obtain variance reductions 
in estimates of several expected delays in a queueing network.

E X A M P L E  1 1 . 1 7 .  A time-shared computer model has a single CPU and 15 terminals, 
as well as a disk drive and a tape drive, as shown in Fig. 11.8. At each terminal sits a user 
who “thinks” for an exponential amount of time with mean 100 seconds, and then sends 
a job to the computer where it may join a FIFO queue for the CPU. Each job entering 
the CPU occupies it for an exponential amount of time with mean 1 second. A job leav-
ing the CPU is fi nished with probability 0.20 and returns to its terminal to begin another 
think time; on the other hand, it may need to access the disk drive (with probability 0.72) 
or the tape drive (probability 0.08) instead. A job going to the disk drive potentially 
waits in a FIFO queue there, then occupies the drive for an exponential amount of time 
SD with mean 1.39 seconds, after which it must go back to the CPU. Similarly, a job 
going from the CPU to the tape drive faces a FIFO queue there, uses the drive for an 
exponential amount of time ST with mean 12.50 seconds, and then returns to the CPU. 
All think times, service times, and branching decisions are independent, and all jobs are 
initially in the think state at their terminals. The goal is to estimate dC, dD, and dT, the 
steady-state expected delays in queue of jobs at the CPU, disk drive, and tape drive, 
respectively. For this purpose, the run length was taken to be the time required for 
400 jobs to be processed and sent back to their terminals.

FIGURE 11.8
The time-shared computer model of Example 11.17.
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 Straightforward simulation could be used to obtain estimates of these steady-state 
expected delays by simply using the averages of the delays observed in each of the three 
queues. However, the number of observations of tape-drive delays could be quite low, 
since only about 8 percent of the jobs exiting the CPU go there; thus, the straightforward 
estimator of dT, being based on relatively little data, could be highly variable.
 We can obtain a different estimate of dT by observing the total number NT of jobs 
at the tape drive (in queue and in service) at the instant each job leaves the CPU, regard-
less of where it is going. Given that a job leaving the CPU would go to the tape drive, its 
expected delay in queue there would be E(ST)NT 5 12.50NT seconds. (Since the job in 
service, if any, at the tape drive has an exponential service time, its remaining service 
time is also exponential with mean 12.50, due to the memoryless property of the expo-
nential distribution, as described in Prob. 4.30. Conditioning is still possible for nonex-
ponential service times but requires more information.) In this way we get an observation 
on tape-drive delays from every job leaving the CPU rather than from just the 8 percent 
that really go there. Moreover, we use the exact value of E(ST) 5 12.50 rather than 
draws of the random variable ST that would be generated in a straightforward simula-
tion. The observed values of 12.50NT are averaged to get an improved estimate of dT. 
This approach is valid since jobs leaving the CPU “see” the same state regardless of 
whether they actually go to the tape drive.
 In terms of our earlier general discussion, we are simulating to observe values of 
Z 5 NT whenever a job leaves the CPU, and E(delay in tape-drive queue Z NT 5 z) 5 12.50z, 
a known deterministic function, given that NT 5 z. However, the fi nal output variable, the 
average delay in the tape-drive queue, is a more complicated consequence of the entire 
dynamic simulation, so that Eq. (11.6) does not apply overall. We still hope, though, that 
some of this “local” variance reduction will propagate through the model’s dynamics.
 Similarly, for each job leaving the CPU we could condition on its going to the disk 
drive, and take 1.39ND as an observation on a disk-drive delay, where ND is the observed 
number of jobs in queue and in service at the disk drive at this moment. This will also 
increase the number of observations, but not as dramatically as for the tape drive since 
nearly three-fourths of the jobs exiting the CPU go to the disk drive anyway. However, 
we use the known expectation of a disk-drive service time SD, rather than random obser-
vations on it.
 Finally, by conditioning on NC 5 the total number of jobs at the CPU whenever a 
job leaves either its terminal, the disk drive, or the tape drive, we can average the values 
of 1NC (since the mean CPU time is 1 second) to try to get a better estimate of dC; this 
does not generate any extra imaginary CPU visits since all such jobs will go to the CPU 
anyway, but it does allow us to exploit knowledge of the expected CPU service time.
 In 100 independent replications, estimated variance reductions of 19, 28, and 
56 percent were observed in the estimates of dC, dD, and dT, respectively, in comparison 
with straightforward simulation. As anticipated, the greatest benefi t was for the tape-
drive queue, where the conditioning technique led to some 12 times as many observa-
tions as observed in the straightforward simulation. Seven other versions of this model 
were also simulated in which second moments were estimated as well, and variance 
reductions from conditioning were between 9 and 86 percent, depending on the model 
and what was being estimated. The additional computing time in the conditioning ap-
proach was negligible.

As the preceding example shows, the conditioning VRT requires careful analy-
sis of the model’s probabilistic structure. Also, the success was evidently due not 
only to exploiting knowledge of an analytic formula for conditional expectations, 
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but in addition to increasing the number of observations of a “rare” event artifi cially, 
in this case a job’s going to the tape drive. These comments apply as well to the suc-
cess of conditioning in the following example, due to Carter and Ignall (1975).

E X A M P L E  1 1 . 1 8 .  A simulation model was developed to compare alternative policies 
for dispatching fi re trucks in the Bronx. Certain fi res are classifi ed as “serious,” since 
there is considerable danger that lives will be lost and property damage will be high un-
less the fi re department is able to respond quickly with enough fi re trucks. The goal of 
the simulation was to estimate the expected response time to a serious fi re under a given 
dispatching policy.
 Historical data indicated that about 1 of 30 fi res is serious. Thus, the model would 
have to progress through about 30 simulated fi res to get a single observation on the re-
sponse time to a serious fi re, which could lead to very long and expensive runs to gener-
ate enough serious fi res to get a good estimate of the expected response time to them. 
However, the model’s specifi c structure was such that, given the state of the system (the 
location of all fi re trucks) at any instant, the true expected response time to a serious fi re 
could be calculated analytically, should one occur at that instant. Further, the probabi-
listic assumptions (serious fi res occur according to a Poisson process) justifi ed condi-
tioning on the event of a serious fi re at every instant when the system state was observed 
regardless of whether a serious fi re really did occur [see Wolff (1982)]. Thus, the simu-
lation was interrupted periodically to observe the system state, the expected response 
time to a serious fi re, given the current state, was calculated and recorded, and the simu-
lation was resumed. The fi nal estimator was the average of these conditional expected 
response times and included many more terms than the number of serious fi res actually 
simulated.
 In terms of the general discussion, the purpose of the simulation was to observe a 
vector Z of locations of fi re trucks, and E(response time to a serious fi re Z Z 5 z) was 
analytically known as a function of z, so did not have to be estimated in the simulation. 
The increased frequency of the (imaginary) serious fi res over that actually observed is 
an additional benefi t of the approach.
 The variance of the estimated expected response time was reduced by some 
95 percent with this conditioning approach, in comparison with straightforward simu-
lation. The conditional-expectation approach was somewhat more expensive, but even 
accounting for this the variance reduction was 92 percent for the same computational 
effort.

Note that in dynamic simulations, Eq. (11.6) applies directly only to a single 
random variable and may not be applicable to the simulation’s overall output ran-
dom variables (e.g., the average delay in queue of 1000 customers), so a variance 
reduction is not guaranteed.

There are several other examples of using the conditioning approach as a VRT 
that might be helpful. Carter and Ignall (1975) also consider an inventory model 
where the event on which conditioning occurs is a shortage, which seldom occurs 
but which has a large impact on system performance when it does happen. Burt and 
Garman (1971) considered simulation of stochastic PERT networks and condi-
tioned on certain task times that are common to more than one path through the 
network; in their use of conditioning, the concept of artifi cially increasing the 
frequency of a rare event is not present. Further VRTs based on conditioning in 
stochastic network simulations are discussed by Garman (1972) and by Sigal, Pritsker, 

Law01323_ch11_587-628.indd Page 622  24/09/13  8:14 PM user Law01323_ch11_587-628.indd Page 622  24/09/13  8:14 PM user /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



chapter eleven 623

and Solberg (1979). A generalization of the method was proposed by Minh (1989) 
for situations where E(X Z Z 5 z) may be unknown for some values of z.

Nakayama (1994a, 1994b), Heidelberger (1995), Shahabuddin (1994, 1995), 
Glasserman and Liu (1996), Glasserman et al. (1999), and Nicola et al. (2001) dis-
cuss a variety of VRTs, including importance sampling. This latter VRT can be used 
to estimate the probability of a rare but important event, such as the breakdown of a 
highly reliable communications network or a buffer overfl ow in a queueing system.

PROBLEMS

 11.1. Some VRTs are nearly costless (e.g., CRN), but others could entail considerable 
extra cost (e.g., external CV), and this must be taken into account when deciding 
whether a particular VRT is worth it. Let V0 be the appropriate variance measure with 
a straightforward simulation (without using a VRT) and let V1 be the corresponding 
variance measure using a particular VRT. Also, let C0 and C1 be the costs of making 
a particular number of runs of a particular length with the straightforward and VRT 
approaches, respectively. Find conditions on V0, V1, C0, and C1 for which the VRT 
would be advisable.

 11.2. In Sec. 11.2.2, and specifi cally in Fig. 11.1, we considered the question of whether 
CRN would induce the desired positive correlation for a given pair of alternative 
confi gurations, or whether it might backfi re. Consider the following simple Monte 
Carlo examples, where U represents a random number:

(1) X1j 5 U 2 and X2j 5 U 3

(2) X1j 5 U 2 and X2j 5 (1 2 U)3

(a) Sketch the graphs of the responses in both examples.
(b) For each example, analytically fi nd Cov(X1j, X2j).
(c) For each example, analytically calculate Var(X1j 2 X2j) under both independent 

sampling and CRN.
(d ) Confi rm your calculations in (b) and (c) empirically by designing and carrying 

out a small simulation study.

 11.3. In Sec. 11.3 we discussed the conditions under which AV would work or backfi re. 
Consider the following simple Monte Carlo examples, where U represents a random 
number:

(1) Xj 5 U 2

(2) Xj 5 4(U 2 0.5)2

(a) Sketch the graph of the response in both examples.
(b) For each example, analytically fi nd Cov(Xj

(1), Xj
(2)).

(c) For each example, analytically calculate Var[(Xj
(1) 1 Xj

(2))y2] under both inde-
pendent sampling and AV.

(d ) Confi rm your calculations in (b) and (c) empirically by designing and carrying 
out a small simulation study.

 11.4. Consider the queueing model in Fig. 11.9. Customers arrive according to a Poisson 
process at rate 1 per minute and face a FIFO queue for server 1, who provides 
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exponential service with mean 0.7 minute. Upon exiting server 1, customers leave 
with probability p, and go to server 2 with probability 1 2 p. Server 2 is also fed by 
a FIFO queue, and provides exponential service with mean 0.9 minute. All service 
times, interarrival times, and routing decisions are independent, the system is initially 
empty and idle, and it runs until 100 customers have fi nished their total delay in 
queue(s); the total delay in queues of a customer visiting server 2 is the sum of his or 
her delays in the two queues. The performance measure is the expected average total 
delay in queue(s) of the fi rst 100 customers to complete their total delay in queue(s).
(a) Suppose there are two confi gurations of this system, with p being either 0.3 or 

0.8. Make 10 replications of each system using both independent sampling 
and CRN, and compare the estimated variances of the resulting estimate of the 
difference between the performance measures. Take care to maintain proper 
synchronization when using CRN.

Server 2

Server 1

p 1 � p

FIGURE 11.9
The queueing model of Prob. 11.4.
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(b) For p 5 0.3, make fi ve pairs of runs using both independent sampling and AV 
within a pair, and compare the estimated variances of the estimated performance 
measure. Again, pay attention to synchronization.

 11.5. Recall the inventory simulation of Sec. 1.5, as used in Example 11.12 to illustrate AV. 
There are three sources of randomness (interdemand times, demand sizes, and de-
livery lags), and three cost components (ordering, holding, and shortage). Analyze 
this model, as programmed in Sec. 1.5, to provide a rationale for AV. Specifi cally, 
see what the effect of a small (or large) random number would be on each of the 
three types of costs if it is used to generate each of the three types of input random 
variables. For example, suppose that a small U is used to generate an interdemand 
time. Would this tend to make the ordering cost generally large or small, other things 
being equal?

 11.6. Recall the bank model of Sec. 2.6, and suppose that the bank’s management would 
like an estimate of the effect of adding a sixth teller and of adding a seventh teller 
(in comparison with the current confi guration of fi ve tellers) that is better than 
the results in Fig. 2.36. Use CRN to do this, and make enough replications of the 
three systems to obtain what you feel are suffi ciently precise estimates of the dif-
ferences in the expectations of the average delays in queue. Consider generating 
customer service times when the customer arrives, rather than when he or she enters 
service.

 11.7. Recall the harbor model of Prob. 2.19.
(a) Consider using AV for the model as stated originally. Specifi cally, which input 

random variates should be generated antithetically, and how could proper syn-
chronization be maintained?

(b) Suppose that thought is being given to replacing the two existing cranes with two 
faster ones. Specifi cally, single-crane unloading times for a ship would be dis-
tributed uniformly between 0.2 and 1.0 day; everything else remains the same. 
Discuss proper application and implementation of CRN to compare the original 
system with the proposed new one.

(c) Carry out the comparative simulations, using both independent sampling and 
CRN, and replicate as needed to estimate the variance reduction (if any) achieved 
by CRN.

 11.8. Discuss the use of CRN to compare job-processing policies (a) and (b) for the 
computer model of Prob. 2.20.

 11.9. For the two priority policies in the computer model of Prob. 2.22, use CRN to 
sharpen the comparison between the expected average delay in queue under each 
policy.

11.10. Consider two M/G/1 queues with exponential service times in the fi rst queue and 
gamma service times in the second, but with the same mean service time. Discuss 
problems of synchronization of the random numbers in implementing CRN to 
compare these two queues on the basis, say, of the expected average delay of the 
fi rst 100 customers given empty and idle initial conditions. Sections 8.2.1 and 8.3.4 
may be of use.
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11.11. In comparing two system confi gurations, consider using AV and CRN together, i.e., use 
AV within a pair of runs of each confi guration, and CRN across the confi gurations. 
To simplify things, suppose we make just one pair of runs of each confi guration, 
shown schematically below:

 Primary  Antithetic
 run  run

Confi guration 1: X1
(1) dAVS X1

(2)

 c  c
 CRN  CRN
 T  T
Confi guration 2: X2

(1) dAVS X2
(2)

 The estimator of z 5 E(X 
(l)
1 2 X 

(l)
2 ) is Z 5 (X 

(1)
1 1 X 

(2)
1 )y2 2 (X 

(1)
2 1 X 

(2)
2 )y2.

(a) Find an expression for Var(Z ) in terms of the variances and covariances corre-
sponding to the four runs in the above schematic.

(b) Assume that both CRN and AV work on their own, i.e., induce correlations of the 
desired signs. Does the combined scheme then work? That is, do we know that 
this scheme will reduce Var(Z ) in comparison to independent sampling through-
out? Explain.

11.12. If Y1, Y2, . . . is a sequence of IID random variables and N is a positive integer-valued 
random variable that may depend on the Yi’s in some way, then the sample mean of 
N Yi’s may not be unbiased for m 5 E(Yi). Use this fact to explain why we were care-
ful in the CV examples in Sec. 11.4 to defi ne the CV Y as the average of a fi xed 
number of IID random variables, such as interarrival or service times, rather than 
letting Y be the average of all the interarrival or service times generated by the time 
the simulation ends.

11.13. For the general linear CV method with m control variates, the variance of the con-
trolled estimator was given in Eq. (11.3), where the weights al must be specifi ed.
(a) Find the optimal (i.e., variance-minimizing) weights for the cases m 5 2 and 3.
(b) Assuming that the control variates are uncorrelated with each other, fi nd the 

optimal weights for any m.
(c) For both cases (a) and (b) above, give a method for estimating the optimal 

weights. If we know the variances of the control variates (as we might if they are 
just averages of input variates), could your estimators be improved? In (a), what 
if we also know the covariances between the control variates?

11.14. Suppose that we want to estimate the expected average delay in queue of the fi rst 
100 customers in a FIFO M/G/1 queue where the initial conditions are empty and 
idle, the mean interarrival time is 1 minute, and service times have a Weibull distribu-
tion with shape parameter a 5 2 and scale parameter b 5 1.8y1p minutes. Thus, 

 the mean service time is bG[(1ya) 1 1] 5 (1.8y1p)(1py2) 5 0.9 minute (see 
Sec. 6.2.2), and the utilization factor is r 5 0.9. (See Sec. 8.3.5 for Weibull-variate 
generation, which is easily done by the inverse-transform method.) As an external 
control variate, we could use CRN to simulate the M/M/1 queue for 100 customers 
with the same mean interarrival and service times, which is precisely the model of 
Example 11.13, and use the fact that the known expected average delay in queue for this 
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M/M/1 queue is 4.13. Use the estimation technique given in Sec. 11.4 to estimate the 
optimal weight a* from n 5 10 replications, and repeat the whole process 100 times 
to estimate the variance reduction in comparison with straightforward simulation 
of this M/G/1 queue. Is the variance reduction worthwhile, or should the computing 
time needed to simulate the M/M/1 queue be devoted instead to making additional 
direct replications of this M/G/1 queue?

11.15. Discuss proper use of AV for the time-shared computer model of Sec. 2.5. For 
alternative designs of this model (such as buying a faster CPU or changing the 
service quantum), how could CRN be appropriately applied for making comparative 
simulations?

11.16. Does allowing jockeying as described in the multiteller bank of Sec. 2.6 affect 
customers’ average delay in queue(s)? To fi nd out, regard the original model (with 
jockeying) as “confi guration 1” and defi ne “confi guration 2” to be this same model 
but without any jockeying allowed; assume fi ve tellers in each case. Use dedicated 
streams to facilitate CRN—stream 1 for interarrival times and stream 2 for service 
times. However, it is not exactly obvious how we should generate the service times 
from stream 2; there are (at least) the following two possibilities:
(a) A customer’s service time is generated when he arrives and is stored with him 

as an attribute. This corresponds physically to the idea of forcing the “same” 
customers (in terms of their service demands on the tellers) to arrive to both 
confi gurations at the same times.

(b) Generate a service time from stream 2 only when a customer begins service. In 
this case, the two confi gurations will not see the same customers, but the ordered 
sequence of service times begun for both confi gurations will be identical.

 Carry out a simulation experiment to investigate whether (a) or (b) is a better way to 
implement CRN, in terms of the variance of the estimator of the difference between 
the expected average delay in queue(s) in the two confi gurations.

11.17. Suppose that we want to make fi ve replications of the two inventory models of 
Example 11.2. If we use streams 1, 2, and 3 for replication 1, streams 4, 5, and 6 for 
replication 2, etc., then a total of 15 streams will be required for the fi ve replications. 
How could we maintain synchronization for the fi ve replications using only seven 
streams? How about using three streams?

11.18. Why is the correlation between X1j and X2j equal to 20.17 for the independent 
case (“I”) in Table 11.3, since independent random variables are uncorrelated (see 
Prob. 4.8)?

11.19. Consider the small factory of Example 9.25 where the probability of a bad part was 
0.10. Suppose that the company is considering a new manufacturing process that will 
lower the probability of a bad part to 0.05. The company wants to compare the two 
manufacturing processes on the basis of the steady-state mean time in system, and it 
decides to make 10 independent replications of each process of length 12,400 min-
utes with a warmup period of 2400 minutes (40 hours). Let Xij be the average time in 
system for process i (i 5 1, 2 for the original and proposed processes, respectively) 
over the last 10,000 minutes on replication j ( j 5 1, 2, . . . , 10), and let Zj 5 X1j 2 X2j. 
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Compute the sample variance of the Zj’s for each of the following cases of 
synchronization:
(a) The two manufacturing processes are simulated completely independently (no 

synchronization).
(b) Only interarrival times of new parts are synchronized.
(c) Only times to failure and repair times for the machine are synchronized.
(d ) Only processing times and inspection times of a part on its fi rst pass through the 

system (if more than one pass is required) are synchronized.
 Compute the variance reductions corresponding to cases (b), (c), and (d ), using case 

(a) as the base case. What random variates are the most important to synchronize?

11.20. In Example 11.7, how could we get the same interdemand times and demand sizes 
for the two policies, using only one random-number stream?
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C H A P T E R  1 2

Experimental Design 
and Optimization

Recommended sections for a fi rst reading: 12.1, 12.2, 12.3

12.1 
INTRODUCTION

This chapter provides an introduction to the use of statistical experimental design 
and optimization techniques when the “experiment” is the execution of a computer 
simulation model. As in Chap. 10, we shall discuss simulations of alternative sys-
tem confi gurations and examine and compare their results. In Chap. 10, on one 
hand, we assumed that the various system confi gurations were simply given, having 
been specifi ed as the alternatives, perhaps based on physical constraints, contractual 
obligations, or political considerations. In this chapter, on the other hand, we deal 
with a situation in which there is less structure in the goal of the simulation study; 
we might want to fi nd out which of possibly many parameters and structural as-
sumptions have the greatest effect on a performance measure, or which set of model 
specifi cations appears to lead to optimal performance. For these broader (and more 
ambitious) objectives, we may not be able to carry out formal statistical analyses 
like those of Chap. 10 or make such precise probabilistic statements at the end of 
our analyses.

In experimental-design terminology, the input parameters and structural as-
sumptions composing a model are called factors, and output performance measures 
are called responses. The decision as to which parameters and structural assump-
tions are considered fi xed aspects of a model and which are experimental factors 
depends on the goals of the study rather than on the inherent form of the model. 
Also, in simulation studies there are usually several different responses or perfor-
mance measures of interest.
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Factors can be either quantitative or qualitative (sometimes called categorical). 
Quantitative factors naturally assume numerical values, while qualitative factors 
represent structural assumptions that are not naturally quantifi ed; see Table 12.1 for 
some examples.

We can also classify factors in simulation experiments as being controllable or 
uncontrollable, depending on whether they represent action options to managers of 
the corresponding real-world system. Usually, we shall focus on controllable factors 
in simulation experiments, since they are most relevant to decisions that must be 
made about implementation of real-world systems. However, uncontrollable factors 
might also be of interest in simulation experiments; e.g., we might want to assess 
how a 10 percent increase in the arrival rate of customers would affect congestion. 
In a mathematical-modeling activity such as simulation, we do, after all, get to con-
trol everything, regardless of actual real-world controllability.

The major goal of experimental design in simulation is to determine which 
factors have the greatest effect on a response, and to do so with the least amount of 
simulating. This is often called factor screening or sensitivity analysis (see Sec. 5.4.4). 
Carefully designed experiments are much more effi cient than a hit-or-miss sequence 
of runs in which we simply try a number of alternative confi gurations unsystemati-
cally to see what happens. The 2k factorial designs and the 2k2p fractional factorial 
designs that we consider in Secs. 12.2 and 12.3, respectively, are particularly useful 
in the early stages of experimentation, when we might be in the dark about which 
factors are important and how they affect the responses.

After we learn more about which factors really matter and how they appear to 
be affecting the responses, we can then develop a metamodel or response surface 
based on the important factors to accomplish the following:

• Predict the model response for system confi gurations that were not simulated, 
since the execution time for the simulation model is large

• Find that combination of input-factor values that optimizes (i.e., minimizes or 
maximizes, as appropriate) a response, using what is called response-surface 
methodology

TABLE 12.1

Examples of factors and responses

System Possible factors Quantitative or qualitative? Possible responses

Inventory system Reorder point Quantitative Average cost per
 Order-up-to level Quantitative month, average number
   of items in inventory

Manufacturing Number of machines Quantitative Average time in system,
system Number of forklifts Quantitative throughput, average
 Forklift dispatching rule Qualitative queue size

Communications Nodes of nodes Quantitative Average end-to-end
network Number of links Quantitative delay, throughput
 Routing policy Qualitative
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Metamodels, which are discussed in Sec. 12.4, usually take the form of a regression 
equation that relates the model response to one or more input factors.

This chapter is not meant to be a complete treatment of experimental design, 
which is a major topic in the fi eld of statistics. In fact, there are whole books on the 
design of experiments and response-surface methodology, including those by Barton 
(1999), Box and Draper (2008), Box, Hunter, and Hunter (2005), Montgomery 
(2013), Myers et al. (2009), and Wu and Hamada (2009). References that discuss 
experimental design in the context of simulation include Barton (2010), Cheng and 
Kleijnen (1999), Cioppa and Lucas (2007), Kleijnen (1998, 2007, 2008), Kleijnen 
et al. (2005), Sanchez and Sanchez (2005), and Sanchez and Wan (2012).

In Sec. 12.5 we discuss in greater generality techniques that have been used to 
optimize the performance of a simulated system. Our emphasis will be on methods 
(i.e., metaheuristics) that are used in optimization packages integrated into com-
mercial simulation software.

Although one can think of simulation experiments as just an instance of 
 experimentation in general, there are some advantageous characteristics of simu-
lation that distinguish it from the usual physical manufacturing, laboratory, or ag-
ricultural experiments traditionally used as examples in the experiment-design 
literature:

• As mentioned earlier, we have the opportunity to control factors such as customer 
arrival rates that are in reality uncontrollable. Thus, we can investigate many 
more kinds of contingencies than we could in a physical experiment with the 
system.

• Another aspect of enhanced control over simulation experiments stems from the 
deterministic nature of random-number generators (see Chap. 7). In simulation 
experiments, then, we can control the basic source of variability, unlike the situa-
tion in physical experiments. Thus, we might be able to use the variance-reduction 
technique common random numbers (Sec. 11.2) to sharpen our conclusions, 
although care must be taken to avoid potential backfi ring (see the discussion 
following Example 12.3 as well as Prob. 12.3).

• In most physical experiments it is prudent to randomize the run order of factor 
combinations to protect against systematic bias contributed by experimental con-
ditions, such as a steady rise in ambient laboratory temperature during a sequence 
of biological experiments that are not thermally insulated. Randomizing in simula-
tion experimentation is not necessary, assuming that the random-number generator 
is working properly.

• For some physical experiments, it is only possible to make one replication for 
each combination of factor levels, due to time or cost considerations. Then, to 
determine whether a particular factor has a statistically signifi cant impact on the 
response, it is necessary to make the, perhaps questionable, assumption that the 
response for each factor-level combination has the same variance. However, for 
many (if not most) simulation models it is now possible (because of computer 
speeds) to make multiple replications for each input-factor combination, resulting 
in a simple procedure for determining statistical signifi cance.
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12.2 
2k FACTORIAL DESIGNS

If a model has only one factor, the experimental design is conceptually simple: We 
just run the simulation at various values, or levels, of the factor, perhaps forming a 
confi dence interval for the expected response at each of the factor levels. For quan-
titative factors, a graph of the response as a function of the factor level may be useful. 
In the case of terminating simulations (Sec. 9.4), we would make some number n of 
independent replications at each factor level. At the minimum there would be two 
factor levels, and we would thus need 2n replications.

Now suppose that there are k (k $ 2) factors and we want to get an initial esti-
mate of how each factor affects the response. We might also want to determine if the 
factors interact with one another, i.e., whether the effect of one factor on the re-
sponse depends on the levels of the others. One way to measure the effect of a par-
ticular factor would be to fi x the levels of the other k 2 1 factors at some set of 
values and make simulation runs at each of two levels of the factor of interest to see 
how the response reacts to changes in this single factor. The whole process is then 
repeated to examine each of the other factors, one a time. This strategy, which is 
called the one-factor-at-a-time (OFAT) approach, is quite ineffi cient in terms of the 
number of simulation runs needed to obtain a specifi ed precision [see Montgomery 
(2013, pp. 4–5, 186–187)]. More importantly, it does not allow us to measure any 
interactions; indeed, it assumes that there are no interactions, which is often not the 
case in simulation applications.

E X A M P L E  1 2 . 1 .  Suppose that we have two factors A and B. Let the baseline levels of 
these factors be A2 and B2. Also, let A1 and B1 be proposed levels for these factors. Then 
the OFAT method would specify simulating the following three combinations of A and B:

 

A2, B2

A1, B2

A2, B1

resulting in the responses R(A2, B2), R(A1, B2), and R(A2, B1). Then the effect on the 
response of changing factor A from A2 to A1 would be computed as

 R(A1, B2) 2 R(A2, B2) (12.1)

However, this calculation is based only on factor B being at its B2 level. It could be, 
though, that the effect on the response of changing factor A would be quite different if 
factor B were at its B1 level (i.e., if the factors interact); see Example 12.3 for a numeri-
cal example. (A similar discussion applies to factor B.)
 If we had also simulated the combination A1, B1 resulting in the response R(A1, B1), 
then the effect on the response of changing factor A could also be computed as

 R(A1, B1) 2 R(A2, B1) (12.2)

However, this last calculation would not actually be possible under the OFAT strategy, 
since A1, B1 would not have been simulated. For 22 factorial designs, which will be 
discussed next, the average of the differences given by Eqs. (12.1) and (12.2) will be used 
to estimate the effect on the response of moving factor A from its A2 level to its A1 level.
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A much more economical strategy for determining the effects of factors on the 
response with which we can also measure interactions, called a 2k factorial design, 
requires that we choose just two levels for each factor and then calls for simulation 
runs at each of the 2k possible factor-level combinations, which are sometimes 
called design points. Usually, we associate a minus sign with one level of a factor 
and a plus sign with the other; which sign is associated with which level is arbitrary, 
but for quantitative factors it will be less confusing if we use a minus sign to denote 
the lower numerical value. The levels, which should be chosen in consultation with 
subject-matter experts, should be far enough apart that we would expect to see a 
difference in the response, but not so separated that nonsensical confi gurations are 
obtained. Because we are using only two levels for each factor, we assume that the 
response is approximately linear (or at least monotonic) over the range of the factor. 
[If the response is nonmonotonic (e.g., in the shape of a parabola) over the range, 
then we might be misled into thinking that the factor has no effect on the response.] 
We will discuss a method for testing the linearity assumption in Sec. 12.4.

The form of a 2k factorial design can be compactly represented in tabular form, 
as in Table 12.2 for k 5 3. The variable Ri for i 5 1, 2, . . . , 8 is the value of the 
response when running the simulation with the ith combination of factor levels. For 
instance, R6 is the response resulting from running the simulation with factors 1 and 
3 at their respective “1” levels and factor 2 at its “2” level. We shall see later that 
writing down this array, called the design matrix, facilitates calculation of the factor 
effects and interactions.

The main effect of factor j, denoted by ej, is the average change in the response 
due to moving factor j from its “2” level to its “1” level while holding all other 
factors fi xed. This average is taken over all combinations of the other factor levels 
in the design. It is important to realize that a main effect is computed relative to the 
current design and factor levels only, and we cannot generally extrapolate beyond 
this unless other conditions (e.g., no interactions) are satisfi ed. These limitations on 
the interpretation of main effects are discussed later in this section.

For the 23 factorial design of Table 12.2, the main effect of factor 1 is thus

 e1 5
(R2 2 R1) 1 (R4 2 R3) 1 (R6 2 R5) 1 (R8 2 R7)

4

TABLE 12.2

Design matrix for a 23 factorial design

Factor combination 
(design point) Factor 1 Factor 2 Factor 3 Response

 1 2 2 2 R1

 2 1 2 2 R2

 3 2 1 2 R3

 4 1 1 2 R4

 5 2 2 1 R5

 6 1 2 1 R6

 7 2 1 1 R7

 8 1 1 1 R8
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634 experimental design and optimization

Note that at design points 1 and 2, factors 2 and 3 remain fi xed, as they do at design 
points 3 and 4, 5 and 6, as well as 7 and 8. The main effect of factor 2 is

 e2 5
(R3 2 R1) 1 (R4 2 R2) 1 (R7 2 R5) 1 (R8 2 R6)

4

and that of factor 3 is

 e3 5
(R5 2 R1) 1 (R6 2 R2) 1 (R7 2 R3) 1 (R8 2 R4)

4

Looking at Table 12.2 and the above expressions for the ej’s leads to an alternative 
way of defi ning main effects, as well as a simpler way of computing them. Namely, 
ej is the difference between the average response when factor j is at its “1” level and 
the average response when it is at its “2” level. [See Montgomery (2013, p. 243) for 
a geometric interpretation of main effects.] Thus, to compute ej, we simply apply 
the signs in the “Factor j” column to the corresponding Ri’s, add them up, and 
divide by 2k21. (In other words, if we interpret the “1” signs and “2” signs in the 
design matrix as 11 and 21, respectively, we take the dot product of the “Factor j” 
column with the “Response” column and then divide by 2k21.) For example, in the 
23 factorial design of Table 12.2,

 e2 5
2R1 2 R2 1 R3 1 R4 2 R5 2 R6 1 R7 1 R8

4

which is identical to the earlier expression for e2.
The main effects measure the average change in the response due to a change in 

an individual factor, with this average being taken over all possible combinations of 
the other k 2 1 factors (numbering 2k21). It could be, though, that the effect of factor 
j1 depends in some way on the level of some other factor j2, in which case these two 
factors are said to interact. A measure of the interaction is the difference between 
the average effect of factor j1 when factor j2 is at its “1” level (and all other factors 
other than j1 and j2 are held constant) and the average effect of factor j1 when factor j2 
is at its “2” level. By convention one-half of this difference is called the two-factor 
(two-way) interaction effect and denoted by ej1j2

. It is also called the j1 3 j2 

interaction. For example, in the design of Table 12.2 we have

 e12 5
1

2
c (R4 2 R3) 1 (R8 2 R7)

2
2

(R2 2 R1) 1 (R6 2 R5)

2
d

 e13 5
1

2
c (R6 2 R5) 1 (R8 2 R7)

2
2

(R2 2 R1) 1 (R4 2 R3)

2
d

and

 e23 5
1

2
 c (R7 2 R5) 1 (R8 2 R6)

2
2

(R3 2 R1) 1 (R4 2 R2)

2
d

To see that the formula for e13, for example, measures the quantity described in words 
above, note from the design matrix in Table 12.2 that factor 3 is always at its “1” level 
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for design points 5, 6, 7, and 8, and that factor 1 moves from its “2” to its “1” level 
between design points 5 and 6 (where all other factors, in this example just factor 2, 
remain fi xed at the “2” level), as well as between design points 7 and 8 (where fac-
tor 2 is fi xed at the “1” level). Thus, the fi rst fraction inside the square brackets in the 
above expression for e13 is the average effect of moving factor 1 from its “2” to its 
“1” level when factor 3 is held at its “1” level. Similarly, the second fraction inside 
the square brackets is the average effect of moving factor 1 from its “2” to its “1” 
level (design points 1 to 2, and 3 to 4) when factor 3 is held at its “2” level. The dif-
ference between these two fractions, then, is the difference in the effect that factor 1 
has on the response depending on whether factor 3 is at its “1” or “2” level; one-half 
of this difference is the defi nition of the interaction effect between factors 1 and 3.

As with main effects, there is an easier way to compute interaction effects, 
based on the design matrix. If we rearrange the above expression for e13, for in-
stance, so that the Ri’s appear in increasing order of the i’s, we get

 e13 5
R1 2 R2 1 R3 2 R4 2 R5 1 R6 2 R7 1 R8

4

Now if we create a new column labeled “1 3 3” of 8 signs by “multiplying” the ith 
sign in the “Factor 1” column by the ith sign in the “Factor 3” column (the product 
of like signs is a “1” and the product of opposite signs is a “2”), we get a column 
of signs that gives us precisely the signs of the Ri’s used to form e13; as with main 
effects, the divisor is 2k21. Thus, the interaction effect between factors 1 and 3 can 
be thought of as the difference between the average response when factors 1 and 3 
are at the same (both “1” or both “2”) level and the average response when they 
are at opposite levels. (We leave it to the reader to compute e12 and e23 in this way.) 
Note that two-factor interaction effects are completely symmetric; for example, 
e12 5 e21, e23 5 e32, etc.

Although interpretation becomes more diffi cult, we can defi ne and compute 
three- and higher-factor interaction effects, all the way up to a k-factor interaction. 
For example, in the 23 factorial design of Table 12.2, the three-factor interaction is 
one-half the difference between the two-factor interaction effect between factors 1 
and 2 when factor 3 is at its “1” level and the two-factor interaction effect between 
factors 1 and 2 when factor 3 is at its “2” level. That is,

  e123 5
1

2
 c (R8 2 R7) 2 (R6 2 R5)

2
2

(R4 2 R3) 2 (R2 2 R1)

2
d

  5
2R1 1 R2 1 R3 2 R4 1 R5 2 R6 2 R7 1 R8

4

The second expression for e123 is obtained by multiplying the ith signs from the 
columns for factors 1, 2, and 3 in Table 12.2 and applying them to the Ri’s; the de-
nominator is once again 2k21. Three- and higher-factor interaction effects are also 
symmetric: e123 5 e132 5 e213, etc.

If two- or higher-factor interactions appear to be present, then the main effect 
of each factor involved in such a signifi cant interaction cannot be interpreted as 
simply the effect in general of moving that factor from its “2” to its “1” level, since 
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636 experimental design and optimization

the magnitude and possibly the sign of the change in the response depend on the 
level of at least one other factor.

E X A M P L E  1 2 . 2 .  It is convenient to reparameterize the inventory model of Sec. 1.5 
slightly in terms of the ordering policy. Specifi cally, we let s be the reorder point as 
before, but instead of ordering “up to S” we will view our decision in terms of the dif-
ference d 5 S 2 s. In other words, our experimental factors are s and d, and our interest 
is in how they affect the expected average total operating cost; of course, S is just s 1 d. 
The “low” and “high” levels we chose for these factors are given in the coding chart in 
Table 12.3. [If we had used the original parameters s and S in the coding chart, then we 
would have obtained nonsensical inventory policies such as (20, 10).] The design matrix 
and corresponding response values are given in Table 12.4, together with an extra 
column giving the signs to be applied in computing the s 3 d interaction. Each Ri is 
the average cost per month from a single 120-month replication; we used independent 
random-number streams for each separate Ri. The main effects are

  es 5
2144.16 1 144.50 2 119.99 1 147.00

2
5 13.68

and

  ed 5
2144.16 2 144.50 1 119.99 1 147.00

2
5 210.84

and the s 3 d interaction effect is

  esd 5
144.16 2 144.50 2 119.99 1 147.00

2
5 13.34

Thus, the average effect of raising s from 20 to 60 was to increase the monthly cost by 
13.68, and raising d from 10 to 50 decreased the monthly cost by an average of 10.84. 
Therefore, it appears that the smaller value of s and the larger value of d would be 
preferable, since lower monthly costs are desired. Since the s 3 d interaction is positive, 
there is further indication that lower costs are observed by setting s and d at opposite 

TABLE 12.4

Design matrix and simulation results for the 22 factorial design on s and d for the 
inventory model

Factor combination 
(design point) s d s 3 d Response

 1 2 2 1 144.16
 2 1 2 2 144.50
 3 2 1 2 119.99
 4 1 1 1 147.00

TABLE 12.3

Coding chart for s and d in the inventory model

Factor 2 1

 s 20 60
 d 10 50
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levels. However, if this interaction really is present in a signifi cant way (a question 
addressed in Example 12.3 below), then the effect that s has on the response depends 
on the level of d, and vice versa.

Since the Ri’s are random variables, the observed effects are random also. To 
fi nd out whether the effects are “real,” as opposed to being explainable by sampling 
fl uctuation, we must determine if the effects are statistically signifi cant. This is 
often addressed in the experimental-design literature by performing an analysis of 
variance [see, e.g., Montgomery (2013, pp. 245–249)], which assumes that the re-
sponse has the same population variance for each design point. However, as we will 
see in Examples 12.3 and 12.4, this is very often not a good assumption in simula-
tion modeling. We will, therefore, take the simple approach of replicating the whole 
design n times to obtain n IID values of each effect. These values can then be used 
to construct confi dence intervals for the expected effects. For example, let ei

j be the 
observed main effect of factor j on replication i, for i 5 1, 2, . . . , n. Let

 ej(n) 5

^
n

i51

ei
j

n

and

 S 
2
j (n) 5

^
n

i51

[ei
j 2 ej(n)]2

n 2 1

Then an approximate 100(1 2 a) percent confi dence interval for the expected main 
effect E(ej) is given by [see (4.12)]

 ej(n) 6 tn21,12ay22S 
2
j (n)yn

If the confi dence interval for E(ej) does not contain 0, we conclude that the effect is 
statistically signifi cant; otherwise, we have no statistical evidence that it is actually 
present. Note that whether an effect is statistically signifi cant depends on the num-
ber of replications, n, and the confi dence level, 1 2 a. We can construct a confi -
dence interval for an expected interaction effect in a similar manner. We must also 
keep in mind that statistical signifi cance of an effect does not necessarily imply that 
its magnitude is practically signifi cant.

E X A M P L E  1 2 . 3 .  We replicated the entire 22 factorial design of the inventory model in 
Example 12.2 n 5 10 times, and Table 12.5 gives the sample mean and variance of the 

TABLE 12.5

Sample means and variances of the responses for the inventory model

Design point Sample mean Sample variance

s 5 20, d 5 10 135.71 22.24
s 5 60, d 5 10 143.94  2.26
s 5 20, d 5 50 119.45 15.07
s 5 60, d 5 50 148.17  1.60
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responses across the 10 replications for each of the four design points. Note that the 
largest and smallest sample variances differ by a factor of approximately 14. Based on 
the 10 independent replicates of each of the three effects that we obtained, Table 12.6 
gives 96.667 percent confi dence intervals for E(es), E(ed), and E(esd), so that the overall 
confi dence level is at least 90 percent by Bonferroni’s inequality (see Sec. 9.7). All 
effects appear to be real since their confi dence intervals do not contain zero.
 In Figs. 12.1a and 12.1b we give main-effect plots for s and d. For each plot, the 
average cost at a particular level (“2” or “1”) for the factor of interest is the average of 
the sample means in Table 12.5 over the two levels of the other factor. (Thus, 127.58 in 
Fig. 12.1a is the average of 135.71 and 119.45.) If we could interpret these main effects 
literally, we would expect the average cost per month to increase by 18.47 when we 
move s from 20 to 60, and to decrease by 6.02 when we move d from 10 to 50. However, 
since there is a signifi cant interaction between s and d, these main effects are actually of 
limited value.
 In Fig. 12.2 we give the interaction plot for s and d, where the presence of a signifi -
cant interaction is indicated by the nonparallel lines [see Eq. (12.8)]. In particular, when 
d 5 10, moving s from 20 to 60 increases the average cost by 8.23 (see Table 12.5). 
However, when d 5 50, moving s from 20 to 60 increases the average cost by 28.72. 
Note that one-half of the difference between 28.72 and 8.23 is 10.25, which is esd 

(10) 
(the average of the 10 interaction effects). Note also that the OFAT approach would give 
8.23 as the increase in average cost resulting from moving s from 20 to 60, whereas we 
got 18.47 from the 22 factorial design.
 We conclude from Fig. 12.2 that both s and d have a signifi cant effect on the aver-
age cost per month. However, the actual numerical change in the average cost due to 
changing s depends on the level of d, and vice versa; this will be discussed further in 
Sec. 12.4.

In Examples 12.2 and 12.3 we carried out the simulations across the four differ-
ent factor combinations independently. Since we are dealing with four different 
confi gurations here, we could have used instead common random numbers (CRN) 
(see Sec. 11.2) across all four of them in an attempt to reduce the half-lengths of the 
confi dence intervals for the expected effects. However, the situation here is not as 
simple as that in Sec. 11.2. If CRN in fact “works” and induces the desired positive 
correlations between the responses of the different confi gurations, certain covari-
ances enter the expression for the variance of an effect with the wrong sign; the 
variance could thus increase or decrease depending on the relative magnitudes of 
the covariances and on which effect is involved (see Prob. 12.3). We reran the 
 experiments in Example 12.3 using CRN and found that the confi dence-interval 

TABLE 12.6

96.667 percent confi dence intervals for the expected effects, 
inventory model

Expected effect 96.667 percent confi dence interval

 E(es) 18.47 6 2.58
 E(ed) 26.02 6 2.47
 E(esd) 10.25 6 2.88
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FIGURE 12.1
Main-effect plots for inventory model: (a) factor s; (b) factor d.
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FIGURE 12.2
Interaction plot for factors s and d, inventory model.

half-lengths for E(es), E(ed), and E(esd) were reduced to 1.31, 0.68, and 0.46, respec-
tively. This phenomenon is an instance of the whole issue of random-number alloca-
tion in simulation raised originally by Schruben and Margolin (1978); see also 
Donohue et al. (1992, 1995) and Hussey et al. (1987).

Our next example in this section concerns a model with six factors, and it 
illustrates the computational effort required when applying 2k factorial designs to 
problems with a larger number of factors.

E X A M P L E  1 2 . 4 .  In Example 9.25 a model of a small factory was introduced in 
which parts arrive for machining and then go on to be inspected; parts failing inspec-
tion are returned to the machining station for rework (see Fig. 9.9). The machine also 
experiences breakdowns and then must undergo repair. The model runs for 160 hours, 
from which the fi rst 40 hours are deleted (see Example 9.35) to allow the model to 
warm up to steady state. We take as our response the average time a part spends in the 
system. We do not consider throughput, since it will be 60 parts per hour for any well-
defi ned (i.e., stable in the long run) system confi guration. Parts arrive according to a 
Poisson process at rate 1 per minute, which we assume is uncontrollable and will not 
include in our design as an experimental factor. There are six other factors that could 
be controllable, as given in Table 12.7. For each factor, the “2” level is the current 
 situation, as described in Example 9.25, and the “1” level represents what is felt would 
be an improvement in terms of reducing the average time in system of parts. Note that 
in all but one case the numerical parameters at the “1” level are actually smaller than 
their counterparts at the “2” level, violating our earlier advice; but by coding in this way 
each main effect will be the consequence of the corresponding purported improvement. 
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TABLE 12.7

Factor coding, small-factory model (all times are in minutes)

Factor Factor
number description 2 (current) 1 (improved)

 1 Machining times U(0.65, 0.70) U(0.585, 0.630)
 2 Inspection times U(0.75, 0.80) U(0.675, 0.720)
 3 Machine uptimes expo(360) expo(396)
 4 Machine repair times U(8, 12) U(7.2, 10.8)
 5 Probability of a bad part 0.10 0.09
 6 Queue disciplines (both) FIFO Shortest job fi rst

Factors 1 through 5 are quantitative, and the “1” level in each case constitutes a 
10 percent improvement; factor 6 is qualitative and represents changing the discipline 
in each of the two queues from FIFO to shortest job fi rst in terms of their actual machin-
ing or inspection times.
 Table 12.8 is the complete design matrix for the 26 factorial design, and requires 
64 different design points. We replicated this entire design n 5 5 times to get confi dence 
intervals on the expected effects, as in Example 12.3, so there were in all 320 simulation 
runs for the experiment. It turned out to be most convenient to use CRN across all 
64  design points.
 Figure 12.3 plots the responses from individual replications (in minutes) as the 
small dots, so there are fi ve of them distributed vertically over each design point. 
The  large dots show the average of the fi ve replications at each design point, and 
the horizontal line gives the overall average of the responses, i.e., the average of all 
320 individual-replication results. Several observations can be made directly from 
this graph:

• There is a strong and consistent pairing of the large dots—two “high” values, fol-
lowed by two “low” values, then two “high” values, etc. Looking back at the design 
matrix in Table 12.8, we see that the pattern follows the level changes of factor 2, the 
inspection-time factor. What seems clear (and will be confi rmed formally below with 
the effects computations) is that decreasing the inspection times produces a consistent 
and appreciable improvement in the response.

• Within each group of two large dots, the second one is lower. Factor 1 (machining 
times) is the one that changes level at every point, so we see that average time in 
system could be reduced by decreasing the machining times.

• Within each block of 16 large dots, the second eight are lower than the fi rst eight. 
Factor 4 (machine repair times) is the one that changes level every eight points, 
so we see that improved performance could be expected from reducing machine 
downtimes.

• Within each block of 32 large dots, the second 16 are lower, indicating the benefi t of 
reducing the probability of a part’s failing inspection (factor 5, which switches level 
after 16 design points).

• The results from design points 33 through 64 seem to be nearly an exact copy of those 
from design points 1 through 32; the only difference between the factor settings in 
these two groups is the queue discipline applied to each of the queues (factor 6). Thus, 
it appears that this factor is quite unimportant.
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642 TABLE 12.8

Design matrix for the 26 factorial design, small-factory model

 Factor number

Design point 1 2 3 4 5 6

  1 2 2 2 2 2 2
  2 1 2 2 2 2 2
  3 2 1 2 2 2 2
  4 1 1 2 2 2 2
  5 2 2 1 2 2 2
  6 1 2 1 2 2 2
  7 2 1 1 2 2 2
  8 1 1 1 2 2 2
  9 2 2 2 1 2 2
 10 1 2 2 1 2 2
 11 2 1 2 1 2 2
 12 1 1 2 1 2 2
 13 2 2 1 1 2 2
 14 1 2 1 1 2 2
 15 2 1 1 1 2 2
 16 1 1 1 1 2 2
 17 2 2 2 2 1 2
 18 1 2 2 2 1 2
 19 2 1 2 2 1 2
 20 1 1 2 2 1 2
 21 2 2 1 2 1 2
 22 1 2 1 2 1 2
 23 2 1 1 2 1 2
 24 1 1 1 2 1 2
 25 2 2 2 1 1 2
 26 1 2 2 1 1 2
 27 2 1 2 1 1 2
 28 1 1 2 1 1 2
 29 2 2 1 1 1 2
 30 1 2 1 1 1 2
 31 2 1 1 1 1 2
 32 1 1 1 1 1 2

 Factor number

Design point 1 2 3 4 5 6

 33 2 2 2 2 2 1
 34 1 2 2 2 2 1
 35 2 1 2 2 2 1
 36 1 1 2 2 2 1
 37 2 2 1 2 2 1
 38 1 2 1 2 2 1
 39 2 1 1 2 2 1
 40 1 1 1 2 2 1
 41 2 2 2 1 2 1
 42 1 2 2 1 2 1
 43 2 1 2 1 2 1
 44 1 1 2 1 2 1
 45 2 2 1 1 2 1
 46 1 2 1 1 2 1
 47 2 1 1 1 2 1
 48 1 1 1 1 2 1
 49 2 2 2 2 1 1
 50 1 2 2 2 1 1
 51 2 1 2 2 1 1
 52 1 1 2 2 1 1
 53 2 2 1 2 1 1
 54 1 2 1 2 1 1
 55 2 1 1 2 1 1
 56 1 1 1 2 1 1
 57 2 2 2 1 1 1
 58 1 2 2 1 1 1
 59 2 1 2 1 1 1
 60 1 1 2 1 1 1
 61 2 2 1 1 1 1
 62 1 2 1 1 1 1
 63 2 1 1 1 1 1
 64 1 1 1 1 1 1
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• The variance of the fi ve responses (small dots) for a particular design point is larger 
when the average of the fi ve responses (large dots) is large, which occurs above the 
“Overall average” horizontal line. In particular, the sample variances for design 
points 1 (all factors at their “2” levels) and 64 (all factors at their “1” levels) are 
0.413 and 0.034, respectively. (Actually, the largest sample variance is 0.550, which 
occurs at design point 33; this is 16 times larger than the smallest sample variance 
of 0.034.) Thus, we see for this problem that the variance of the response is not 
constant across the 64 design points, which is a fundamental assumption of the 
analysis of variance.

 While the above observations are valuable, we should confi rm them formally and 
also attempt to quantify the effects. Table 12.9 [E(ej) is the expected main effect for 

FIGURE 12.3
Experimental design for small factory: individual-replication and 
average-over-replications results.
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TABLE 12.9

90 percent confi dence intervals for the expected main 
effects (in minutes), small-factory model

Expected main effect 90 percent confi dence interval

E(e1) 20.17 6 0.03

E(e2) 21.83 6 0.29

E(e3) 20.07 6 0.10

E(e4) 20.20 6 0.09

E(e5) 20.23 6 0.11

E(e6) 20.01 6 0.05
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644 experimental design and optimization

factor j] and Table 12.10 [E(ej1 j2
) is the expected interaction effect between factors j1

and j2] give 90 percent confi dence intervals for the 6 expected main effects and 15 ex-
pected interaction effects (in minutes), respectively, and in Fig. 12.4 we plot these 
confi dence intervals. (We did not use the Bonferroni inequality to adjust the confi -
dence levels, since there are a total of 21 confi dence intervals.) Although we computed 
three- and higher-way interactions (including the six-way interaction) as well, we do 
not give them here since they were all extremely close to zero.  Actually, we see from 
Table 12.10 and Fig. 12.4 that the two-way interactions are either not statistically 
signifi cant (11 out of 15) or are “small” in magnitude. Indeed, this lack of important 
interactions is what allows direct interpretation of the main-effects estimates, which 
we discuss next.
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FIGURE 12.4
Experimental design for small factory: main effects and two-factor interactions.

TABLE 12.10

90 percent confi dence intervals for the expected interaction effects (in minutes), 
small-factory model

Expected  90 percent Expected 90 percent
interaction effect confi dence interval interaction effect confi dence interval

E(e12) 0.008 6 0.013 E(e26) 20.001 6 0.047

E(e13) 0.012 6 0.015 E(e34) 0.029 6 0.054

E(e14) 20.001 6 0.008 E(e35) 20.040 6 0.017

E(e15) 0.003 6 0.007 E(e36) 20.001 6 0.003

E(e16) 20.004 6 0.001 E(e45) 20.004 6 0.008

E(e23) 20.026 6 0.107 E(e46) 0.0018 6 0.0019

E(e24) 0.050 6 0.034 E(e56) 20.001 6 0.005

E(e25) 0.103 6 0.056 2 2
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 The greatest reduction in average time in system (1.83 minutes) can be obtained by 
reducing inspection times (factor 2). Beyond that, it would seem that improving quality 
(factor 5), reducing machine repair times (factor 4), or reducing machining times (factor 1) 
would be the next best step to take. Factor 3 (machine uptimes) is not statistically 
signifi cant (its confi dence interval contains 0 in Table 12.9) and is small in magnitude, 
so effort should not go to improving the machine’s reliability. Factor 6 (queue disci-
pline) is not statistically signifi cant and very small in magnitude, so it’s certainly not 
worthwhile to change the queue discipline. In any future analysis of this system [e.g., an 
attempt to fi nd the optimal values of the factors (see Sec. 12.5)], factors 4 and 6 can be 
set to their “2” levels and probably not considered again, thereby reducing the size of 
the problem to just four factors.
 There were four two-way interaction effects that were statistically signifi cant, with 
the 2 3 5 interaction having the largest magnitude (0.10). However, even this interaction 
is of little practical consequence.
 Since we did not fi nd any important interactions, a main effect can be regarded 
as the change in average time in system that results from moving the corresponding 
factor from its “2” level to its “1” level (see Sec. 12.4 for further discussion). How-
ever, it is probably not safe to assume that a main-effect estimate is an accurate 
portrayal of what happens to the response in general when the factor is moved by the 
amount of the difference from its “2” to its “1” level, starting from any initial value. 
For example, the probability of a bad part (factor 5) was 0.10 at its “2” level and 0.09 
at its “1” level, a change of 20.01 when moving from “2” to “1”. Thus, due to the 
absence of important interactions, we will interpret the main-effect estimate of factor 5 
as the change in the response if we move this factor from 0.10 to 0.09. However, it is 
probably not safe to say that this same main-effect estimate is an accurate portrayal of 
what would happen to the response if we were to move this factor by the same 20.01, 
starting from any value (say, moving it from 0.99 to 0.98, or from 0.43 to 0.42), unless 
we were willing to make the somewhat risky assumption that the response remains 
linear well outside the range of the factor levels that we actually considered in our ex-
periment. We just do not have any direct knowledge about the response outside of the 
range of the factor levels we chose (in this example, 0.10 to 0.09), and it is thus ques-
tionable to extrapolate our results and conclusions out to those unexplored regions 
where we did not experiment.

E X A M P L E  1 2 . 5 .  Consider the predator-prey model of Sec. 13.2.1, which you should 
read in detail before proceeding. The fi ve factors of interest are given in the coding 
chart in Table 12.11, along with their abbreviations and their “2” and “1” levels. The 
 response is the average number of wolves alive over a horizon of 2000 time points. We 

TABLE 12.11

Coding chart for the predator-prey model

 Factor number Factor description 2 1

 1 Sheep gain in energy (SG) 3 5

 2 Sheep reproduction rate (SR) 3 5

 3 Wolf gain in energy (WG) 15 25

 4 Wolf reproduction rate (WR) 4 6

 5 Grass regrowth time (RT) 15 35
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646 experimental design and optimization

performed a 25 factorial design and made n 5 5 replications at each design point using 
the NetLogo (2013) simulation package. (Independent random numbers were used for 
each of the 32 design points.) We give approximate 95 percent confi dence intervals for 
the expected main effects in Table 12.12. All main effects except for wolf reproduction 
rate are “large” and statistically signifi cant.
 We give 95 percent confi dence intervals for the expected two-factor, three-factor, 
and four-factor interaction effects in Tables 12.13 through 12.15, respectively. (The 
fi ve-factor interaction effect is not statistically signifi cant.) Note that fi ve of the ten 

TABLE 12.12

95 percent confi dence intervals for the expected main 
effects (in wolves), predator-prey model

Expected main effect 95 percent confi dence interval

E(e1) 45.99 6 6.35

E(e2) 27.33 6 1.52

E(e3) 26.12 6 5.58

E(e4) 21.38 6 7.40

E(e5) 212.15 6 3.28

TABLE 12.13

95 percent confi dence intervals for the expected two-factor interaction effects 
(in wolves), predator-prey model

Expected two-factor  95 percent Expected two-factor 95 percent
interaction effect confi dence interval interaction effect confi dence interval

E(e12) 16.21 6 2.22 E(e24) 1.09 6 4.34

E(e13) 223.40 6 6.46 E(e25) 24.90 6 5.69

E(e14) 22.28 6 6.20 E(e34) 21.84 6 6.74

E(e15) 12.08 6 1.69 E(e35) 5.33 6 3.66

E(e23) 12.28 6 1.92 E(e45) 0.77 6 4.21

TABLE 12.14

95 percent confi dence intervals for the expected three-factor interaction effects 
(in wolves), predator-prey model

Expected three-factor  95 percent Expected three-factor 95 percent
interaction effect confi dence interval interaction effect confi dence interval

E(e123) 2.06 6 2.71 E(e145) 20.13 6 3.63

E(e124) 20.56 6 4.98 E(e234) 0.99 6 4.34

E(e125) 20.73 6 4.46 E(e235) 20.81 6 5.56

E(e134) 23.45 6 5.90 E(e245) 2.53 6 8.09

E(e135) 28.21 6 2.08 E(e345) 0.31 6 4.59
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two-factor interaction effects are statistically signifi cant and some are large in magni-
tude. Observe also that the 1 3 3 3 5 interaction effect is large (i.e., 28.21) and sta-
tistically signifi cant. This can also be seen in the cube plot shown in Fig. 12.5, where 
SR 5 4 and WR 5 5. The numbers in “boxes” at the vertices of the cube are the aver-
age responses across the fi ve replications for the corresponding design points. It is 
clear from the plot that the three factors do work together to determine the response. 
This shows that three-factor interactions can, in fact, be large for some models, con-
trary to what is often assumed for fractional factorial designs (see Sec. 12.3). On the 
other hand, the four-way interaction effects are not statistically signifi cant, although 
several are somewhat different than zero.
 Finally, note for this model that the sample variances for the 32 design points 
varied from a minimum of 0.028 to a maximum of 2261.35, a factor of 80,763 
difference!

It should be mentioned that a factor can be important even if the magnitude of 
its main effect is small, which is illustrated by the following example.

TABLE 12.15

95 percent confi dence intervals for the expected 
four-factor interaction effects (in wolves), 
predator-prey model

Expected four-factor 
interaction effect 95 percent confi dence interval

E(e1234) 20.89 6 4.88

E(e1235) 2.78 6 3.78

E(e1245) 1.63 6 7.30

E(e1345) 0.20 6 3.77

E(e2345) 1.93 6 8.34

SR = 4, WR = 5

RT

5SG

35

25

3

15

WG

90.4527.57

74.68

2.28

0.93

87.79

25
56.97

54.19

FIGURE 12.5
Cube plot for factors SG, WG, and RT, predator-prey model.
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648 experimental design and optimization

E X A M P L E  1 2 . 6 .  Suppose that we have two factors A and B with “2” levels A2 and B2 
and “1” levels A1 and B1. The responses at the four design points are given in Fig. 12.6. 
Then the main effects of factors A and B are

 eA 5
(80 2 40) 1 (21 2 60)

2
5 0.5

and

 eB 5
(60 2 40) 1 (21 2 80)

2
5 219.5

If factor B is at its B1 level, then the response decreases by 39 when A is moved from its 
A2 level to its A1 level. On the other hand, if factor B is at its B2 level, then the response 
increases by 40 when A is moved from its A2 level to its A1 level. Thus, the A 3 B in-
teraction effect is

 eAB 5
239 2 40

2
5 239.5

Since eA 5 0.5 is small, at fi rst glance we might conclude that factor A has essentially 
no effect on the response. In fact, moving factor A from its A2 level to its A1 level does 
have a signifi cant impact on the response, but the amount of the change depends on the 
level of factor B. Thus, we see that the importance of a particular factor can be hidden 
in the presence of a signifi cant interaction.

Our examples in this section illustrate the experimental-design methods we 
have described, but the reader might fi nd it interesting to peruse accounts of applica-
tions of these methods (as well as those in the next section) in simulation projects, 
such as by Hood and Welch (1992), Kang et al. (2006), Kumar and Nottestad (2006), 
Porcaro (1996), and Posadas and Paulo (2003). We might mention as well that the 
2k factorial designs considered in this section and the 2k2p fractional factorial  designs 
presented in the next section have been implemented in the AutoStat package that is 
an option for the AutoMod simulation software [see Applied (2013)]. Also, factorial 
designs are available in the ExtendSim simulation software (see Sec. 3.5.2). There 
are also several statistical software packages that provide excellent capabilities for 

A� A�

B�

B�

Factor A

Factor B

40 80

60 21

FIGURE 12.6
A 22 factorial design with the 
resulting responses.
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experimental design, including Design-Expert [Stat-Ease (2013)], JMP [SAS 
(2013)], and Minitab [Minitab (2013)].

12.3 
2k2p FRACTIONAL FACTORIAL DESIGNS

Our experiment with the manufacturing model of Example 12.4 involved six factors 
and required considerable computational effort. It is easy to imagine a more compli-
cated version of this model in which we might be interested in dozens of factors. In 
such a case, a full 2k factorial design would quickly become unmanageable. For 
instance, k 5 11 factors would lead to 211 5 2048 design points, and if we wanted 
to make n 5 5 replications at each design point (certainly a modest sample size 
from a statistical viewpoint), there would be 10,240 replications in all. If each rep-
lication took, say, 1 minute of computer time (a modest amount of time for many 
real-world simulation models), we would need more than a full week of round-the-
clock computing to run the experiment.

In this section we fi rst discuss 2k2p fractional factorial designs, which are widely 
used to “screen out” an important subset of k factors of interest, with generally less 
computational effort than would be required by a full factorial design; typically, 
fractional factorial designs have been used with 15 or fewer factors. We then review 
the literature on other types of screening designs that could be considered when the 
number of factors is much larger. The hope with screening designs is that we can 
quickly determine some of the factors as being important, fi x the other factors at 
some reasonable levels, and thus forget about them in follow-up studies that pay 
more attention to the factors that do matter. In particular, reducing the number of 
factors likewise reduces the dimensionality of the search space for optimum-seeking 
methods discussed in Sec. 12.5, which is a great computational benefi t when using 
such methods.

Fractional factorial designs provide a way to get good estimates of the main 
effects and often two-factor interactions at a fraction of the computational effort 
required by a full 2k factorial design. Basically, a 2k2p fractional factorial design is 
constructed by choosing a certain subset (of size 2k2p) of all the 2k possible design 
points and then running the simulation for only these chosen points. Since only 1y2p 
of the possible 2k factor combinations are actually run, we sometimes speak of a 
“half fraction” if p 5 1, a “quarter fraction” if p 5 2, and so on. Clearly, we would 
like p to be large from a computational viewpoint, but a larger p may also result in 
less information from the experiment, as one might expect.

The important issue of which 2k2p of the possible 2k combinations to choose is 
an involved issue whose thorough explanation is best left to the experimental-design 
literature [see, e.g., Montgomery (2013, chap. 8)]. We can nevertheless give a rela-
tively simple “cookbook” procedure to use in many situations.

To do so requires that we fi rst discuss the idea of confounding in 2k2p fractional 
factorial designs. It will turn out that in such a design we may wind up with exactly 
the same algebraic expression for several different effects. For instance, in a 2421 
half fraction, it could be that the formulas for the main effect e4 and the three-way 
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650 experimental design and optimization

interaction effect e123 are identical; in this case we say that the main effect of factor 4 
is confounded or aliased with the three-way interaction effect between factors 1, 2, 
and 3. What this really means is that the common formula for e4 and e123 is an unbiased 
estimator for E(e4) 1 E(e123). We say that e4 and e123 are aliases of each other, and 
we denote this by e4 5 e123. Now if we are willing to assume that E(e123) 5 0 or is 
negligible in comparison with E(e4), then e4 is an unbiased (or nearly so) estimator 
of E(e4). It often happens that higher-way interactions do turn out to be small in 
comparison with main effects or perhaps two-way interactions (as we indeed noted 
in Example 12.4), so such an assumption may actually be warranted. Trouble may 
arise, though, in cases where two-way interactions are confounded with each other; 
e.g., the formulas for e12 and e34 could be identical, in which case this common ex-
pression is an unbiased estimator for E(e12) 1 E(e34) and we may feel uncomfort-
able assuming that either of the two-way interactions is zero. Worse, we may have 
a main effect confounded with a two-way interaction, which makes the main-effect 
estimate of limited value if the two-way interaction is present (which we cannot 
easily determine because two-way interactions are confounded with main effects, 
with each other, and with higher-way interactions). In general, the larger the value 
of p, the more pervasive the confounding problem.

One way to quantify the overall severity of confounding is through the concept 
of the resolution of a particular 2k2p fractional factorial design. It is guaranteed that 
two effects are not confounded with each other if the sum of their “ways” is strictly 
less than the design’s resolution; for this purpose main effects are regarded as 
“one-way” effects. The most commonly used fractional factorial designs in physical 
experiments are resolutions III, IV, and V (resolutions are denoted by Roman nu-
merals), and their defi nitions are given in Table 12.16. For instance, in a resolution 
IV design, no main effect is confounded with any other main effect or with any 
two-way interaction (1 1 2 , 4), but two-way interactions are aliased with each 
other (2 1 2 5 4). Thus, assuming that three-way (and higher-way) interactions are 
negligible, resolution IV designs allow us to obtain “clear” main-effects estimates. 
Notationally, the resolution is attached as a subscript: 2622

IV , 2521
V , etc. We will also 

be interested in resolution VI and VII designs (see Table 12.17), whose defi nitions 
should be clear.

Once we have determined the number of factors k and the desired resolution, 
we need to construct the design, i.e., identify p and which 2k2p rows of the full 

TABLE 12.16

Defi nitions of resolution III, IV, and V fractional factorial designs

Resolution Defi nition

 III  No main effect is confounded with any other main effect, but main effects 
are confounded with two-way interactions and some two-way interactions 
may be confounded with each other.

 IV  No main effect is confounded with any other main effect or with any two-
way interaction, but two-way interactions are aliased with each other.

 V  No main effect or two-way interaction is confounded with any other main 
effect or two-way interaction.
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2k factorial design matrix to use. The fi rst step is to write out a full 2k2p factorial 
design matrix in factors 1, 2, . . . , k 2 p, as in Tables 12.2 and 12.8. (This basic 
design matrix has the required number of rows, namely, 2k2p.) The remaining p 
columns (for factors k 2 p 1 1, . . . , k) are then determined by “multiplying” cer-
tain of the fi rst k 2 p columns together according to the rules given in Table 12.17 
[which is excerpted from Montgomery (2013, p. 342)], where “multiplying col-
umns” means that corresponding entries of each column are multiplied together and 
the product of like signs is a “1” while the product of different signs is a “2,” ex-
actly as we did in computing interactions in full factorial designs. The required 
number of runs (design points) for a particular 2k2p design is also given in Table 12.17.

For example, to construct a 2822
V  design (a quarter fraction in k 5 8 factors) 

described in Table 12.17, we fi rst write out a full 26 factorial design in factors 1, 
2, . . . , 6, and we then defi ne the column for factor 7 to be the product of columns 
1, 2, 3, and 4; the column for factor 8 is the product of columns 1, 2, 5, and 6. (Note 
that we could have reversed the signs of either or both of columns 7 or 8, taking 
instead the “2” option in the “6” specifi cation in Table 12.17; this fl exibility could 

TABLE 12.17

Rules for constructing 2k2p fractional factorial designs

 Factors (k)

Runs 3 4 5 6 7 8 9

   4 2321
III

  3 5 612

   8  2421
IV  2522

III  2623
III  2724

III
   4 5 6123 4 5 612 4 5 612 4 5 612
    5 5 613 5 5 613 5 5 613
     6 5 623 6 5 623
      7 5 6123

  16   2521
V  2622

IV  2723
IV  2824

IV  2925
III

    5 5 61234 5 5 6123 5 5 6123 5 5 6234 5 5 6123
     6 5 6234 6 5 6234 6 5 6134 6 5 6234
      7 5 6134 7 5 6123 7 5 6134
       8 5 6124 8 5 6124
        9 5 61234

  32    2621
VI  2722

IV  2823
IV  2924

IV
     6 5 612345 6 5 61234 6 5 6123  6 5 62345
      7 5 61245 7 5 6124  7 5 61345
       8 5 62345 8 5 61245
        9 5 61235

  64     2721
VII  2822

V  2923
IV

      7 5 6123456 7 5 61234 7 5 61234
       8 5 61256 8 5 61356
        9 5 63456

 128       2922
VI

        8 5 613467
        9 5 623567
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652 experimental design and optimization

prove useful in simulation if, for instance, always taking the “1” option leads to 
model confi gurations that are costly to run.) The main effect of factor j is then com-
puted as in full factorial designs: Apply the signs of the column for factor j to the 
corresponding numbers in the response column and add them up; this is divided, 
though, by 2k2p21 rather than 2k21. Interactions are also computed as before: Multi-
ply the columns for the involved factors together, apply the resulting signs to the 
response column, add them up, and divide by 2k2p21; when computing interactions, 
we should remember that not all of them are clear of confounding due to the limited 
design resolution.

A few comments are in order before we give an example that uses fractional 
factorial designs:

• That the designs defi ned by this procedure are actually of the indicated resolu-
tion is not immediately obvious; the interested reader should see Montgomery 
(2013, chap. 8.) We can begin to see why, though, by looking at the defi nition, 
say, of the 2822

V  design in Table 12.17 (taking the “1” option for both factors 7 
and 8). If we were to construct this design and then decide to compute the four-
factor interaction e1234, we would obviously get a formula identical to that for e7, 
since this is precisely how the column for factor 7 was defi ned. Thus, the main 
effect of factor 7 is confounded with this four-way interaction, but not with a 
three-way interaction since four separate factors were used in the defi nition of 
its column in the design matrix. All this is consistent with what is meant by a 
resolution V design.

• There may not be a design of the desired resolution for a particular k. For exam-
ple, there is not a resolution V design for k 5 6. However, in this case we could 
use a 2621

VI  design (resolution VI with p 5 1), which would require 32 design 
points (see Table 12.17). Note also that Table 12.17 is extended out to k 5 15 
 factors in Montgomery.

E X A M P L E  1 2 . 7 .  We reconsider the small-factory model of Example 12.4 using the 
2621

VI  design from Table 12.17, taking the “1” option for factor 6. The resulting design 
matrix is given in Table 12.18. A main effect is not aliased with any other main effect or 
with any two-way, three-way, or four-way interaction, and a two-way interaction is not 
aliased with any other two-way interaction or any three-way interaction. Since we al-
ready made fi ve replications for these 32 design points in Example 12.4, we used the 
same responses to compute estimates of main effects and two-way interactions based on 
the 2621

VI  design. We give approximate 90 percent confi dence intervals for the expected 
main effects in Table 12.19. These estimates are identical to their full-factorial counter-
parts in Table 12.9 to two decimal places. (The magnitude of the largest fi ve-way 
 interaction in the analysis of Example 12.4 was 0.0009.) Approximate 90 percent confi -
dence intervals for the expected two-factor interaction effects are given in Table 12.20. 
These estimates are very similar to those from the factorial design in Table 12.10. (The 
 magnitude of the largest four-way interaction in the analysis of Example 12.4 was 
0.002.) Thus, we came to the same conclusions from our 32-run resolution VI fractional 
factorial design as we did from the 64 design points of our full 26 factorial design.

The next example shows that things do not necessarily work out completely 
well when we use a fractional factorial design rather than a full factorial design and 
there happens to be a signifi cant three-factor interaction present.
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E X A M P L E  1 2 . 8 .  Consider again the predator-prey model of Example 12.5, where 
we performed a 25 factorial design. Recall from Table 12.15 that the four-factor in-
teraction effects differed somewhat from zero, although they were not statistically 
signifi cant. We now perform a 2521

V  fractional factorial design (see Table 12.17) using 
the response data from Example 12.5. Main effects are now confounded with four-
factor interaction effects and two-factor interaction effects are confounded with 
three-factor interaction effects. The biased main-effect estimates are given in column 2 

TABLE 12.18

The 2621
VI  design matrix

Factor number

Design point 1 2 3 4 5 6

 1 2 2 2 2 2 2

 2 1 2 2 2 2 1

 3 2 1 2 2 2 1

 4 1 1 2 2 2 2

 5 2 2 1 2 2 1

 6 1 2 1 2 2 2

 7 2 1 1 2 2 2

 8 1 1 1 2 2 1

 9 2 2 2 1 2 1

10 1 2 2 1 2 2

11 2 1 2 1 2 2

12 1 1 2 1 2 1

13 2 2 1 1 2 2

14 1 2 1 1 2 1

15 2 1 1 1 2 1

16 1 1 1 1 2 2

17 2 2 2 2 1 1

18 1 2 2 2 1 2

19 2 1 2 2 1 2

20 1 1 2 2 1 1

21 2 2 1 2 1 2

22 1 2 1 2 1 1

23 2 1 1 2 1 1

24 1 1 1 2 1 2

25 2 2 2 1 1 2

26 1 2 2 1 1 1

27 2 1 2 1 1 1

28 1 1 2 1 1 2

29 2 2 1 1 1 1

30 1 2 1 1 1 2

31 2 1 1 1 1 2

32 1 1 1 1 1 1
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654 experimental design and optimization

of Table 12.21. In column 3 are the unbiased main-effect estimates from the factorial 
design (Table 12.12). Finally, in column 4 are unbiased estimates of the corresponding 
four-factor interaction effects from the factorial design (Table 12.15). (Main effects and 
four-factor interaction effects are unbiased for the factorial design.) For example, the 
1.93 in column 4 of row 2 is an unbiased estimate of E(e2345). Note for a particular data 
row in Table 12.21 that the sum of the numbers in columns 3 and 4 is equal to the num-
ber in column 2 (as expected). Thus, the resolution V fractional factorial design gave us 
“slightly” biased estimates of the main effects because of the nonzero four-factor inter-
action effects. [However, the estimate of E(e4) was actually of the wrong sign.] It did, 
however, still identify factors 1, 2, and 3 as being the most important.
 On the other hand, the resolution V design estimated E(e24) to be 29.30, whereas 
the unbiased estimate from the factorial design was 1.09 (Table 12.13)! This is because 
the unbiased estimate of E(e135) was 28.21 for the factorial design (Table 12.14).

As we just saw in Examples 12.7 and 12.8, fractional factorial designs may be 
an effective tool for screening out a subset of the k factors that are the “drivers” for 
a simulation model, with a reduction in the computational effort as compared with 
full factorial designs. [There are also minimum-run resolution V designs for six or 

TABLE 12.19

90 percent confi dence intervals for the expected main 
effects (in minutes) for a 2621

VI  fractional factorial 
design, small-factory model

Expected main effect 90 percent confi dence interval

E(e1) 20.17 6 0.03

E(e2) 21.83 6 0.29

E(e3) 20.07 6 0.10

E(e4) 20.20 6 0.09

E(e5) 20.23 6 0.11

E(e6) 20.01 6 0.05

TABLE 12.20

90 percent confi dence intervals for expected interaction effects (in minutes) 
for a 2621

VI  fractional factorial design, small-factory model

Expected  90 percent Expected 90 percent
interaction effect confi dence interval interaction effect confi dence interval

E(e12) 0.008 6 0.013 E(e26) 20.001 6 0.051

E(e13) 0.012 6 0.015 E(e34) 0.028 6 0.054

E(e14) 20.001 6 0.008 E(e35) 20.040 6 0.017

E(e15) 0.003 6 0.007 E(e36) 20.002 6 0.004

E(e16) 20.001 6 0.009 E(e45) 20.005 6 0.008

E(e23) 20.026 6 0.107 E(e46) 0.000 6 0.003

E(e24) 0.050 6 0.034 E(e56) 0.000 6 0.009

E(e25) 0.103 6 0.056 2 2
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more factors than can reduce the computational requirements even further; see 
Montgomery (2013, pp. 100–102).] Returning to our 11-factor example at the be-
ginning of this section, we could, e.g., construct a 21124

V  design that would provide 
us with unbiased estimates of main effects and two-factor interactions. This would 
require only 128 design points rather than 2048; using the earlier fi gure of 1 minute 
per run, we could replicate this n 5 5 times in 10 hours and 40 minutes, rather than 
taking the entire week needed for the full design.

Occasionally, we may have a simulation model with a large number of factors 
whose impact on a response needs to be determined. If a fractional factorial design is 
not computationally feasible, then we could try to reduce the (effective) number of 
factors k. Such an effort could be quite benefi cial, since the computational require-
ments for a factor-effect investigation grow exponentially in k for 2k and 2k2p designs. 
One way to accomplish this would be to use a screening design such as sequential 
bifurcation [see Bettonvil and Kleijnen (1997), Cheng (1997), Kleijnen et al. (2006), 
Sanchez et al. (2009), and Wan et al. (2006, 2010)] or a sequential factorial design 
[see Shen and Wan (2009) and Shen et al. (2010)]. For the sequential-bifurcation 
methods, all factors are initially in a single group, which is tested to see whether the 
group of factors has a signifi cant effect on the response. If this group is important, then 
it is broken into two subgroups and each of these is tested for signifi cance. The proce-
dure continues in this way, with each unimportant group being eliminated from fur-
ther consideration and each important group being broken into two smaller groups. 
Eventually, all factors that are not in discarded groups are tested individually for sig-
nifi cance. To keep the main effects for the factors in a group from canceling each other 
out, sequential bifurcation assumes that the “2” level and “1” level for each factor 
are chosen so that the expected response is larger at the “1” level than at the “2” 
level. The ability to choose the levels for a factor in this way requires that the direction 
(but not the magnitude) of the effect be known. On the other hand, sequential-factorial-
design methods do not require the direction of an effect to be known and can detect 
signifi cant interactions, which sequential bifurcation cannot do. Additional screening 
methods are surveyed in Campolongo et al. (2000), Dean and Lewis (2006), and 
Trocine and Malone (2001). Screening designs are most effective when there is a large 
number of factors and the percentage of them that are signifi cant is relatively small.

TABLE 12.21

Comparison of main-effect point estimates from the factorial and fractional factorial 
designs, predator-prey model

 Point estimate from Point estimate from Point estimate of corresponding
Expected  fractional factorial factorial design four-factor interaction
main effect design (biased) (Table 12.12) effect (Table 12.15)

E(e1) 47.92 45.99 1.93

E(e2) 27.53 27.33 0.20

E(e3) 27.75 26.12 1.63

E(e4) 1.40 21.38 2.78

E(e5) 213.04 212.15 20.89
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The methods described so far in this section are applicable to physical experi-
ments and so certainly to simulation experiments as well. In a dynamic simulation, 
however, there are opportunities for approaches that are not possible with static 
models or physical experiments. One such idea, developed originally by Schruben 
and Cogliano (1987), is to oscillate the different input-parameter values during the 
course of the simulation, each at a different frequency. The output process is then 
examined to see which input parameters’ oscillation frequencies can be detected in 
the output. While an important factor’s oscillation will produce noticeable oscilla-
tion in the output at the corresponding frequency, those oscillations of unimportant 
factors will not be apparent. In this way, Schruben and Cogliano were able to pick 
out the important factors in several test models with substantially less simulating 
than that required by conventional experimental-design approaches; Sanchez and 
Schruben (1987) present a detailed example of using this approach to identify im-
portant factors in the African-port model of Prob. 2.23. These kinds of frequency-
domain methods have been further studied by Jacobson et al. (1991), Sanchez and 
Sanchez (1991), Sargent and Som (1992), Morrice and Schruben (1993a, 1993b), 
Morrice and Bardhan (1995), and Hazra, Morrice, and Park (1997).

12.4 
RESPONSE SURFACES AND METAMODELS

In Secs. 12.2 and 12.3 we discussed experimental designs that can be used to screen 
out a subset of the k factors that have a signifi cant impact on the response. In some 
cases we might want to take these important factors and build a metamodel of how 
the simulation transforms a particular set of input-factor values into the output re-
sponse. This metamodel, which usually takes the form of a fi rst- or second-order 
regression equation, can then be used to predict the response for other factor-level 
combinations of interest, since the cost of simulating a large number of system con-
fi gurations for some models might be prohibitive. We can also use the metamodel to 
fi nd a set of factor values that optimizes (maximizes or minimizes, as appropriate) 
the response. Books that discuss metamodeling and response surfaces in general are 
Box and Draper (2008) and Myers et al. (2009). Metamodeling in the context of 
simulation is discussed in Barton (2009), Barton and Meckesheimer (2006), 
 Friedman (1996), Kleijnen (2007, 2009), Poropudas and Virtanen (2011), and 
 Sanchez and Wan (2012). Applications of metamodeling in simulation are presented 
by Hood and Welch (1993), Kumar and Nottestad (2006), Sanchez et al. (2012), 
 Watson et al. (1998), and Zeimer and Tew (1995).

The remainder of this section is organized as follows. In Sec. 12.4.1 we give an 
introduction to regression-based metamodeling and then apply this methodology to 
the inventory model discussed earlier. Then in Sec. 12.4.2 we develop a metamodel 
for the predator-prey model using a central composite design and a quadratic re-
gression model. Finally, in Sec. 12.4.3 we discuss space-fi lling designs and Kriging, 
the latter being an alternative to regression for constructing a metamodel. These 
methodologies are also used to develop a metamodel for the predator-prey model, 
and the regression and Kriging approaches are compared.
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12.4.1 Introduction and Analysis of the Inventory Model

We begin our discussion of metamodeling using the inventory model of Exam-
ples 12.2 and 12.3, where all effects were found to be statistically signifi cant. Let 
E[R(s, d)] denote the expected average cost per month for particular values of the 
reorder point, s, and the difference, d. Then in a 22 factorial design, we are in fact 
assuming that E[R(s, d)] can be represented by the following regression model [see 
Montgomery (2013, chap. 10)]:

 E[R(s, d) ] 5 b0 1 bs xs 1 bd xd 1 bsd xs xd (12.3)

where b0, bs, bd, and bsd are coeffi cients, and xs and xd are coded variables for the 
factors that we now defi ne. In particular, let s and d  be the average values of s and d 
(called the natural variables for the factors) in Table 12.3; that is, s 5 40 and 
d 5 30. Also, let Ds and Dd be the differences between the “2” and “1” levels for 
s and d, respectively, so that Ds 5 40 and Dd 5 40. Then the coded variables for 
s and d are defi ned by (see Prob. 12.9)

 xs 5
2(s 2 s)

¢s
5

s 2 40

20
 (12.4)

and

 xd 5
2(d 2 d )

¢d
5

d 2 30

20
 (12.5)

Note that Eq. (12.4) maps s 5 20 into xs 5 21 and s 5 60 into xs 5 11. Similarly, 
Eq. (12.5) maps d 5 10 into xd 5 21 and d 5 50 into xd 5 11. Coded variables are 
commonly used in experimental design because the effect on the response of a 
change in a factor is always measured relative to the range 21 to 11.

Suppose that es(10), ed (10), and esd (10) are the effects estimates from the 
n 5 10 independent replications of Example 12.3. Also, let RF (10) be the average 
response over the four factorial (denoted by F) design points and over the 10 replica-
tions. [Thus, RF (10) is the average of the 40 individual responses.] Then least-squares 
estimators [see Montgomery (2013, pp. 280–282)] of b0, bs, bd, and bsd are given by

 b̂0 5 RF(10),  b̂s 5
es(10)

2
,  b̂d 5

ed (10)

2
,  b̂sd 5

esd(10)

2
 (12.6)

Note that Eq. (12.6) provides an alternative way to compute the effects estimates by 
using the regression-analysis capabilities of any standard statistics package: Transform 
the natural-variable values to their corresponding coded-variable values by using 
Eqs. (12.4) and (12.5), fi t the model (12.3) by using these values and the responses, 
and then double the corresponding least-squares estimates of the coeffi cients by 
using Eq. (12.6). The reason that a regression coeffi cient (other than b̂0) is one-half 
of the effect estimate is that a regression coeffi cient measures the effect of a unit 
change in x on the mean E[R(s, d)], while the effect estimate is based on a two-unit 
change (from 21 to 11).

Substituting the estimated coeffi cients from Eq. (12.6) into the model (12.3), 
we obtained the following fi tted regression model in the coded variables xs and xd:

 R̂(s, d) 5 136.819 1 9.237xs 2 3.009xd 1 5.123xs xd (12.7)
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658 experimental design and optimization

Note that the coeffi cients 9.237, 23.009, and 5.123 are, in fact, one-half of the effects 
estimates in Table 12.6 (up to roundoff). Putting xs and xd as given by Eqs. (12.4) 
and (12.5) into the model given by Eq. (12.7), we get the following equivalent 
regression model in the natural variables s and d:

 R̂(s, d) 5 138.226 1 0.078s 2 0.663d 1 0.013sd (12.8)

Equation (12.8) is a model of how the simulation transforms the input parameters 
s and d into the output response R̂(s, d), and it is called a metamodel (i.e., 
a  model  of the simulation model). We plot R̂(s, d) as given by Eq. (12.8) in 
Fig. 12.7a; this plot was made using the Design-Expert experimental design 
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FIGURE 12.7
(a) Response-surface plot and (b) contour plot of the metamodel from the 22 factorial 
design, inventory model. 
 (continued)
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software [see Stat-Ease (2013)]. This plot, which is called a response surface, is a 
“twisted plane” because of the interaction term in Eq. (12.8). Note that if the coef-
fi cient of sd in Eq. (12.8) were 0, then the effect of s on the response would not 
depend on d, and vice versa; i.e., there would be no interaction between s and d. 
In Fig. 12.7b we give a contour plot of the response surface, where all (s, d) points 
along a particular contour line would produce approximately the same average-
response value. The design points from Table 12.3 are shown as large dots, and 
the value at the side of a dot is the corresponding number of replications (in this 
case 10).

The metamodel (12.8) could be regarded as a proxy for the full simulation 
model’s response surface; all we would need is a pocket calculator or spreadsheet to 
evaluate it for any (s, d) pair of interest. We must remember, though, that Eq. (12.8) 
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FIGURE 12.7
(continued)
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is just an approximation to the actual simulation and may thus be inaccurate, 
especially far from the values of s and d that provided the data on which it is based. 
A metamodel, after all, is itself a model, and as such may or may not be valid rela-
tive to the simulation model.

To get an idea how accurate an approximation Eq. (12.8) might be to the actual 
simulation model, we made n 5 10 independent replications of the simulation for all 
420 combinations of s 5 0, 5, 10, . . . , 100 and d 5 5, 10, 15, . . . , 100. Figure 12.8a 
gives a response-surface plot based on the average of the simulation-generated 
 values of R(s, d) across the 10 replications. The corresponding contour plot is given 
in Fig. 12.8b, with the four design points from Example 12.3 marked as large dots. 

FIGURE 12.8
(a) Response-surface plot and (b) contour plot from direct 
simulation of the inventory model.
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If we compare the contour plot from Fig. 12.7b to the corresponding area of the 
contour plot of Fig. 12.8b, we can see that the metamodel given by Eq. (12.8) is a 
good approximation to the “true” response surface near the four points where data 
were actually collected; however, it does not provide an adequate representation in 
the “interior” of the data-collection area. Notice also from Fig. 12.8b that the lowest 
average cost appears to be somewhere between $110 and $120 per month, which 
would be achieved by taking s to be about 25 and d to be between 35 and 40 
(S  between 60 and 65).

To generate the data for the response surface in Fig. 12.8a, we had to make 
4200 separate simulation replications, not the sort of thing one could do in practice 
with a large-scale model. Indeed, a single replication of some simulations can take 
hours to execute on a powerful computer.

The regression model given by Eq. (12.3) assumes that the response is a linear 
function in the factor effects. However, in some cases the simulation model’s response 
might be better represented by the following quadratic (or second-order) regression 
model:

 E[R(s, d)] 5 b0 1 bs xs 1 bd xd 1 bsd xs xd 1 bss x2
s 1 bdd x2

d (12.9)

To determine in practice whether the model given by Eq. (12.3) is a good approxi-
mation to the simulation model’s response surface (since plots similar to those in 
Figs. 12.8a and 12.8b would not be available in an actual application) or whether 
the second-order model given by Eq. (12.9) is necessary, we made n 5 10 indepen-
dent replications of the simulation at the center point (denoted by C ), xs 5 0 and 
xd 5 0 (or, equivalently, s 5 40 and d 5 30), and we obtained an average response 
of RC(10) 5 122.95. Substituting xs 5 0 and xd 5 0 into Eq. (12.7) gives 
RF(10) 5 136.82, which is the predicted average response for the model at the 
center point. Thus, we get a difference of RF(10) 2 RC(10) 5 13.87, which seems 
large in Fig. 12.9, where we graphically show the relationship between the two av-
erage responses at the center point. [If Eq. (12.8) were a good approximation for the 
average simulation response in the “interior” of the data-collection area, then 
RC(10) should be close to the plane defi ned by Eq. (12.8).]

To see whether the difference 13.87 is statistically signifi cant, we constructed a 
90 percent confi dence interval [using Eq. (10.1)] for E(RF) 2 E(RC) and obtained 
13.87 6 1.47. Since the confi dence interval does not contain 0, the difference is, 
in fact, statistically signifi cant. Thus, it appears that quadratic (or higher-order) 
curvature is present and the second-order model given by Eq. (12.9) should be 
considered.

Unfortunately, we cannot uniquely estimate the six required coeffi cients in 
Eq. (12.9) because we have only collected data from fi ve independent design points 
(i.e., four from the 22 factorial design and one at the center point). Therefore, we 
will augment our fi ve existing points with four axial points. The resulting design, 
called a central composite design (CCD) and shown in Fig. 12.10, will be used to fi t 
the second-order model. Note that all design points other than the center point lie on 
a circle centered at the origin and having a radius of 12. An experimental design 
with this property is called rotatable, which means that the variance of the predicted 
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FIGURE 12.9
Response-surface plot of the metamodel [Eq. (12.8)] from the 22 factorial design and the 
average simulation response at the center point, inventory model.

response is the same for all points that are at the same distance from the design 
center. We made n 5 10 independent replications of the simulation for each of the 
four axial points, with the results presented in Table 12.22. (All nine design points 
for the CCD were simulated independently.) From the data for all nine design 
points, we obtained by using Design-Expert the following fi tted second-order model 
in the coded variables:

R̂(s, d) 5 122.848 1 8.268xs 2 0.973xd 1 4.627xs xd 1 9.368x2
s 1 3.510x2

d (12.10)

The equivalent second-order model in the natural variables is

R̂(s, d) 5 167.020 2 1.807s 2 1.038d 1 0.012sd 1 0.023s2 1 0.009d2 (12.11)
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Substituting xs 5 0 and xd 5 0 into Eq. (12.10), we get 122.85, which is very close to 
the average simulation response, RC(10) 5 122.95, at the center point. In Fig. 12.11a 
we give the response-surface plot defi ned by Eq. (12.11), and in Fig. 12.11b we give 
the corresponding contour plot (see also the Color Plates). If we compare this con-
tour plot with the comparable area in Fig. 12.8b, it is clear that the second-order 
model is a better approximation to the “true” response surface than is the model 
given by Eq. (12.8).

To further check the quality of fi t provided by the second-order model, we fi rst 
computed the adjusted coeffi cient of determination [see, for example, Montgomery 
(2013, pp. 248–251)], R2

adjusted, and got the fairly large value of 0.864. However, in 
general a large value of R2

adjusted (or R2) does not necessarily mean that the regression 
model fi ts the response data well or that it is a good metamodel (see Prob. 12.10)! 
We then made n 5 10 replications of the simulation at the new design points s 5 50, 
d 5 40 (xs 5 0.5, xd 5 0.5) and s 5 30, d 5 20 (xs 5 20.5, xd 5 20.5), and got average 

xs

(0,0)

(1,1)

(1,�1)

(�1,1)

(�1,�1)

Center point

Axial point

xd

(�  2,0) (  2,0)

(0,�  2)

(0,   2)

FIGURE 12.10
Central composite design.

TABLE 12.22

Sample means of the responses for the four axial points, 
inventory model

Axial point (in natural variables) Sample mean

s 5 12, d 5 30 129.65
s 5 68, d 5 30 150.35
s 5 40, d 5 2 125.55
s 5 40, d 5 58 130.48
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664 experimental design and optimization

responses of 132.74 and 119.02, respectively. Substituting the coded-variable values 
into Eq. (12.10), we got predicted expected responses of 130.87 and 123.58, which 
correspond to metamodel errors of 1.41 and 3.83 percent, respectively. Since the 
second-order metamodel appears to be “valid,” we could now use it to predict the 
average responses at other design points within our area of experimentation [see 
Kleijnen and Sargent (2000) and Kleijnen and Defl andre (2006) for a discussion of 
additional validation techniques].

We now discuss the classical approach to fi nding the values of s and d that 
give the minimum average response over our area of experimentation. (A more 
comprehensive discussion of optimization is given in Sec. 12.5.) Going back 
to the 22 factorial design in Example 12.3, we fi t a fi rst-order regression model 
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FIGURE 12.11
(a) Response-surface plot and (b) contour plot of the second-order metamodel from the 
central composite design, inventory model.

(continued)
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chapter twelve 665

(i.e., no interaction term or second-order terms) in s and d to the 40 individual 
responses and obtained

 R̂(s, d) 5 122.857 1 0.462s 2 0.150d (12.12)

whose response-surface plot and contour plot are given in Figs. 12.12a and 
12.12b. As an overall metamodel for the simulation’s response surface, Eq. (12.12) 
is clearly very poor, but this is not the use to which we wish to put it. Instead, 
we can think of Eq. (12.12) as a local linear approximation to the expected re-
sponse surface, and ask in what direction we should move from the center of 
the design (i.e., s 5 40, d 5 30) to decrease the metamodel’s height most rap-
idly. (Decreasing is desirable in this example, since the response is a cost.) From 

FIGURE 12.11
(continued)
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666 experimental design and optimization

calculus, we know that the direction of steepest descent is in the direction of the 
negative of the vector of partial derivatives (i.e., the gradient) for the metamodel, 
i.e., in the direction (20.462, 0.150) in this case. The arrow emanating from the 
center point of the design in Fig. 12.12b indicates this direction, which is perpen-
dicular to the contours of the metamodel. In terms of the “true” contour plot in 
Fig. 12.12c, it indeed seems to indicate a good direction in which to move. We 
could then move along this line, picking values of s and d on it (or near it, since 
they must be integers in this model), running the simulation at each point, and 
continuing as long as the response continues to fall. When it begins to rise, we 
could stop, perform another 22 factorial design, fi t another linear model, and pick 
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FIGURE 12.12
(a) Response-surface plot and (b) contour plot of the fi rst-order metamodel from the 
22 factorial design, inventory model; (c) contour plot from direct simulation (arrows 
indicate search direction).

(continued)
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668 experimental design and optimization

a new search direction. The process could continue until we reach a point where 
the metamodel appears fl at, i.e., where the estimated coeffi cients of s and d are 
both near zero. We could then fi t a second-order metamodel (e.g., using a CCD) 
at this point, which will require additional replications of the simulation to be 
made, and use analytical techniques to fi nd the values of s and d that give the 
minimum average response for this model. Barton and Meckesheimer (2006), 
Box et al. (2005), and Myers et al. (2009) discuss this optimization process in 
detail.

The procedure outlined above is clearly quite crude, tedious, and fraught with 
all sorts of opportunities for error, such as a completely inappropriate search direc-
tion being chosen at some point due to the variability in the simulation output. 
Chang et al. (2013) developed an automated approach, which they call stochastic 
trust-region response-surface method, for simulation optimization.

The Design-Expert software, which we have used to make many of our plots, em-
ploys a nonlinear programming algorithm (i.e., the Nelder-Mead simplex method) to 
try to fi nd the factor levels that give the minimum (or maximum) response for a fi tted 
metamodel. For the inventory model, we used Design-Expert to fi nd the values of s and 
d that minimize the average response R̂(s, d) given by the second-order metamodel 
(12.11), subject to the constraints 12 # s # 68 and 2 # d # 58. Design-Expert’s opti-
mization algorithm found the “optimal” factor levels to be s 5 29 and d 5 40, and the 
corresponding minimum average cost was $120.25. Recall that by inspection of the 
“direct-simulation” contour plot given in Fig. 12.8b, we estimated the minimum aver-
age cost to be somewhere between $110 and $120 per month, which would be achieved 
by taking s to be about 25 and d to be between 35 and 40.

Throughout this section we have talked in terms of a single simulation response 
of interest. However, for many simulation models there will be several important 
responses, and a separate metamodel would have to be developed for each one. 
However, multiple metamodels can be fi t by using the same set of simulation runs 
if (1) all factors that are signifi cant for any of the responses are included in the design 
and (2) all responses are recorded for each run. See Angün et al. (2009) for further 
discussion of multiple responses.

12.4.2 Analysis of the Predator-Prey Model

We now develop a quadratic metamodel for the predator-prey model using a 
face-centered CCD, which puts each axial point on the face of the “cube” rather 
than outside of it [see Montgomery (2013, pp. 501–503)]. We use a face-centered 
CCD rather than a rotatable one because we want to stay within the original 
factor-level ranges. An illustration of a face-centered CCD for k 5 2 is given in 
Figure 12.13.

In order to get greater statistical precision in the estimates of the factor effects, 
we made n 5 30 new replications at each of required 43 design points (i.e., 32 5 25 
factorial points, 10 5 2(5) axial points, and 1 center point), rather than using the 
existing response data from Sec. 12.2. Let xi be the coded variable corresponding to 
the ith factor, for i 5 1, 2, . . . , 5 (e.g., x1 is the coded variable corresponding to the 
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chapter twelve 669

fi rst factor, SG). Using stepwise regression [see, for example, Montgomery and 
Runger (2011, pp. 499–501)], we obtained the following fi tted quadratic regression 
model in the coded variables:

 R̂ 5 73.04 1 24.13x1 1 14.02x2 1 14.61x3 2 1.18x4 2 7.21x5

 1 8.18x1x2 2 11.29x1x3 2 1.32x1x4 1 5.47x1x5 1 6.03x2x3  (12.13)

 2 2.83x2x5 2 1.37x3x4 1 2.10x3x5 2 18.47x2
1 2 9.02x2

3 1 4.06x2
4

Note that the terms x2x4, x4x5, x
2
2, and x2

5 are not in the model because the stepwise-
regression algorithm found them not to be statistically signifi cant. (By leaving 
these four unimportant terms out of the model, we get a more parsimonious rep-
resentation.) Observe also that x4 (corresponding to WR) is included in the model, 
apparently because the 30 replications used here allow smaller factor effects to be 
detected. A  response-surface plot for the factors SG and WG is given in Fig. 12.14 
(SR 5 4, WR 5 5, and RT 5 30). Note from the plot that the metamodel can take 
on negative values when SG is close to 3 and WG is close to 15. The value of 
R2

adjusted for this model is 0.823, which is reasonably large but also misleading (see 
Table 12.23).

A plot of the predicted expected response versus the average simulation re-
sponse is given in Fig. 12.15. If the model given by Eq. (12.13) were a perfect fi t, 
then the plotted points would all fall on a line with a slope of 1 and an intercept 
of 0 (shown).

To assess the quality of fi t provided by Eq. (12.13), we randomly generated 
20 new design points over the experimental region specifi ed by the factor levels 
given in Table 12.11. For each of these design points, we made n 5 30 independent 
replications of the simulation and computed the average simulation response across 
the replications. In Table 12.23 we give for the fi rst three of these design points 
the average simulation response, the predicted expected response from Eq. (12.13), 
and the percentage error in the prediction relative to the simulation average. (The 
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FIGURE 12.13
Face-centered central composite 
design for k 5 2.
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FIGURE 12.14
Response-surface plot for the face-centered central composite design, 
predator-prey model.

remaining 17 design points will be discussed in Sec. 12.4.3). As can be seen from 
the table, the quality of the model estimates is quite poor, particularly for the fi rst 
design point. We conclude that the metamodel given by Eq. (12.13) is not valid.

The problem with a CCD (rotatable or face centered) is that only the center 
point is placed in the “interior” of the experimental region, rather than having the 
design points “uniformly sprinkled” throughout. We will address this problem in 

TABLE 12.23

Comparison of the model prediction and simulation average for three new design 
points, predator-prey model

      Model Simulation Percentage
 SG SR WG WR RT prediction average error

4.37 3.11 15 5.89 32.37 50.87 30.94 64.41
4.47 3.21 22.37 5.16 34.47 64.76 70.35  7.95
5 3.53 19.74 4.21 30.26 72.64 82.32 11.76
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Sec. 12.4.3 when we introduce the concept of space-fi lling designs. Additionally, 
CCDs may be unaffordable even for a moderate value of k, since they require 
2k 1 2k 1 1 design points. For example, if k 5 10, then 1045 5 210 1 2(10) 1 1 
design points are needed. (For k $ 5 factors, it is possible to replace the 2k “core” 
points by a fractional factorial design.)

12.4.3 Space-Filling Designs and Kriging

The goal of space-fi lling designs (SFDs), which were developed for deterministic 
computer models (e.g., in fi nite element analysis or computational fl uid dynamics), 
is to spread the design points “uniformly” throughout the experimental region. They 
require the factors to be continuous variables or discrete variables with potentially a 
large number of different levels. There are many types of SFDs, including Latin 
hypercube designs, sphere-packing designs, and uniform designs [see Santner 
et al. (2003, chaps. 5 and 6), Hernandez et al. (2012), Montgomery (2013, chap. 11), 
and Cioppa and Lucas (2007)]. We will, however, focus on Latin hypercube de-
signs in this discussion, which are supported by JMP [SAS (2013)] and MATLAB 
[MathWorks (2013)].

–20

0

20

40

60

80

100

120

200 40 60 80 100 120

Average simulation response

Pr
ed

ic
te

d 
re

sp
on

se

FIGURE 12.15
Predicted expected response versus average simulation response for face-centered 
central composite design, predator-prey model.
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672 experimental design and optimization

In a Latin hypercube design (LHD) the design matrix has m rows and k col-
umns, where m is the desired number of design points (levels for each factor). For a 
particular column (factor), the m levels l1, l2, . . . , lm are equally spaced and can be 
coded as

  l1 5 21

  li 5 li21 1
2

m 2 1
  for i 5 2, 3, . . . , m

Then each column is randomly permuted independently of every other column. For 
example, suppose k 5 2 and m 5 5. Then an example design matrix is given in 
Table 12.24. A rule of thumb for choosing the number of design points is m 5 10k 
[see Loeppky et al. (2009)].

Consider once again the predator-prey model of Sec. 12.4.2. We will de-
velop a metamodel based on a LHD that relates the response R to the coded 
variables x1, x2, . . . , x5. We used JMP to generate the design matrix for a LHD 
with m 5 50 5 10(5) design points. A projection of these design points onto the 
(x1, x3) plane is given in Fig. 12.16. We then made n 5 30 replications for each 
design point and averaged across the replications. These 50 averages were used 
as the data to construct a metamodel.

TABLE 12.24

Design matrix for a Latin hypercube design with k 5 2 and m 5 5

Design point Factor 1 Factor 2 Response

 1 20.5   0 R1

 2   1 21 R2

 3   0.5   1 R3

 4 21   0.5 R4

 5   0 20.5 R5

x1

x3

25

15
3 3.5 4 4.5 5

17.5

20

22.5

FIGURE 12.16
Projection of the 50 design points 
from a Latin hypercube design onto 
the (x1, x3) plane.
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chapter twelve 673

Using stepwise regression, we obtained the following fi tted quadratic regression 
model in the coded variables:

  R̂ 5 71.61 1 37.47x1 1 13.47x2 1 27.62 x3 2 17.20 x5

  1 8.82 x1x2 2 18.82 x1x3 1 13.43x1x5 1 5.76 x2 
x3  (12.14)

  2 4.11x2 
x5 1 10.97x3 

x5 2 19.30 x  

2
1 2 10.07x  

2
3

Note that there are 13 terms in the model given by Eq. (12.14), as compared to 
the 17 terms in the model given by Eq. (12.13), the latter being based on a CCD. The 
value of R2

adjusted for Eq. (12.14) is 0.988. Observe also x4 (WR) is now not in the 
model. The plot of the predicted expected response versus the average simulation 
response in Fig. 12.17 indicates that the metamodel given by Eq. (12.14) fi ts the 
response data very well, except at the two design points where it gives negative 
values. However, these two points only represent 4 percent of the total number of 
design points. Moreover the quality of the fi t for the LHD is much better than for the 
CCD in Fig. 12.15. A contour plot for SG and WG is given in Fig. 12.18 (SR 5 4, 
WR 5 5, and RT 5 30).

“Interaction Profi les” for the metamodel given by Eq. (12.14) produced by JMP 
are given in Fig. 12.19. Because of the interactions for this model, the impact on the 
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FIGURE 12.17
Predicted expected response versus the average simulation response for the Latin 
hypercube design, predator-prey model.
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Contour plot for factors SG and WG for the Latin hypercube design, predator-prey model.
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response of changing a particular factor (i.e., the factor’s importance) depends on 
the reference point in the design space. In Figure 12.20a we show the “Prediction 
Profi ler” from JMP at the reference point SG 5 4, SR 5 4, WG 5 20, and RT 5 30. 
(WR is not in the model and is set to 5.) For each of the four factors, the vertical 
dotted line is its current value, the horizontal dotted line is the predicted response 
(71.61) from the model given by Eq. (12.14), and the solid line passing through the 
intersection of the two dotted lines at the reference point shows how the predicted 
response changes as the factor is moved over its range while the other factors are 
held fi xed. The derivative of the predicted response (i.e., its rate of change) at the 
reference point is denoted by the size and direction of the superimposed triangle. 
The factors SG and WG have the largest triangles and, thus, are the most important 
at this reference point.

In Figure 12.20b we show the Prediction Profi ler at the reference point SG 5 4.75, 
SR 5 4, WG 5 20, and RT 5 30. At this reference point, the factors SR and WG 
appear to be the most important.

*Low-order regression models are typically used to develop a metamodel for 
data obtained from a relatively small experimental area, i.e., they are local approxi-
mations. On the other hand, Kriging or Gaussian process modeling has traditionally 
been used to fi t global metamodels, particularly for deterministic computer models. 
However, during the last 10 years there has been an interest in applying Kriging to 
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FIGURE 12.20
Prediction Profi ler for the Latin hypercube design: (a) SG 5 4; 
(b) SG 5 4.75.

*The remainder of this section may be skipped on a fi rst reading.

Law01323_ch12_629-692.indd Page 675  06/11/13  9:20 PM user-f-w-198 Law01323_ch12_629-692.indd Page 675  06/11/13  9:20 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



676 experimental design and optimization

response data from stochastic discrete-event simulation models, which has been 
spearheaded by Professor Jack Kleijnen of Tilburg University. We give an introduc-
tion to this use of Kriging in the discussion that follows. General references on 
Kriging are Cressie (1993), Sacks et al. (1989), and Santner et al. (2003), while 
references specifi cally for stochastic simulation are Ankenman et al. (2010), Kleijnen 
(2007, 2009), and Staum (2009).

Let x 5 (x1, x2, . . . , xk) denote a point in our k-dimensional experimental 
region (x denotes a vector). Then a Kriging model or Gaussian process model 
(GPM) is defi ned by
 Y(x) 5 m 1 Z(x) (12.15)

where m is the average value of the response Y over the experimental region and 
Z(x) is a Gaussian random process with mean 0, variance s2, and correlation matrix 
R(u)[u 5 (u1, u2, . . . , uk) is a vector of nonnegative scale parameters]. (A random 
process is a generalization of a stochastic process, which has k 5 1 and is in-
dexed on time.) For any points x1, x2, . . . , xm (m $ 1), this implies that the vector 
[Z(x1), Z(x2), . . . , Z(xm)] has a multivariate normal distribution with marginal mean
0, marginal variance s2, and correlation matrix R(u) (see Sec. 6.10.1). In particular, 
for the points xi 5 (xi1, xi2, . . . , xik) and xj 5 (xj1, xj2, . . . , xjk), we assume that the 

correlation between xis and xjs is of the form e2us(xis2xjs)2

, which dies out more quickly 
for large values of us. We further assume that the correlation between the points xi 
and xj, r(xi, xj), is given by the product

 r(xi, xj) 5 q
k

s51

e2us(xis2xjs)
2

5 e2
k

^
s51
us(xis2xjs)

2

which is the (i, j)th entry in the correlation matrix R(u). Note that the correlation 
r(xi, xj) decreases as xi and xj become further apart.

Suppose that we run the simulation model at the m design points x1, x2, . . . , xm 
and let YT 5 [Y1, Y2, . . . , Ym] be the corresponding responses. For a new design 
point x*, the predicted value of Y(x*) is then computed from

 Ŷ(x*) 5 m̂ 1 rT(x*)R(û)21(Y 2 1m̂) (12.16)

where m̂ and û are the maximum-likelihood estimators of m and u [see Santner et al. 
(2003, pp. 65–66)] computed from YT, R(û)21 is the inverse of the matrix R(û), 
1 is a m 3 1 vector of 1s, and

 rT(x*) 5 [r(x*, x1), r(x*, x2), . . . , r(x*, xm)]

The prediction equation given by Eq. (12.16) will contain one model term for each 
of the m design points. It will also interpolate exactly at xi (for i 5 1, 2, . . . , m), 
i.e., Ŷ(xi) 5 Yi. Note that JMP and MATLAB [Lophaven et al. (2002)] will fi t and 
provide predictions from a GPM.

Kriging can be viewed as an approach to interpolation in a random process. In 
particular, it can be shown that

 Ŷ(x*) 5 ^
m

i51

li(x*)Yi
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where the weights li(x*) depend on the new design point x* and satisfy

 ^
m

i51

li(x*) 5 1

Kriging was developed during the 1950s by D.G. Krige in South Africa as a way of 
predicting the amount of gold at a new site, given the amounts of gold at certain 
existing sites.

Consider again the predator-prey model discussed earlier in this section, where 
the simulation was run at m 5 50 design points. Let Yi be the average response 
across the n 5 30 replications for design point i. The estimated parameters for the 
GPM computed from the Yi’s by JMP are

 m̂ 5 51.872, ŝ2 5 1778.361, û 5 [0.441, 0.050, 0.015, 0.013, 0.006]

Let x* 5 (SG, SR, WG, WR, RT). Then the fi rst part of the resulting prediction 
equation is

  Ŷ(x*) 5 51.872 2 222.418 exp{2[0.441(SG 2 4.27)2

  1 0.050(SR 2 4.80)2 1 0.015(WG 2 21.33)2 1 0.013(WR 2 4.73)2

  1 0.006(RT 2 32.96)2]} 1 p

We do not give a plot of predicted expected response versus average simulation re-
sponse (similar to Fig. 12.17) for this metamodel since we know a priori that all plotted 
points will fall on a line with a slope of 1 and an intercept of 0 [i.e., Ŷ(xi) 5 Yi ].

If there is a lot of random variation in the simulation output, then it might be 
better to have the GPM smooth the response data rather than interpolate it exactly, 
because in the standard case discussed above the GPM is essentially fi tting the 
“noise” in the data. (Recall that GPM has been traditionally used for deterministic 
computer models.) This smoothing can be accomplished in JMP by using a so-called 
“nugget parameter” [see Ankenman et al. (2010), Kleijnen (2009), and Staum (2009)], 
which amounts to adding a random error term e with variance s2

e to Eq. (12.15), 
where Z(x) and e are independent. We used JMP to fi t a GPM with a nugget param-
eter to the Yi’s and the estimated parameters were

m̂ 5 13.314, ŝ2 5 4469.058, Nugget 5 8.231, û 5 [0.171, 0.015, 0.004, 0, 0.002]

where “Nugget” is an estimate of s2
e. A plot of the predicted expected response 

from the resulting metamodel versus the average simulation response is given in 
Fig. 12.21. By comparing Figs. 12.17 and 12.21, we can see that the GPM with a 
nugget parameter provides better predictions of the responses at the two design 
points with negative ordinate values than does the regression model.

We have constructed four different metamodels for the predator-prey model: 
(1) A regression model based on a 43-design-point CCD; (2) A regression model 
based on a 50-design-point LHD; (3) A GPM based on the same 50-design-point 
LHD; and (4) A GPM with a nugget parameter based on the same 50-design-point 
LHD. In order to determine the general predictive ability of these metamodels (i.e., 
to validate them), we randomly generated 20 new design points over the experimental 
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678 experimental design and optimization

region specifi ed by the factor levels given in Table 12.11. For each of these design 
points, we made n 5 30 independent replications of the simulation and computed 
the average response across the replications. (We discussed the fi rst three of these 
new design points in Sec. 12.4.2.) For two of the 20 design points, the average simu-
lation response was small (less than 11), and all metamodels give negative values 
for their predicted responses. In these two cases, it is reasonable to take the pre-
dicted responses to be zero. For the remaining 18 design points, we computed, for 
each metamodel, the percentage error in the predicted response relative to the aver-
age simulation response. We present in Table 12.25 the mean and maximum of the 
percentage errors for the 18 design points. For example, the mean and maximum 
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FIGURE 12.21
Predicted expected response versus the average simulation response for the Gaussian 
process model with nugget parameter, predator-prey model.

TABLE 12.25

Percentage errors for 18 of the 20 new design points

 Regression model Regression model GPM for a GPM with nugget
Error for a 43-point CCD for a 50-point LHD 50-point LHD for a 50-point LHD

Mean 15.30  3.30  4.69 3.56
Maximum 64.41 10.77 21.55 9.83
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percentage errors across the 18 design points for the GPM were 4.69 and 21.55 per-
cent, respectively. (Recall that for two of the original 50 design points, all four 
metamodels gave negative values for their predicted responses.)

From the results in Table 12.25, we came to the following conclusions for the 
predator-prey model:

• A (space-fi lling) LHD is far superior to a CCD, which is not valid for this simula-
tion model.

• The GPM with a nugget parameter (smoothed) provides a better representation 
than the standard GPM (exact interpolation for the original design points).

• The regression metamodel based on a LHD and the GPM with a nugget parameter 
based on a LHD provide the best overall representations for the predator-prey 
model.

It should be mentioned that Ankenman et al. (2010) developed a GPM for sto-
chastic simulations that allows the variance for the corresponding Gaussian random 
process to be different at each design point. This methodology can be implemented in 
MATLAB using software that is available at the website www.stochastickriging.net. 
The effect of common random numbers on GPM has been studied by Chen, Ankenman, 
and Nelson (2010).

12.5 
SIMULATION-BASED OPTIMIZATION

The ultimate, perhaps, in analyzing a simulation model is to fi nd a combination of 
the input factors that optimizes a key output performance measure. For example, 
there may be an output of direct economic importance, such as a profi t or cost, 
which we would like to maximize or minimize over all possible values of the input 
factors.

In general, the input factors of interest could include discrete quantitative vari-
ables such as the number of machines at a workstation in a manufacturing system, 
continuous quantitative variables such as the mean processing time for a machine, 
or qualitative variables such as the choice of a queue discipline. Although it would 
be possible in a simulation study to seek optimal values of both controllable and 
uncontrollable input factors, the primary focus in most applications is on input fac-
tors that are controllable as part of a facility design or an operational policy.

At fi rst glance, this optimization goal might seem quite similar to the goals of 
selecting a best system, as discussed in Sec. 10.4. There, however, we assumed that 
the alternative system confi gurations of interest were simply given and that there 
were a relatively small number of alternatives (e.g., 20 or fewer). This is the typical 
situation in many simulation studies. But now we are in a much less structured situ-
ation where we have to decide what alternative system confi gurations to simulate as 
well as how to evaluate and compare their results. Since we are potentially looking 
at all possible combinations of a large number of input factors, the number of alter-
native confi gurations to simulate and compare could literally be in the hundreds of 
thousands.

Law01323_ch12_629-692.indd Page 679  18/10/13  7:01 PM user-f-w-198 Law01323_ch12_629-692.indd Page 679  18/10/13  7:01 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



680 experimental design and optimization

It is helpful to think of this problem in terms of classical mathematical optimi-
zation, e.g., linear or nonlinear programming. We have an output performance mea-
sure from the simulation, say R, whose value depends on the values of input factors, 
say v1, v2, . . . , vk; these input factors are the decision variables for the optimization 
problem. Since R is the output from a simulation, it will generally be a random vari-
able subject to variance. The goal is to maximize or minimize the objective function 
E[R(v1, v2, . . . , vk)] over all possible combinations of v1, v2, . . . , vk. There may be 
constraints on the input-factor combinations, such as range constraints of the form

 li # vi # ui

for constants li (lower bound) and ui (upper bound), as well as more general con-
straints, perhaps p linear constraints of the form

 aj1v1 1 aj 2v2 1 p 1 ajkvk # cj

for constants aji and cj, for j 5 1, 2, . . . , p. For instance, if v1, v2, v3, and v4 are the 
numbers of machines of types 1, 2, 3, and 4 that we need to decide to buy, a1i is the 
cost of a machine of type i, and c1 is the amount budgeted for machine purchases, 
then in choosing the values of the vi’s we would have to obey the machine-budget 
constraint

 a11v1 1 a12v2 1 a13v3 1 a14v4 # c1

In general, if the output R is, say, profi t that we would seek to maximize, the 
problem can be formally stated as

 max
v1,v2, p  ,vk

 E[R(v1, v2, . . . , vk)]

subject to

 l1 # v1 # u1
 l2 # v2 # u2

 o
 lk # vk # uk

 a11v1 1 a12v2 1 p 1 a1kvk # c1
 a21v1 1 a22v2 1 p 1 a2kvk # c2

 o
 ap1v1 1 ap2v2 1 p 1 apkvk # cp

Solving such a problem in a real simulation context will usually be truly daunting. 
First, as in any optimization problem, if the number of decision variables (input factors 
in the simulation) k is large, we are looking for an optimal point in k-dimensional 
space; of course, a lot of mathematical-programming research spanning decades has 
been devoted to solving such problems. Second, in simulation we cannot evaluate 
the objective function by simply plugging a set of possible decision-variable values 
into a simple closed-form formula—indeed, the entire simulation itself must be run 
to produce an observation of the output R in the above notation. Finally, in a sto-
chastic simulation we cannot evaluate the objective function exactly due to random-
ness in the output; one way to ameliorate this problem is to replicate the simulation, 
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say, n times at a set of input-factor values of interest and use the average value of R 
across these replications, R, as an estimate of the objective function at that point, 
with larger n leading to a better estimate (and, of course, to greater computational 
effort).

Nonetheless, there has been considerable recent research devoted to fi nding 
methods to optimize a simulation, some of which will be mentioned in Secs. 12.5.1 
and 12.5.2. And we have seen some of these methods developed into practical 
optimization packages that work together with simulation software (see Chap. 3) to 
search the factor space intelligently in seeking a point that optimizes an objective 
function; in Sec. 12.5.2 we discuss some of these optimization packages. Clearly, 
seeking an optimal system confi guration will usually be a computationally intensive 
activity, and work on both methods and software for optimizing simulations has 
naturally been aided in recent years by advances in computer hardware, a trend that 
we expect will continue.

Despite the challenges from both the theoretical and practical sides, fi nding 
even an approximately optimal system confi guration holds the potential of great 
payoffs in practice, so interest and activity in this topic are high. There have been a 
number of applications of various methods and software reported in the literature; 
some examples are as follows:

• Emergency-room operations [Fu et al. (2005)]
• Automobile manufacturing [Spieckermann et al. (2000)]
• Management of a production-inventory system [Kapuściński and Tayur (1998)]

12.5.1 Optimum-Seeking Methods

Researchers have proposed and developed many different methods that attempt to 
optimize a simulation by searching through the space of possible input-factor com-
binations. These search procedures vary widely in terms of how they work and what 
information they require (e.g., whether they require estimates of derivatives along 
the way). However, these procedures can generally be classifi ed as being one of the 
following approaches:

• Metaheuristics such as genetic algorithms, simulated annealing, and tabu search 
(see Sec. 12.5.2)

• Response-surface methodology (see Sec. 12.4)
• Ordinal optimization [Ho et al. (2000), Ho, Sreenivas, and Vakili (1992)]
• Gradient-based procedures [Fu (2006, 2008), Glasserman (1991), Ho and Cao 

(1991), Rubinstein and Shapiro (1993), Spall (2003)]
• Random search [Andradóttir (2006), Andradóttir and Prudius (2010)]
• Sample-path optimization [Gürkan et al. (1999), Kim, Pasupathy, and Henderson 

(2013), Robinson (1996)]

However, our focus in this chapter will be on metaheuristics, which are methods 
that guide other search heuristics to keep them from being trapped at a local opti-
mum [see Blum and Roli (2003) for other defi nitions]. Several of these methods 
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682 experimental design and optimization

have actually been implemented in commercial simulation-software packages, as 
will be discussed in Sec. 12.5.2.

There are a number of good surveys and handbooks on simulation optimization, 
including those by Andradóttir (1998), Fu (2002, 2013), Fu, Glover, and April 
(2005), Ólaffson and Kim (2002), Swisher et al. (2004), and Tekin and Sabuncuoglu 
(2004). Papers that discuss new methodologies for simulation optimization are 
Boesel, Nelson, and Ishii (2003), Hong and Nelson (2006), Hu, Fu, and Marcus 
(2007), Kabirian and Ólaffson (2011), Shi and Ólaffson (2000), and Xu, Nelson, 
and Hong (2013).

12.5.2 Optimum-Seeking Packages Interfaced with Simulation Software

As noted in Sec. 12.5.1, many methods have been proposed to search for a combina-
tion of inputs to a simulation model that will optimize an objective function. Such 
methods involve simulating a sequence of system confi gurations, with the results 
from simulating earlier confi gurations being used to suggest promising new direc-
tions to search through the space of possible input-factor combinations, leading to 
confi gurations that we hope will give better system performance. There is thus the 
very practical issue of how to manage such a sequence of system confi gurations; 
clearly, doing this by manually running different system confi gurations, with the 
results suggesting the next confi guration, is not workable, given the large number of 
confi gurations that will probably need to be simulated. However, based on the avail-
ability of faster PCs and improved heuristic optimization search techniques, most 
discrete-event simulation-software vendors have now integrated optimum-seeking 
packages into their simulation software.

The goal of an optimum-seeking package (for brevity, we will call these opti-
mization packages, but it should be remembered that they do not guarantee a true 
optimum) is to orchestrate the simulation of a sequence of system confi gurations 
(each confi guration corresponds to particular settings of the input decision variables 
or factors) so that a system confi guration is eventually obtained that provides a near-
optimal solution. Such a solution should, of course, be obtained with the least 
amount of simulating possible. The interactions between the optimization package 
and the simulation model are shown in Fig. 12.22. The optimization package fi rst 
instructs the simulation model to make one or more replications of an initial system 
confi guration. (This initial confi guration can be chosen by the user based on system 
knowledge, or it can be specifi ed by the optimization package.) The results (objective-
function values) from these replications are fed back into the optimization package, 
which then uses its built-in search algorithm to decide on an additional confi gura-
tion to simulate, etc. This process is continued until the optimization package’s 
stopping rule has been satisfi ed.

The operational setup of Fig. 12.22 is indeed convenient, and it makes it work-
able to simulate an optimum-seeking sequence of system confi gurations in the 
context of the chosen simulation software. But it is important to remember that the 
results are not guaranteed to be absolutely optimal, for all the reasons discussed at 
the beginning of Sec. 12.5. Furthermore, optimization packages require that the user 
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specify a number of options and parameters, and it may not be obvious how to do so 
in a given situation—but the results will probably depend on how one chooses such 
specifi cations. Despite these cautions, we feel that such packages will often fi nd a 
near-optimal model confi guration, or in any case a confi guration that is likely to be 
superior to what an analyst could fi nd “by hand” in a time-consuming, hit-or-miss 
sequence of system confi gurations.

The following are some features that would be desirable for an optimization 
package to possess:

• The two most important features are the quality of the solution obtained (although 
this will be essentially impossible to benchmark in practice since the true opti-
mum will not be known) and the amount of execution time to get to it. The total 
execution time depends on the number of system confi gurations that need to be 
simulated, as well as the execution time per confi guration. The latter execution 
time depends on the speed of the simulation software used (see Sec. 3.4.1) and 
how fast the simulation software can get the needed simulation results back to the 
optimization package when simulation of a confi guration has fi nished.

• During execution, a dynamic display of important information should be made 
available, including a plot of the best objective-function value through the current 
confi guration, as well as the objective-function value, system confi guration, and con-
fi guration number for the m best system confi gurations, where m is user-specifi ed.

• Linear constraints on the decision variables should be allowed as part of the problem 
formulation. It would be better yet if nonlinear constraints such as v2

1 1 v1v2 # c 
could be included, where v1 and v2 are decision variables and c is a constant.

• It might be useful if one could specify a constraint on an output random variable; 
e.g., one might want to consider only system confi gurations for which the observed 
utilization of a workstation is below 0.8. The feasibility of a particular confi gura-
tion relative to constraints on the output random variables can be checked only 
after the simulation model is run for this confi guration.

Start

Stop

Specify
(additional)

system
configuration

Simulate
specified
system

configuration

Is stopping
rule satisfied?

No

Yes Report
solution

Report Simulation Results (Objective-Function Values)

Optimization Package Simulation Model

FIGURE 12.22
Interactions between an optimization package and a simulation model.
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• The optimization package should include several stopping rules, such as no improve-
ment for a specifi ed number of confi gurations, a specifi ed number of confi gura-
tions have been completed, a specifi ed amount of wall-clock time has elapsed, 
and exhaustive enumeration (if the number of system confi gurations is relatively 
small).

• A confi dence interval for the expected value of the objective function should be 
provided for each of the m best system confi gurations.

• The estimator R of the objective function may be more variable for some system 
confi gurations than for others, so we would like to make more replications for the 
higher-variance confi gurations in order to estimate the objective function with the 
same precision for all confi gurations. For example, a simulation model of a work-
station with two machines will generally have a larger variance than a simulation 
model of the same workstation with three machines, since the utilization of the 
workstation will be larger in the former case. Therefore, the number of replica-
tions for a particular system confi guration should ideally depend on a variance 
estimate computed from a small number of initial replications; the sequential pro-
cedure of Sec. 9.4.1 might be useful in this regard.

• The simulation software that is being used with the optimization package should 
reset the seeds for all random-number streams back to their default values before 
each confi guration is simulated, in order to promote the use of the variance-
reduction technique common random numbers (see Sec. 11.2).

• Since optimization problems may require a large amount of execution time, it 
should be possible to make the required replications for a particular confi guration 
simultaneously on different computers or different cores within a single computer.

Table 12.26 lists several optimization packages available at this writing, their 
vendors, the simulation-software products that they support, and the search proce-
dures used. As can be seen, the fi ve packages use different search heuristics, includ-
ing evolution strategies [Bäck (1996), Bäck and Schwefel (1993), and Schwefel 
(1995)], genetic algorithms [Michalewicz (2013)], neural networks [Bishop (1995) 
and Haykin (2009)], scatter search [Laguna (2002) and Laguna and Marti (2003)], 

TABLE 12.26

Optimization packages

  Simulation-software Search procedures 
Package Vendor products supported used

AutoStat Applied Materials AutoMod, AutoSched Evolution strategies

ExtendSim Imagine That, Inc. ExtendSim Evolution strategies
Optimizer

OptQuest OptTek Systems, Inc. AnyLogic, Arena, FlexSim,  Scatter search, tabu 
  Simio, SIMUL8 search, neural networks

SimRunner ProModel Corp. MedModel, ProModel,  Evolution strategies, 
  ServiceModel genetic algorithms

WITNESS Lanner Group, Inc. WITNESS Simulated annealing, 
Optimizer   tabu search
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simulated annealing [Eglese (1990) and Henderson et al. (2003)], and tabu search 
[Glover and Laguna (1997, 2002)]. While we cannot go into great detail on how 
these packages work, we will give a brief discussion of OptQuest and the WITNESS 
Optimizer, which we will use in our examples below.

OptQuest [Laguna (2011)] uses an implementation of scatter search (a population-
based metaheuristic) as its primary search procedure, with tabu search and neural 
networks playing a secondary role. One available stopping rule lets the optimization 
algorithm run until a user-specifi ed number of confi gurations (NC) have been com-
pleted. A second option runs the optimizer for a specifi ed amount of time, while a 
third, called Automatic Stop, is much more sophisticated and too complicated to 
succinctly describe here. OptQuest also provides the following features:

• Linear and nonlinear constraints on decision variables and on output random 
variables

• An option to allow the number of replications for a particular confi guration to 
depend on a variance estimate

• Ranking-and-selection methods to provide a statistical guarantee that the best 
system confi guration returned by OptQuest is at least the best of the confi gura-
tions actually simulated (see Sec. 10.4.3)

• Support for multi-objective simulation

The WITNESS Optimizer [see Lanner (2013)] uses simulated annealing and tabu 
search in its primary search procedure, which is called Adaptive Thermostatistical 
Simulated Annealing [see Debuse et al. (1999)]. The stopping rule has two user-
specifi ed parameters: the maximum number of confi gurations (MC ) and the number 
of confi gurations for which there is no improvement (CNI) in the value of the objec-
tive function. For example, suppose that MC 5 500, CNI 5 100, and the objective-
function value at confi guration j is the best up to that point. Then the algorithm will 
terminate at confi guration j 1 100 if none of the objective-function values at con-
fi gurations j 1 1, j 1 2, . . . , j 1 100 is better than that at confi guration j; however, 
the algorithm will never go beyond 500 confi gurations. There is also an all-possible-
combinations stopping rule, which is useful for small problems (see Example 12.10). 
The WITNESS Optimizer also has the following features:

• Allows linear constraints on decision variables
• Calculates the number of feasible confi gurations for an optimization problem, 

even when constraints have been specifi ed
• Provides a mechanism for evaluating the replication-to-replication variability of 

the objective function for a particular confi guration
• Results tables can be exported to Minitab for further analysis

E X A M P L E  1 2 . 9 .  Consider the inventory problem of Example 12.2, but now with de-
cision variables (or factors) s and S. Let R(s, S) be the average cost per month over the 
planning horizon of 120 months corresponding to a particular (s, S) pair. Suppose that 
the possible values for s are 0, l, . . . , 99, and the possible values for S are l, 2, . . . , 100.
However, S must be larger than s. Then a formal statement of our optimization problem 
is as follows:

 min
s, S

 E[R(s, S  )]
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686 experimental design and optimization

subject to the range constraints

  s [ {0, 1, . . . , 99}

  S [ {1, 2, . . . , 100}

and to the general linear constraint

 S 2 s $ 1

Thus, there are 5050 5 100(101)y2 feasible combinations of the two decision variables.
 We used the OptQuest optimization package as implemented in the Arena simu-
lation software (see Sec. 3.5.1) to perform the optimization, with n 5 10 replications 
(of length 120 months) per confi guration, a stopping rule of NC 5 200, and s 5 20 and 
S 5 40 as the starting confi guration (see Example 10.3). The best solution found by 
OptQuest was s 5 27 and S 5 61, and the corresponding average cost per month was 
$118.47, which was realized on the 137th confi guration. Note that these values of s and 
S are quite consistent with the values of s and d that appear to give the minimum average 
cost per month for the contour plot of Fig. 12.8b. (In Fig. 12.8b the parameters s and d 
were each varied in increments of 5.) Moreover, the 137 confi gurations required to ob-
tain the “optimal” solution represent only 2.7 percent of the 5050 feasible combinations 
of s and S.
 Let Ri be the average cost across the 10 replications for the ith confi guration that 
was simulated, and let mi 5 min{R1, R2, . . . , Ri}. (Thus, mi is a nonincreasing function 
of i.) In Fig. 12.23 we plot mi for i 5 1, 2, . . . , 200, and it can be seen from the fi gure 
that mi does not decrease much beyond i 5 19.
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0 25 50 75 100 125 150 175 200 i

mi

FIGURE 12.23
Minimum average cost per month at confi guration i, mi, for the (s, S) inventory 
system.
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E X A M P L E  1 2 . 1 0 .  Consider a manufacturing line consisting of four workstations, 
three fi nite-size buffers (queues), and an infi nite supply of blank parts, as shown in 
Fig. 12.24. A part is processed at stations 1 through 4 in succession (with each station 
adding value) and then exits the system. Processing times on a machine at a particular 
station are exponentially distributed with means given in Table 12.27. When a machine 
at station 1, 2, or 3 fi nishes its current part, it will push the part into the downstream 
buffer, unless all positions in the buffer are occupied. In this case the completing ma-
chine becomes blocked and cannot process another part until a buffer position is freed 
up. A machine at station 1 can never be idle (only busy or blocked), because there is 
always a blank part waiting to be processed. A machine at stations 2 and 3 can be busy, 
idle, or blocked, while a machine at station 4 can only be busy or idle.
 There are seven decision variables for this problem. Let vi (for i 5 1, 2, 3, 4) be the 
number of machines at station i, and let vi (for i 5 5, 6, 7) be the number of buffer posi-
tions in buffer i 2 3. We are interested in determining what values of v1 through v7 will 
maximize the expected profi t for a 30-day period. In particular, suppose that the manu-
facturing company receives $200 for each part that it sells. Suppose further that it costs 
$25,000 to use a machine at any station for 30 days. (In general, machines at different sta-
tions would have different costs.) Also, it costs $1000 to use a buffer position for 30 days, 
because of the fl oor-space requirements. Assume that the company is considering buy-
ing between 1 and 3 machines for each station (i.e., li 5 1 and ui 5 3 for i 5 1, 2, 3, 4) 
and between 1 and 10 positions for each buffer (i.e., li 5 1 and ui 5 10 for i 5 5, 6, 7). 
Thus, there are 81,000 5 34 ? 103 different combinations of the seven decision variables. 
Let N (a random variable whose distribution depends on the values of the decision vari-
ables) be the number of parts produced (i.e., the throughput) for 30 days. Then the profi t 
for a 30-day period, R(v1, v2, . . . , v7), is given by

 R(v1, v2, . . . , v7) 5 200N 2 25,000 ^
4

i51

vi 2 1000 ^
7

i55

vi

and our optimization problem can be stated formally as

 max
v1,v2, p  ,v7

 E[R(v1, v2, . . . , v7)]

subject to the range constraints

 vi [ {1, 2, 3}   for i 5 1, 2, 3, 4

 vi [ {1, 2, . . . , 10}  for i 5 5, 6, 7

 We used the WITNESS Optimizer to perform the optimization, with n 5 5 
 replications per confi guration, a stopping rule of MC 5 500 and CNI 5 100, and vi 5 2 

Buffer 2 Buffer 3 Buffer 4

Workstation 1 Workstation 2

Buffer position

Workstation 3

Machine

Infinite
supply of

blank parts

Workstation 4

FIGURE 12.24
Layout for the manufacturing line.
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(for i 5 1, 2, 3, 4) and vi 5 6 (for i 5 5, 6, 7) as the starting confi guration. Since we are 
interested in the steady-state behavior of the manufacturing line, each replication was of 
length 40 days with the fi rst 10 days’ being a warmup period. The adequacy of a 10-day 
warmup period was determined by applying Welch’s graphical procedure (see Sec. 9.5.1) 
to several confi gurations of the system, with 10 days’ being much larger than the warmup 
periods actually required for these confi gurations. (Strictly speaking, each of the 81,000 
different confi gurations of the system might require a different warmup period.) The best 
solution found by the WITNESS Optimizer was v1 5 3, v2 5 3, v3 5 2, v4 5 2, v5 5 7, 
v6 5 8, and v7 5 3, and the corresponding average profi t was $578,400, which was realized 
on the 124th confi guration. Note that 124 confi gurations represent only 0.15 percent of 
the 81,000 possible combinations of the seven decision variables.
 Let Ri be the average profi t across the fi ve replications for the ith confi guration that 
was simulated, and let Mi 5 max{R1, R2, . . . , Ri}. (Thus, Mi is a nondecreasing func-
tion of i.) In Fig. 12.25 we plot Mi for i 5 1, 2, . . . , 150 and also an estimate of the 
optimal expected profi t, as discussed below.

TABLE 12.27

Mean processing time for a machine at each 
of the four stations, manufacturing line

  Mean processing time for
Workstation a machine (in hours)

 1 0.33333
 2 0.50000
 3 0.20000
 4 0.25000

FIGURE 12.25
Maximum average profi t at confi guration i, Mi, for the manufacturing line.
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 It is natural to ask how close $578,400 might be to the true optimal expected profi t 
for this problem. To address this question, we used the all-possible-combinations option 
in the WITNESS Optimizer to make n 5 5 replications for each of the 8l,000 confi gura-
tions of the manufacturing line. We found for each of the top 200 confi gurations (the 
number we tracked) that v1 5 3, v2 5 3, v3 5 2, and v4 5 2. Using these settings for 
v1 through v4, we then made n 5 100 replications for each of the 1000 combinations of 
v5, v6, and v7. The best combination of these three decision variables turned out to be 
v5 5 7, v6 5 9, and v7 5 4, and the corresponding average profi t was $587,290. (How-
ever, there were three other confi gurations with an average profi t greater than $587,000.) 
Thus, the average profi t of $578,400 obtained by the WITNESS Optimizer differs from 
the “optimal” expected profi t of $587,290 by approximately 1.5 percent. (For a real-
world simulation model with a “reasonable” execution time per replication, an exhaus-
tive enumeration as discussed here would not be possible.)

E X A M P L E  1 2 . 1 1 .  Consider once again the manufacturing line of Example 12.10, but 
suppose now that each machine is subject to randomly occurring breakdowns. In particu-
lar, the (busy) time to failure of a machine (see Sec. 14.4.2) has an exponential distribu-
tion with mean 10 hours, and the time to repair of a machine has a gamma distribution 
with mean 0.5 hour and a shape parameter of 2 (see Sec. 6.2.2). Furthermore, the repair 
of a machine requires the availability of a mechanic; a machine that breaks down when 
a mechanic is not available joins a FIFO mechanic queue. Each mechanic costs the 
manufacturing company $4000 in salary and benefi ts for 30 days, and the company is 
considering hiring one or two mechanics.
 There are eight decision variables for this problem, with v8 being the number of 
mechanics to hire (l8 5 1 and u8 5 2). Thus, there are 162,000 combinations of the eight 
decision variables. We once again used the WITNESS Optimizer to perform the optimi-
zation, with n 5 5 replications per confi guration, MC 5 500 and CNI 5 100, and vi 5 2 
(for i 5 1, 2, 3, 4), vi 5 6 (for i 5 5, 6, 7), and v8 5 1 as the starting confi guration. The 
best solution found was v1 5 3, v2 5 3, v3 5 2, v4 5 2, v5 5 9, v6 5 10, v7 5 5, and v8 5 2, 
and the corresponding average profi t was $528,880, which was realized on the 218th con-
fi guration. The average profi t here is less than that in Example 12.10, because the ma-
chines are available for less time to produce parts and each mechanic must be paid $4000.

For the simple inventory and manufacturing systems in Examples 12.9 through 
12.11, the optimization packages seem to provide very good results in terms of select-
ing confi gurations close to the optimal solutions and doing so in an effi cient manner. 
However, this was partially a result of our experimenting with different settings for the 
stopping rules (i.e., NC and CNI) and the number of replications per confi guration, n. 
Choosing these parameters for a real-world application is not an easy task, since 
there are currently no defi nitive prescriptions available. On one hand, it is important 
for the optimization package to explore a large enough part of the search space, 
which bodes for a “large” value of NC or CNI. On the other hand, n must be chosen 
large enough that a suffi ciently precise estimate of E[R(v1, v2, . . . , vk)] is obtained for 
a particular confi guration v1, v2, . . . , vk. Otherwise, the optimization algorithm could 
proceed in a completely inappropriate direction in the search space. (In this regard, it 
is advisable to perform some preliminary experiments to determine a reasonable 
value for n.) If one can only make a fi xed number of model replications in attempting 
to fi nd a near-optimal solution, then these two goals (i.e., explore many confi gura-
tions versus many replications per confi guration) may be in confl ict with each other.
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Another current impediment to the use of simulation-based optimization is the 
execution time per replication for certain applications. For example, it is not uncom-
mon to have large execution times for some simulation models of military systems 
and communications networks. However, this diffi culty should become less severe 
as computers continue to get faster. On the other hand, this will be partially offset 
by people modeling larger and more complex systems. Finally, the goal of many 
simulation studies is to compare a small number of system confi gurations (e.g., the 
existing system and several proposed alternatives), which is not consistent with the 
optimization problem formulated above.

Despite the current diffi culties with simulation-based optimization, we believe 
that it can be quite a valuable tool when one needs a systematic and effi cient method 
to determine which of a large number of system confi gurations leads to a near-optimal 
value for an objective function.

PROBLEMS

 12.1. Recall the model of the manufacturing system in Prob. 1.22 with fi ve machines that 
are subject to breakdowns, and s repairmen. Suppose that the shop has not yet been 
built and that in addition to deciding how many repairmen to hire, management has 
the following two decisions to make:
(a) There is a higher-quality “deluxe” machine on the market that is more reliable, 

in that it will run for an amount of time that is an exponential random variable 
with mean 16 hours (rather than the 8 hours for the standard machine). However, 
the higher price of these deluxe machines means that it costs the shop $100 
(rather than $50) for each hour that each deluxe machine is broken down. Since 
deluxe machines work no faster, the shop will still need fi ve of them. Assume 
also that the shop cannot purchase some of each kind of machine, i.e., the ma-
chines must be either all standard or all deluxe.

(b) Instead of hiring the standard repairmen, the managers have the option of hiring 
a team of better-trained “expert” repairmen, who would have to be paid $15 an 
hour (rather than the $10 an hour for the standard repairmen) but who can repair 
a broken machine (regardless of whether it is standard or deluxe) in an exponen-
tial amount of time with a mean of 1.5 hours (rather than 2 hours). The repairmen 
hired must be either all standard or all expert.

 Use the coding in Table 12.28 to perform a full 23 factorial experiment, replicate 
n 5 5 times, and compute 90 percent confi dence intervals for all expected main and 
interaction effects. Each simulation run is for 800 hours and begins with all fi ve ma-
chines in working order. Make all runs independently. What are your conclusions?

TABLE 12.28

Coding chart for the generalized 
machine-breakdown model

Factor 2 1

s 2 4
Machine type Standard Deluxe
Repairman type Standard Expert
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 12.2. For the time-shared computer model of Sec. 2.5, suppose that consideration is being 
given to adjusting the service quantum length q (as in Prob. 10.3) as well as to adopt-
ing the alternative processing policy discussed in Probs. 2.18 and 10.5. Perform a 22 
factorial experiment with these two factors (q 5 0.05 or 0.40, and the processing 
policy either as described originally in Sec. 2.5 or as in Prob. 2.18), running the 
model for 500 job completions (without warming it up), using 35 terminals with all 
terminals initially in the think state. Make n 5 5 replications for each design point, 
and construct 90 percent confi dence intervals for the expected main and interaction 
effects; the design points should be simulated independently.

 12.3. Consider using common random numbers (CRN) across all four design points of 
the full 22 factorial design on the inventory model in Examples 12.2 and 12.3. Let 
C12 5 Cov(R1, R2), C13 5 Cov(R1, R3), etc., and assume that CRN “works,” i.e., all 
the covariances between the Ri’s are positive.
(a) Find expressions for the variances of both main effects as well as the interaction 

effect in terms of these covariances and the variances of the Ri’s. What can you 
conclude about whether CRN reduces the variances of the estimators for the 
expected effects?

(b) Suppose that we are interested primarily in getting precise estimates of the ex-
pected main effects and care less about the expected interaction effect. Suggest 
an alternative random-number-assignment strategy that would do this. What hap-
pens to the precision of the estimate for the expected interaction effect?

 12.4. Consider the communications network of Example 9.26, where there were two pro-
cessors in each SP (Signaling Point). At which SP should a third processor be added 
to reduce the average end-to-end delay by the greatest amount? Perform a 24 factorial 
design with n 5 10 replications at each of the 16 design points; the different system 
confi gurations should be simulated using CRN (see Example 11.9). All replications 
should be of length 62 seconds, with the fi rst 2 seconds’ being a warmup period. 
Construct 90 percent confi dence intervals for the expected main and two-factor inter-
action effects. Which effects are statistically signifi cant?

 12.5. Consider a queueing system with fi ve single-server stations in series, each with its 
own FIFO queue. Suppose that interarrival times to the system (at station 1) are 
exponential with a mean of 10 minutes. Suppose further that all service times are 
exponentially distributed, with the mean service times at stations 1 through 5 being 
8, 6, 9, 7, and 5 minutes, respectively. The system is initially empty and idle, and it 
runs for exactly 100,000 minutes.
(a) At what station should a second server be added to reduce the average time in 

system by the greatest amount? Perform a 2 
521
V  fractional factorial design with 

n 5 10 replications at each of the 16 design points; the different system con-
fi gurations should be simulated using CRN. Construct 90 percent confi dence 
intervals for the expected main and two-factor interaction effects. Which effects 
are statistically signifi cant?

(b) For the original system with one server at each station, compute the utilization 
factor for each station (see App. 1B). Do these fi ve values shed any light on your 
results from part (a)?

(c) How could we answer the question in part (a) by simulating only a “small” number 
of design points?
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 12.6. Consider the manufacturing line of Example 12.10, where the optimal numbers of 
machines in workstations 1 through 4 turned out to be 3, 3, 2, and 2, respectively.
(a) Why do you think that it is optimal to have 3 rather than 2 machines in station 2? 
(b) Given that there should be 3 machines in station 2, why should there not be 

3 machines in station 3?
(c) Given that there should be 3 machines in station 2, why should there not be 2 ma-

chines in station 1? (If there were 2 and 3 machines in stations 1 and 2, respectively, 
then both stations would have the same potential processing rate of 6 per hour.)

 12.7. Consider once again the manufacturing line of Example 12.10, where the optimal values 
for v5 and v6 turned out to be 7 and 9, respectively (using exhaustive enumeration).
(a) Why do you think that v5 is “relatively large” (i.e., closer to 10 than to 1)?
(b) Why do you think that v6 is “relatively large”?

 12.8. We constructed twenty-one 90 percent confi dence intervals for expected effects in 
Example 12.4, all based on the same set of n 5 5 replications. Compute the expected 
number of confi dence intervals that will not contain their respective expected effects.

 12.9. Derive Eq. (12.4) from fi rst principles.

12.10. The second-order metamodel for the inventory model given by Eq. (12.10) had 
R2

adusted 5 0.864 and seemed to provide a reasonably good representation of the “true” 
response surface shown in Fig. 12.8. On the other hand, the metamodel given by 
Eq. (12.7) had R2

adusted 5 0.923 but provided a poor representation of the true response 
surface. How is this possible given the widespread reliance on R2 statistics?

12.11. Consider a generalization of the inventory model of Examples 12.2 and 12.3 in which 
there are two new factors. The fi rst of these is the inventory-evaluation interval m, which 
is the number of months between successive evaluations of the inventory level to de-
termine whether an order will be placed. In the original model m 5 1, but consideration 
is being given to changing m to 2, that is, evaluating only at the beginning of every 
other month. The second new factor arose since the supplier has introduced an “express” 
delivery option. Originally, if Z items were ordered, the ordering cost was 32 1 3Z 
and the delivery lag was uniformly distributed between 0.5 and 1 month. With express 
delivery, the supplier will cut the delivery time in half (distributed uniformly between 
0.25 and 0.5 month) but will charge 48 1 4Z instead. The delivery priority P is thus 
either “normal” or “express” and is a qualitative factor. In this generalized model, 
then, there are k 5 4 factors whose levels are given in the following coding chart:

Factor 2 1

 s 20 60
 d 10 50
 m 1 2
 P Normal Express

  Make n 5 10 replications of the 24 factorial design and construct 95 percent 
confi dence intervals for the expected main and interaction effects. Does changing the 
inventory-evaluation interval, m, have much impact on average cost? (Hint: Look at 
the two-way interactions.) Is it worth using the express-delivery option?
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C H A P T E R  1 3

Agent-Based Simulation 
and System Dynamics

Recommended sections for a fi rst reading: 13.1 through 13.3

13.1 
INTRODUCTION

In this chapter we discuss types of simulation other than traditional discrete-
event simulation (DES). The emphasis will be on dynamic simulation models, 
which represent a system as it evolves over time. There are two major types of 
dynamic simulation models, namely, DES (discussed in Chapters 1 through 12) 
and continuous simulation. Recall that in a DES the state variables change in-
stantaneously at a countable number of separate points in time. These points in 
time are the ones at which an event occurs, where an event is (usually) an occur-
rence that immediately changes the state of the system (e.g., an arrival or a de-
parture). However, we also use dummy “events,” which may not actually change 
the state of the system, for purposes such as scheduling an inventory evaluation 
(see Sec. 1.5) and closing the doors of a bank at 5 p.m. (see Sec. 2.6). There are 
two major approaches for advancing the clock in DES: next-event time advance 
(NETA) and fi xed-increment time advance (FITA), with the former approach 
being the most commonly used. (See App. 1A for a discussion of FITA.) Also, 
FITA can be realized when using the NETA approach by scheduling dummy 
events to occur every Dt time units. (See Sec. 13.2.2 for further discussion of time-
advance mechanisms.)

The rest of the chapter is organized as follows. In Sec. 13.2 we will discuss 
agent-based simulation, which as we will see, is a variation of DES. Then in Sec. 13.3 
we discuss continuous simulation, which is a dynamic simulation model where 
the state variables change continuously with respect to time. An important special 
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694 agent-based simulation and system dynamics

type of continuous simulation is system dynamics, which is presented in Sec. 13.3.1. 
Sec. 13.4 discusses simulation models that combine elements of both DES and 
 continuous simulation. In Sec. 13.5 we discuss Monte Carlo simulation, which is a 
scheme employing random numbers that can be used for solving certain problems. 
Two examples will be given, one where Monte Carlo simulation is applied to a de-
terministic problem where time plays no role (i.e., it is static) and the other where it 
is used to estimate characteristics of a dynamic stochastic system. Finally, we dis-
cuss spreadsheet simulation in Sec. 13.6.

13.2 
AGENT-BASED SIMULATION

There has been a large amount of interest in agent-based simulation (ABS) in the 
DES community going back to (at least) 2005 when a tutorial and a dedicated track of 
papers were presented at the Winter Simulation Conference (see www.wintersim.org), 
although the general interest in ABS goes back much further. Motivated by this 
enthusiasm for ABS at the conference, we read a large number of papers and books 
from the relevant literature to learn more about the topic. However, we were very 
surprised to fi nd that there was not a generally accepted defi nition of an agent or of 
ABS. Furthermore, there was a large number of terms that people often associated 
with ABS (e.g., complex adaptive systems and emergence), and it was not at all 
clear which ones were really at the heart of ABS. Lastly, there was very little written 
about how one should advance time in an ABS, specifi cally whether the NETA 
 approach can be used in general. As a result of this lack of defi nitive information, 
we then interviewed more than 25 people who were ABS practitioners or software 
developers for ABS or DES in general. We provide a synopsis of what we learned 
through our reading and interviews in the discussion that follows. (We would like to 
thank Dr. Charles Macal and Dr. Michael North, both of Argonne National Lab, and 
Dr. Douglas Samuelson of InfoLogix for their considerable help in preparing the 
material for this section.)

An agent is an autonomous “entity” that can sense its environment, including 
other agents, and use this information in making decisions. Agents have attributes 
and a set of basic if/then rules that determine their behaviors. They may also learn 
(gain a better understanding of the status of other agents and their environment) and 
adapt their behaviors (change their decision rules) over time, which will require 
them to have some form of memory. Examples of possible agents are people, ani-
mals, vehicles, and organizations. We defi ne an agent-based simulation to be a DES 
where the entities (agents) do, in fact, interact with other entities and their environ-
ment in a major way. We say that an ABS is a variation of DES, since in virtually all 
existing ABS, state changes do occur at a countable number of points in time. Our 
position on the relationship between ABS and DES is supported by the statements 
of Macal, North, and Samuelson (2013) and Beeker and Page (2006). Also, 
Dr.  Dennis Pegden (2010), developer of the Simio and Arena simulation software, 
said, “ABS is just a special case of DES.”
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The following example shows that entities in some DES can be autonomous 
and interact with other agents and their environment. Furthermore, the entities learn 
as they move through the system.

E X A M P L E  1 3 . 1 .  Consider the following hypothetical queueing system. Customers 
(entities) arrive in a random manner to a system consisting of fi ve single-server queues, 
numbered 1 through 5. A customer needs to have one unit of work done at each of 10 con-
secutive servers. For example, a customer might decide to have its fi rst unit of work 
done at server 3, its second unit at server 1, its third unit at server 3, etc. The only restric-
tion is that two consecutive units cannot be done at the same server. After a customer 
completes its 10 units of work, it departs the system. Assume that there is no travel time 
for a customer to go from one server to another.
 The ith server can do a unit of work in a constant time of ti minutes, for i 5 1, 
2, . . . , 5. The values of the ti’s are initially unknown and assumed by customers to have 
a value of 2. After a particular customer is served at server i, it knows the true value of 
ti from that point on. When a customer completes a unit of work at a particular server, it 
chooses its next server (if one is required) to be the one at which the expected total 
processing time will be the smallest. (In case of ties, a server is randomly chosen.) For 
purposes of making a server choice, a customer in service at another server is assumed 
to have half a unit of work remaining to be done. For example, if there are four jobs at 
server i, then the remaining total processing time is assumed to be 3.5ti minutes, where 
the value of ti is either known or assumed to be 2.
 This system would normally be modeled using DES. However, the entities in this 
example are autonomous, base their server choices on their perception of the state of the 
environment, and learn about their environment as they move from server to server, 
 allowing them to make better decisions. This example can be embellished as follows. 
Suppose that when a customer completes a unit of service at station i, it broadcasts the 
true value of ti to other entities in the system. Thus, entities now interact with both other 
entities and their environment. Thus, the entities in a DES of this system have charac-
teristics that are normally attributed to agents.

In ABS we take a bottom-up approach to modeling, where the emphasis is on 
describing the behavior and interaction of the individual agents. Complex ABS are 
usually implemented in object-oriented software (e.g., Java), where instance vari-
ables (or data) correspond to attributes and methods correspond to behaviors. It 
might be possible to do an ABS in commercial DES software packages, but in some 
cases it could be diffi cult and the program could become convoluted. One potential 
problem is that most DES software packages are not object oriented. Entities do 
have attributes, but behaviors are implemented in the model “blocks” that entities 
pass through, rather than being encapsulated into the entities themselves. On the 
other hand, an ABS of airport security was successfully implemented in the ExtendSim 
software [see Sec. 3.5.2 and Weiss (2011)].

In some ABS the interactions of the “low-level” agents over time result in emer-
gent behavior of the system as a whole, which is not deducible from the character-
istics of the individual agents. Some people might say that in order for system-level 
behavior to be emergent, it has to be unexpected or novel. However, whether some-
thing is unexpected might very well depend on the intuition of the observer. We now 
give one of the most famous examples of emergence in ABS. {See also the emer-
gence of “gliders” in John Conway’s Game of Life [Gardner (1970)].}
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E X A M P L E  1 3 . 2 .  Consider a version of the “Boids” bird-fl ocking model [Reynolds 
(1987)] where agents (Boids) use the following three simple rules:

• Cohesion—each agent steers toward the average position of “local” (or nearby) 
agents

• Separation—each agent steers to avoid crowding local agents
• Alignment—each agent steers toward the average heading of local agents

For a particular agent, another agent is considered to be local if it is within a certain 
specifi ed distance. Even with agents just applying these three simple rules relative to 
other agents in their neighborhood, leaderless fl ocks develop, which is considered by 
many to be an example of emergent behavior. This fl ocking behavior is illustrated in 
Fig. 13.1, which was produced using the NetLogo software (2013).

We believe that it is not necessary for an ABS to exhibit novel emergent behav-
ior for it to provide useful insights about the system being simulated. Furthermore, 
general DES can also exhibit emergent behavior, such as unexpected bottlenecks, 
deadlocks, and oscillations.

FIGURE 13.1
Leaderless fl ocks produced by the Boids model.
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The following are some situations when an ABS might be used:

• When the “system” has entities that naturally interact with each other and their 
environment

• When it is important for entities to learn and to adapt their behavior
• When the movement of entities depends on situational awareness (perception of 

its environment), rather than being “scripted”

The last situation is particularly important for defense applications. For exam-
ple, consider a simulation model of land combat. Historically, in many models the 
movement of soldiers was largely scripted. For example, a soldier might start at its 
“fl ag,” move to the fi rst waypoint on a predetermined path, move to its second way-
point, etc., regardless of the disposition of the battle. On the other hand, in an ABS 
the movement and actions of an agent (soldier) can depend on “personality” charac-
teristics of the agent (e.g., the propensity of an agent to move toward friendly agents 
or away from enemy agents). Furthermore, these characteristics may change in re-
sponse to an event in the simulation, such as the agent being shot at.

We now discuss the importance of some additional terms that are often associ-
ated with an ABS or agents, including complex adaptive systems, adaptation, and 
simple rules based on local information. (We discussed above that emergence is a 
term commonly linked to ABS.) The fi eld of ABS has been greatly infl uenced by 
the discipline of complex adaptive systems. A complex adaptive system (CAS) is a 
system of interacting agents whose collective behavior exhibits adaptation, self- 
organization, and emergence. (Something is self-organizing if, left to itself, it tends 
to become more organized.) Examples of CAS in the real world are the stock market, 
social insect and ant colonies, the ecosystem, manufacturing businesses, and the 
brain. Since ABS have been widely used to study real-world CAS, in particular, 
artifi cial life [see Holland (1995) and Macal (2009)], there is an impression among 
some people that ABS should primarily be used for modeling such systems. How-
ever, we do not believe that this is the case. For example, there are many important 
books [e.g., Epstein and Axtell (1996) and Gilbert and Troitzsch (2005)] and papers 
that make little or no mention of CAS. Also, just because CAS exhibit adaptive be-
havior does not necessarily mean that all agents must do the same. [See, for example, 
Macal and North (2010), who say that agents may exhibit adaptive behavior.] More-
over, it is sometimes stated that agents should use simple rules that are only based 
on “local” information, as was the case in the Boids model of Example 13.2. [See 
also Epstein and Axtell (1996, p. 24) for a model where the “rationality” of an agent 
was artifi cially limited.] However, if this modeling philosophy is strictly adhered to, 
then how does one know whether the results of such a simulation model are repre-
sentative of the system that one is really trying to model? Einstein is said to have 
stated, “Make things as simple as possible, but not simpler.” In general, one should 
have enough detail in a simulation model so that any conclusions drawn from the 
model results would be similar to those that would be obtained if it were feasible 
and cost-effective to experiment with the system itself.

There are four main simulation packages or toolkits designed specifi cally for 
performing ABS, three of which require object-oriented programming in Java. The 
need for programming to build ABS should not be too surprising when you consider 
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the diversity and complexity of the behaviors that an agent might have. A descrip-
tion of the major features of these packages follows.

AnyLogic [AnyLogic (2013), Grigoryev and Borshchev (2012)] is a commer-
cial simulation-software package, marketed by The AnyLogic Company, that sup-
ports ABS, DES, and system dynamics (see Sec. 13.3.1), or a combination of the 
three. The behaviors for agents are developed by using state charts, process fl ow-
charts, or system dynamics equations, and can be extended by writing Java code. 
The NETA and FITA approaches for time management are both supported. Agents 
can move and interact on grids, continuous space, networks, or maps from a geo-
graphic information system (GIS).

MASON (2013) is a free, open source toolkit that provides core services for 
developing ABS; it was developed at George Mason University. It uses the NETA 
approach for time advance and has an optional suite of visualization tools in two or 
three dimensions. MASON models can be built on grids, continuous space, net-
works, and GIS. MASON has a 300-page Users Manual, which states on page 8 that 
“MASON expects signifi cant Java knowledge out of its users.”

NetLogo (2013) is a free, open source software package for developing ABS 
and basic system dynamics models that was developed by Professor Uri Wilensky 
(1999) at Northwestern University. Models are developed using a dialect of the 
Logo programming language that has been extended to support agents. It is easy to 
learn, has excellent documentation, and includes a “Models Library” with a large 
number of example simulation models. NetLogo models have an interface that can 
include buttons, switches, slider bars, counters, plots, and animation. Models can be 
built on grids, continuous space, networks, or maps from a GIS, but only the FITA 
approach for time management is supported.

The NetLogo “BehaviorSpace” tool allows one to automatically make multiple 
replications for each of a number of different settings for the model input parame-
ters using multiple processor cores. (For the predator-prey model of Example 12.5 
and Sec. 13.2.1, the input parameters are sheep gain in energy, sheep reproduction 
rate, wolf gain in energy, wolf reproduction rate, and grass regrowth time.) Addi-
tional NetLogo models can in found in Railsback and Grimm (2012).

Repast Simphony [Argonne (2013), North et al. (2013)] is a free, open source 
software environment for building and analyzing ABS, which was developed at 
Argonne National Lab and the University of Chicago. Models can be built using 
Java code, point-and-click fl owcharts, point-and-click state charts, or the ReLogo 
dialect of the Logo programming language, with the latter being able to import 
NetLogo models. System dynamics models can also be created visually, by pro-
gramming, or imported from the Vensim software (see Sec. 13.3.1). All of these 
options can be seamlessly integrated into a single model and compiled into 
 platform-independent Java.

Repast Simphony Java is used by modelers who wish to have maximum control 
over the details of their model, while ReLogo is employed to quickly develop 
 simulation models without the need to learn the details of Java. State charts and 
fl owcharts provide modelers with graphical tools to defi ne agent behaviors. Standard 
Java can be included in ReLogo code, state charts, or fl owcharts for model custom-
ization, but is usually not required.
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Repast Simphony supports both the NETA and FITA approaches, and models 
can be built on grids, continuous space, networks, or maps from a GIS. A variety of 
libraries are included for representing agent behavior, including neural networks 
and genetic algorithms. Repast Simphony has a parameter-sweep system (similar to 
the “BehaviorSpace” tool in NetLogo) with a graphical user interface. Repast Sim-
phony includes a set of example models along with a variety of tutorials, manuals, 
and other documentation.

Repast Simphony models, including those that use ReLogo, share a common 
core architecture with Repast for High Performance Computing [Collier and North 
(2013)], which is a library that supports model execution on supercomputers.

ABS has been applied to many application areas, including defense [Brown 
et al. (2004), Cioppa et al. (2004), Hill et al. (2004), Ilachinski (2004), McIntosh et al. 
(2007), SEAS (2013)], economics [Economist (2010)], epidemiology [Bagni 
et  al.  (2002), Epstein (2009)], games {e.g., Sim City [Lew (1989)]}, homeland 
 security including crowd evacuations [Beeker and Page (2006), Carley et al. (2006), 
Samuelson (2007a,b)], logistics [Bonabeau and Meyer (2001)], manufacturing 
[Nilsson and Darley (2006)], movies {e.g., Lord of the Rings [Economist (2009)]}, 
transportation [Bonabeau (2002)], social sciences [Epstein (2007), Epstein and 
Axtell (1996)], and supply chains [Siebel and Kellam (2003)]. Additional applica-
tions of ABS are discussed in Heath, Hill, and Ciarallo (2009); Macal and North 
(2010, 2011); and Macal, North, and Samuelson (2013).

A list of some signifi cant milestones in the history of ABS is given in Table 13.1. 
Important general references on ABS are Bonabeau (2002); Epstein and Axtell 
(1996); Gilbert and Troitzsch (2005); Macal and North (2010); Macal, North, and 
Samuelson (2013); North and Macal (2007); and the article “Agent-based model” in 
Wikipedia (2013).

13.2.1 Detailed Examples

Our fi rst example demonstrates the complex nonlinear behavior that can result from 
agent interactions. Consider a predator-prey model that comes from the NetLogo 
simulation software “Models Library” [see Wilensky (1997)]. (There are also 
 predator-prey examples written in AnyLogic and Repast Simphony.) Wolves and 
sheep interact on an ecosystem consisting of a 51351 grid of grass patches of 
length one unit on each side. Initially, each patch is alive (green) with a probability 
of 0.5 and dead (brown) with a probability of 0.5. The following are the default 
model assumptions:

• Initially, there are 100 sheep and 50 wolves randomly placed on the grid, with 
each animal having a random heading. (More than one animal can be on a patch.)

• Each sheep initially has an amount of energy that is uniformly distributed on the 
set {0, 1, . . . , 7}.

• Each wolf initially has an amount of energy that is uniformly distributed on the 
set {0, 1, . . . , 39}.

• Each animal moves forward one unit (but not necessarily to a new patch) for each 
tick of an integer-valued simulation clock (i.e., the FITA approach).
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• A sheep gains 4 units of energy for each patch of green grass that it eats, and loses 
1 unit for each step it takes.

• A wolf gains 20 units of energy for each sheep that it eats, and loses 1 unit for 
each step it takes.

• An animal dies if it has less than 0 units of energy.
• Each time a sheep moves it will have an offspring with a probability of 0.04, 

which will get half of its energy.
• Each time a wolf moves it will have an offspring with a probability of 0.05, which 

will get half of its energy.
• Each time an animal moves its new heading is its old heading plus a random value 

from a symmetric triangular distribution (see Sec. 6.2.2) on the interval [250, 50] 
degrees, which represents its “cone of vision.”

• A new offspring has a heading that is uniformly distributed on the interval [0, 360] 
degrees, with 0 degrees’ being north and degrees’ increasing clockwise.

TABLE 13.1

Some signifi cant milestones in the history of agent-based simulation

Date Milestone

1970  The Game of Life is a cellular automaton that exhibits complex and very interesting emergent 
patterns. It was developed by Conway [Gardner (1970)] and is considered an important 
precursor to ABS.

1971  Schelling (1971) developed his housing-segregation ABS, where coins represented agents 
and the environment was a checkerboard. He showed that signifi cant long-term segregation 
can emerge that is not necessarily consistent with the objectives of the individual agents.

1984  The Santa Fe Institute was founded to study complex adaptive systems, and it also played a 
major role in the development of agent-based simulation.

1986  The BOIDS bird-fl ocking model, a classical example of emergence, was created by Reynolds 
(1987) (see Example 13.2).

1994  SWARM [Minar et al. (1996)] was the fi rst programming language for performing ABS and 
was developed at the Santa Fe Institute. It was initially used for modeling CAS, in particular, 
artifi cial life [Macal (2009)].

1994  The System Effectiveness Analysis Simulation (SEAS) for modeling space and C4ISR systems 
was developed for the U.S. Air Force [SEAS (2013)], and is still widely used today.

1996  The groundbreaking Sugarscape ABS was developed by Epstein and Axtell (1996). It studied 
how entire artifi cial societies can be grown from the ground up by agents interacting on a 
grid-based environment where “sugar” grows.

1999  The NetLogo agent-based simulation programming language was developed by Uri Wilensky 
at Northwestern University.

2000  The Repast toolkit was created at the University of Chicago, and it is now further developed 
at Argonne National Lab.

2000  The AnyLogic multi-paradigm simulation package was released in St. Petersburg, Russia, 
by XJ Technologies, which has changed its name to The AnyLogic Company.

2009  Parker and Epstein developed the Global-Scale Agent Model (GSAM), which can simulate 
worldwide epidemics and include up to 6.5 billion people [see Epstein (2009) and Parker 
and Epstein (2011)].
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• In general, it takes 30 time units for brown grass to regrow. However, initially the 
regrowth times are independent and uniform on the set {0, 1, . . . , 29} time units.

• At each time step, a wolf will randomly select a sheep (if any) on its patch to eat.

Figure 13.2 presents a plot of the sheep, wolf, and green-grass/4 populations for 
a simulation run of length 1000 time units. (We plot the number of green patches 
of grass divided by four, so that all three populations can effectively use the same 
vertical axis.) For this scenario the populations appear to be in equilibrium. In 
 Figure 13.3 we plot the population sizes for wolf gain in energy equal to 30 and the 
other parameters unchanged. Note the wider population swings. Figure 13.4 is a 
plot of the population sizes for grass regrowth time equal to 10 and the other param-
eters set at their default values (see also the Color Plates). Since the grass grows 
back more quickly, we would expect there to be more sheep, which should, in turn, 
also result in more wolves. Note, however, that the wolf population dies out fairly 
quickly, after which the green-grass and sheep populations reach a new equilibrium! 
Why does this unexpected result occur (see Prob. 13.1)?

In Figure 13.5 we plot the average (over 500 independent replications) sheep 
and wolf population sizes at time 1000 as a function of the grass regrowth time. 
Note the bizarre behavior for regrowth time between approximately 15 and 25! 
(Originally, we ran the simulation for values of regrowth time between 10 and 
50  in increments of 2.5, but we later added results for regrowth time equal to 
18.75 and 21.25.)
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FIGURE 13.2
Population sizes as a function of time for the default parameter 
values, predator-prey model.
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FIGURE 13.3
Population sizes as a function of time for wolf gain equal 
to 30, predator-prey model.
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FIGURE 13.4
Population sizes as a function of time for grass regrowth 
time equal to 10, predator-prey model.
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Our second example is simple, but it illustrates how agents can learn as the 
simulation moves through time. Consider a model of people shopping for products 
that can be found in Gilbert and Troitzsch (2005, pp. 182–190).* There are 10 shop-
pers and 12 stores each randomly placed on a 35335 grid of patches. Each store 
sells a unique product and each shopper has a set of 10 randomly generated products 
(duplicates are possible) that it wants to buy. We will discuss three versions of the 
model that have increasing levels of agent sophistication.

Version 1

If there is a store with a needed product on the same patch as the shopper, then 
the shopper buys the product. In either case, the shopper then moves forward one 
unit in a random direction. After each shopper gets its turn to buy a needed product, 
the clock is incremented by one time unit (i.e., the FITA approach is used). If there 
is at least one shopper that still has a product to buy, then another cycle of each 
shopper getting a turn to buy begins. The simulation is run until each shopper has 
bought all of the products it needs, and then the current value of the clock is 
recorded.

One hundred independent replications of the model were made with different 
random numbers and it was found that the average time at termination over the 
100 replications (the number used by Gilbert and Troitzsch) was 14,310. This large 
value is not surprising since each shopper is performing a “random walk.”

FIGURE 13.5
Average population sizes at time 1000 as a function of 
grass regrowth time, predator-prey model.
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*Gilbert N. and K.G. Troitzsch, Simulation for the Social Scientist, 2d ed., © 2005, Reproduced with 
the kind permission of Open University Press. All rights reserved.
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Version 2

We now add the ability for shoppers to perceive their environment. When a 
shopper gets a turn to buy a product, it fi rst places on a running list the (x, y) coor-
dinates and products of all stores in the surrounding eight patches. (This is called its 
Moore neighborhood). As in Version 1, if there is a store with a needed product on 
the same patch as the shopper, then the shopper buys the product and moves forward 
one unit in a random direction. Otherwise, the shopper moves forward one unit in 
the direction of the closest store with a needed product on its list (if any). If there is 
no store on the shopper’s list with a needed product, then the shopper moves for-
ward one unit in a random direction. For Version 2, the average value of time at 
termination was 6983, a 51 percent reduction compared to Version 1.

Version 3

We now allow shoppers to communicate with each other. In particular, if two 
shoppers are on the same patch, they exchange the (x, y) coordinates and products 
on their respective lists. For Version 3, the average value of time at termination was 
2013, which is an 86 percent reduction relative to Version 1.

13.2.2 Time-Advance Mechanisms for ABS

As discussed in Sec. 13.1, there are two major approaches for advancing time in a 
DES, namely, NETA and FITA. Historically, virtually all ABS have used the latter 
approach. There are probably two reasons for this. The fi rst is historical legacy, 
since (nearly) all of the early ABS used the FITA approach, including well-known 
models such as Conway’s Game of Life [Gardner (1970)], Schelling’s segregation 
model [Schelling (1971)], and the Sugarscape model [Epstein and Axtell (1996)], 
and the tradition appears to have continued. Also, some people feel that it is simply 
not possible to use the NETA approach effectively for ABS. To wit, since many 
agent interactions may take place in some ABS, it might be necessary to cancel and 
reschedule certain events that have already been placed into the event list to occur 
at some future time. This could, of course, be potentially ineffi cient. The follow-
ing hypothetical example illustrates the possible diffi culties in using the NETA 
approach for ABS.

E X A M P L E  1 3 . 3 .  Consider a hypothetical environment consisting of a 50350 grid of 
cells of length 100 feet on each side. Initially, each cell is green (denoted by white in 
Figs. 13.6 and 13.7) with a probability of 0.8 and red (denoted by grey) with a probabil-
ity of 0.2, independent of all other cells. The amount of time that a cell is green before 
turning red is uniform on the discrete set {70, 71, . . . , 90} minutes, and thus has a mean 
of 80 minutes. The amount of time that a cell is red before turning green is uniform on 
the set {10, 11, . . . , 30} minutes, and has a mean of 20 minutes.
 Suppose 100 agents “live” on the grid and that they move at a speed of 60 feet per 
minute. Initially, each agent is randomly placed on the grid and has a heading that is 
uniformly distributed on the discrete set {0, 90, 180, 270} degrees, with 0 degrees’ 
being north and degrees’ increasing clockwise. More than one agent can be on a particular 
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cell. An agent can “look” into the next cell and determine its color. Agents use the 
 following movement rules:

• An agent will begin moving at its specifi ed heading if it starts on a green cell.
• If an agent starts on a red cell, it will wait until the cell turns green to begin moving.
• If an agent is moving through a cell and reaches its “edge,” then it will only enter the 

next cell if it is green. Otherwise, it will stop and wait until the latter cell turns green. (The 
right edge of a particular cell is the same as the left edge of the cell on its right, etc.)

• If an agent is traveling through a cell when it turns red, then it will stop immediately. 
It will not start moving again until the cell turns green.

• When an agent reaches one of the edges of the grid, it is destroyed and its total time in 
the simulation is computed. The simulation is to be run until all agents have been de-
stroyed, at which time the average time in the “system” for the 100 agents is computed.

 Suppose that we want to use the NETA approach to simulate this system. When an 
agent is to start moving from the “middle” of a cell, we schedule its time of arrival at the 
forward edge of the current cell into the event list (see Fig. 13.6). If an agent reaches the 
edge of its current cell and the next cell is green, then we schedule its time of arrival at 
the far edge of the next cell into the event list (see Fig. 13.7). If the next cell is red, then 
the agent stops until it turns green. If an agent is traveling through a cell when it turns 
red, then the event corresponding to the agent’s arriving at the forward edge of the cell 
is canceled from the event list. When the cell again turns green, the time of arrival of the 
agent at the forward edge of the cell is rescheduled into the event list.
 Further discussion of this example and numerical results can be found in Macal and 
North (2008).

Despite the need to cancel and reschedule events as in the above example, 
Dr. Charles Macal (2013) and Dr. Michael North, co-developers of Repast Symphony, 

Agent
is here

Schedule agent
to arrive here

FIGURE 13.6
Movement of an agent when it is in the “middle” of a green cell.
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706 agent-based simulation and system dynamics

and Dr. Andrei Borshchev (2013), developer of AnyLogic, feel that it is generally 
possible to effi ciently use the NETA approach for implementing ABS, and they 
recommend its use. There may, however, be certain models where it is advantageous 
to use both the NETA and FITA approaches.

E X A M P L E  1 3 . 4 .  (continuation of Example 13.3) We now discuss some of the poten-
tial problems associated with using the FITA approach for ABS. At each time step, we 
will check whether to update the states of the cells before we check whether to move the 
agents. Suppose, for example, that we choose Dt to be 1 minute, and consider what must 
be done to update the cells and agents at each time step.

Cells

 This choice of Dt guarantees that each cell will change state at the appropriate time. 
However, we will need to perform a large number of (unnecessary) checks to determine 
when state changes actually take place, which is computationally ineffi cient.

Agents

 If an agent is more than 60 feet from the forward edge of the cell, then it will move 
60 feet. If an agent is less than 60 feet from the forward edge of the cell and the next cell 
is green, then it will move 60 feet and be in the next cell. If the next cell is red, then it 
will move to the edge of the current cell and stop. This introduces an error into the simu-
lation results, since an agent moves less than 60 feet in one minute, causing its time in 
system to be larger than it should be. If an agent is less than 60 feet from the edge of the 
grid when it begins moving, then it will move to the edge and be destroyed. This will 
also overestimate its time in the simulation.
 Suppose that we change Dt to a value of 2 minutes in order to cut down on the 
number of unnecessary checks to see if the states of the cells need to be updated. Then, 
among other problems, the states of the cells (i.e., whether they are green or red) are not 
always updated when they should be. In general, different values of Dt may produce 

Agent
is here Schedule agent

to arrive here

FIGURE 13.7
Movement of an agent when it is at the “edge” of a cell and the next cell is 
green.
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different results for an ABS, and it might not be clear what is the best choice for Dt [see 
Buss and Al Rowaei (2010)].
 Another potential diffi culty with the FITA approach is the need to check many 
agents “simultaneously” at a particular point in time to see whether they need updating, 
and the order to do so might not be obvious. In this case, it is probably a good idea to 
randomize the order in which agents are checked at each time step.
 In summary, the use of the FITA approach may introduce errors into the simulation 
results, and employing a smaller Dt to ameliorate this problem will cause the model to 
execute more slowly.

13.2.3 Summary of ABS

The essence of ABS is autonomous agents sensing their environment including 
other agents and using this information in making decisions. Although ABS would 
appear to be a variation of DES, this in no way diminishes the value of ABS for 
studying systems with complex behaviors. The interactions of the low-level agents 
over time will sometimes result in the emergence of novel system-level behavior, 
but this is not required for an ABS to produce useful results.

13.3 
CONTINUOUS SIMULATION

Continuous simulation concerns the modeling over time of a system by a represen-
tation in which the state variables change continuously with respect to time. 
 Typically, continuous simulation models involve differential equations that give 
 relationships for the rates of change of the state variables with time. If the differen-
tial equations are particularly simple, they can be solved analytically to give the 
values of the state variables for all values of time as a function of the values of the 
state variables at time 0 (see Example 13.6). For most continuous models analytic 
solutions are not possible, however, and numerical analysis techniques, e.g., 
 Runge-Kutta integration, are used to integrate the differential equations numerically 
(using a small time step), given specifi c values for the state variables at time 0. Thus, 
the integration of differential equations for continuous simulation and the FITA 
 approach for DES (see App. 1A) both use time steps. However, the critical distinction 
is that continuous simulation uses equation-computed updates to the state variables, 
while a DES schedules events to update the state variables.

Several simulation products such as SIMULINK (MathWorks), acslX (AEgis 
Technologies), and Dymola (Dassault Systemes) have been specifi cally designed 
for building continuous simulation models. In addition, the discrete-event simula-
tion packages Arena [see Kelton et al. (2010)] and ExtendSim [Imagine (2013)] 
have continuous modeling capabilities. These two simulation packages have the 
added advantage of allowing both discrete and continuous components simultane-
ously in one model (see Sec. 13.4). Readers interested in applications of continuous 
simulation may wish to consult the journals SIMULATION: Transactions of the 
Society for Modeling and Simulation International and System Dynamics Review.
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13.3.1 System Dynamics

System dynamics is a type of continuous simulation that is used for designing and 
improving policies or strategies in business, government, and the military. (It is a 
top-down approach to modeling a system.) System dynamics models look at sys-
tems at a more aggregate level and are used to make more strategic decisions than 
most DES models. The majority of system dynamics models are deterministic, but 
it is possible for them to have random components. System dynamics was created 
by Professor Jay Forrester at MIT in the 1950s. The commercial simulation products 
AnyLogic (The AnyLogic Company), iThink (isee systems), Powersim (Powersim 
Software), and Vensim (Ventana Systems) are commonly used to develop and analyze 
system dynamics models. More information on system dynamics can be obtained 
from the book by Sterman (2001) and the System Dynamics Society, which pub-
lishes the journal System Dynamics Review.

The following are the three key components of a system dynamics model that 
we will use in our examples below:

• A stock is an accumulation of a “resource.” Examples are a population of people 
or animals, an inventory of a product, or the level of oil in a reserve (continuous 
variable). Stocks are denoted by rectangles (or containers) in a stock and fl ow 
 diagram (see Fig. 13.8).

• A fl ow is a stream of a resource into or out of a stock. Flows are denoted by thick, 
double-line arrows (or pipes) with a superimposed butterfl y valve that controls the 
rate of fl ow through the pipe.

• An information link brings information from a stock (or a variable) to the valve of 
a fl ow, and it is typically denoted by a thin curved arrow.

E X A M P L E  1 3 . 5 .  In Sec. 13.2.1 we considered an ABS version of a predator-prey 
system. We now consider a system dynamics model of what might be called the classical 
predator-prey system, which is formulated using differential equations. An environment 

FIGURE 13.8
Stock and fl ow diagram for the continuous predator-prey model.
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consists of two populations, predators and prey, which interact with each other. The prey 
are passive, but the predators depend on the prey as their source of food. (For example, 
the predators might be sharks and the prey might be food fi sh or, alternatively, the preda-
tors could be lynx and the prey could be hares.) Let x(t) and y(t) denote, respectively, 
the numbers of individuals in the prey and predator populations at time t. Suppose there 
is an ample supply of food for the prey and, in the absence of predators, that their rate 
of growth is rx(t) for some positive r. (We can think of r as the natural birth rate minus 
the natural death rate.) Because of the interaction between the predators and prey, it is 
reasonable to assume that the death rate of the prey due to interaction is proportional to 
the product of the two population sizes, x(t)y(t). Therefore, the overall rate of change of 
the prey population, dxydt, is given by

 
dx

dt
5 rx(t) 2 ax(t)y(t) (13.1)

where a is a positive constant of proportionality. Since the predators depend on the prey 
for their very existence, the rate of change of the predators in the absence of prey is 
2sy(t) for some positive s. Furthermore, the interaction between the two populations 
causes the predator population to increase at a rate that is also proportional to x(t)y(t). 
Thus, the overall rate of change of the predator population, dyydt, is

 
dy

dt
5 2sy(t) 1 bx(t)y(t) (13.2)

where b is a positive constant. Equations (13.1) and (13.2) are known as the Lotka-
Volterra equations [see Lotka (1925) and Volterra (1931)].
 Given initial conditions x(0) . 0 and y(0) . 0, the solution of the model given by 
Eqs. (13.1) and (13.2) has the interesting property that x(t) . 0 and y(t) . 0 for all t $ 0 
[see Braun (1975)]. Thus, the prey population can never be completely extinguished by 
the predators. The solution {x(t), y(t)} is also a periodic function of time. That is, there 
is a T  . 0 such that x(t 1 nT ) 5 x(t) and y(t 1 nT ) 5 y(t) for all positive integers n. 
This result is not unexpected. As the predator population increases, the prey population 
decreases. This causes a decrease in the rate of increase of the predators, which eventu-
ally results in a decrease in the number of predators. This in turn causes the number of 
prey to increase, etc.
 Consider the particular values r 5 1, a 5 0.035, s 5 0.017, b 5 1 and the initial 
population sizes x(0) 5 100 and y(0) 5 15. We now develop a system dynamics model 
for this predator-prey problem using the Vensim software [see Ventana (2013)]. In 
Fig. 13.8 we show the stock and fl ow diagram, where x(t) and y(t) are represented by the 
stocks (called “Box Variables” in Vensim) “Prey Population” and “Predator Population,” 
respectively. The birth and death rates of the Prey Population are represented by the 
fl ows (called “Rates” in Vensim) “Prey Births” and “Prey Deaths,” whereas the compa-
rable rates for the Predator Population are called “Predator Births” and “Predator 
Deaths.” If, for example, you double-click on the fl ow, Prey Deaths, then you will effec-
tively see the following equation displayed:

 Prey Deaths 5 a 3 Prey Population 3 Predator Population

The information links (called “Arrows” in Vensim) are denoted by curved arrows in the 
stock and fl ow diagram, and the constants r, a, s, and b are represented in Vensim by 
“Variables” with the same names. If, say, you double-click on the Variable, r, then 1 
will, of course, be displayed.
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710 agent-based simulation and system dynamics

 We ran the simulation for 100 years and in Fig. 13.9 we plot x(t) and y(t) as a func-
tion of t, where the periodicity of {x(t), y(t)} can be clearly seen (see also the Color 
Plates). Note also that plot of y(t) lags that for x(t). Figure 13.10 presents a phase plot 
for the predator-prey model with the specifi ed parameters, that is, a plot of {x(t), y(t)} 
for t $ 0. It can be seen that all plotted points fall on an “egg-shaped” closed curve, 
which is due to the periodic nature of the solution.

E X A M P L E  1 3 . 6 .  We now consider a model of aimed-fi re combat due to Frederick 
Lanchester (1916), who applied it to aerial warfare during WWI [see also MacKay 
(2006) and Artelli and Deckro (2008)]. Aimed-fi re combat describes a situation where 

FIGURE 13.9
Population sizes as a function of time, continuous predator-
prey model.

FIGURE 13.10
Phase plot for the continuous predator-prey model.
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the shooter is directly aiming at an enemy. If the enemy is destroyed, the shooter moves 
his fi re to a new target. Thus, as targets are eliminated, the fi repower of the shooters 
becomes more and more concentrated on those targets that remain. Possible applica-
tions of aimed fi re are rifl e duals, tank combat, and air-to-air combat. Aimed fi re is to be 
contrasted with unaimed-fi re combat where the shooter fi res into an area, with a possi-
ble application being artillery fi re.
 Let b(t) and r(t) denote, respectively, the numbers of blue units and red units “alive” 
at time t. Suppose that the attrition rate of the blue force at time t is proportional to r(t). 
Thus, the rate of change of the blue force, dbydt, is given by

 
db

dt
5 2ar(t) for b(t) . 0 (13.3)

where a . 0 is called the fi ghting effectiveness of the red force. Similarly, the rate of 
change of the red force, drydt, is given by

 
dr

dt
5 2bb(t) for r(t) . 0 (13.4)

where b . 0 is called the fi ghting effectiveness of the blue force. Of course, b(t) and r(t) 
must be nonnegative. Equations (13.3) and (13.4) are called the Lanchester (aimed-fi re) 
equations.
 Consider the particular values a 5 0.1, b 5 0.4 and the initial force strengths 
b(0) 5 175, r(0) 5 300. Who will win the battle? To fi nd out we built a Vensim model 
of the Lanchester equations as given by Eqs. (13.3) and (13.4), with the stock and fl ow 
diagram given in Fig. 13.11. The equation inside of the “Blue Deaths” fl ow is effectively

 Blue Deaths 5 eAlpha 3 Red Force

0
 

if Blue Force . 0

otherwise

FIGURE 13.11
Stock and fl ow diagram for the Lanchester equations.
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 We ran the simulation for 12 hours and a plot of b(t) and r(t) as a function of t is 
given in Fig. 13.12, where it can be seen that the blue force wins the battle. What if we 
change b(0) to 125? The resulting plot of b(t) and r(t) versus t is given in Fig. 13.13, 
where we see that the red force now wins the battle.
 One might legitimately ask whether there is an analytic result involving b(0), r(0), a, 
and b that will tell us who will the battle without having to run the simulation. It turns 

FIGURE 13.12
Force sizes as a function of time for b(0) 5 175, Lanchester equations.

FIGURE 13.13
Force sizes as a function of time for b(0) 5 125, Lanchester equations.
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out [see Taylor (1983)] that if b(0)yr(0) . 1ayb, then the blue force will win the 
battle at time tend, which is given by

 tend 5
1

22ab ln ±

1 1
r(0)

b(0)
 B
a

b

1 2
r(0)

b(0)
 B
a

b

≤

and the fi nal force sizes will be

 b(tend) 5 B [b(0)]2 2
a

b
 [r(0)]2, r(tend) 5 0

Thus, if b(0) 5 175, r(0) 5 300, a 5 0.1, and b 5 0.4 as in Fig. 13.12, we get b(0)yr(0) 5 
0.58 . 0.50 5 1ayb, tend 5 6.41 hours, b(tend) 5 90.14, and r(tend) 5 0. On the other 
hand, the red force will win the battle if b(0)yr(0) , 1ayb. Finally, if b(0)yr(0) 5 1ayb, then b(t) and r(t) will both approach 0 as t goes to infi nity.

13.4 
COMBINED DISCRETE-CONTINUOUS SIMULATION

Since some systems are neither completely discrete nor completely continuous, the 
need may arise to construct a model with aspects of both discrete-event and continu-
ous simulation, resulting in a combined discrete-continuous simulation. Pritsker 
(1995, pp. 61–62) describes the three fundamental types of interactions that can 
occur between discretely changing and continuously changing state variables:

• A discrete event may cause a discrete change in the value of a continuous state 
variable.

• A discrete event may cause the relationship governing a continuous state variable 
to change at a particular time.

• A continuous state variable achieving a threshold value may cause a discrete 
event to occur or to be scheduled.

Combined discrete-continuous simulation models can be built in Arena [Kelton et al. 
(2010)] and ExtendSim [Imagine (2013)].

The following example of a combined discrete-continuous simulation is a brief 
description of a model described in detail by Pritsker (1995, pp. 354–364), who also 
provides other examples of this type of simulation.

E X A M P L E  1 3 . 7 .  Tankers carrying crude oil arrive at a single unloading dock, supply-
ing a storage tank that in turn feeds a refi nery through a pipeline. An unloading tanker 
delivers oil to the storage tank at a specifi ed constant rate. (Tankers that arrive when the 
dock is busy form a queue.) The storage tank supplies oil to the refi nery at a different 
specifi ed rate. The dock is open from 6 a.m. to midnight and, because of safety consid-
erations, unloading of tankers ceases when the dock is closed.
 The discrete events for this (simplifi ed) model are the arrival of a tanker for unload-
ing, closing the dock at midnight, and opening the dock at 6 a.m. The levels of oil in the 
unloading tanker and in the storage tank are given by continuous state variables whose 
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rates of change are described by differential equations [see Pritsker (1995, pp. 354–364) 
for details]. Unloading the tanker is considered complete when the level of oil in the 
tanker is less than 5 percent of its capacity, but unloading must be temporarily stopped 
if the level of oil in the storage tank reaches its capacity. Unloading can be resumed 
when the level of oil in the tank decreases to 80 percent of its capacity. If the level of 
oil in the tank ever falls below 5000 barrels, the refi nery must be shut down temporarily. 
To avoid frequent startups and shutdowns of the refi nery, the tank does not resume 
supplying oil to the refi nery until the tank once again contains 50,000 barrels. Each of 
the fi ve events concerning the levels of oil, e.g., the level of oil in the tanker falling 
below 5 percent of the tanker’s capacity, is what Pritsker calls a state event. Unlike dis-
crete events, state events are not scheduled but occur when a continuous state variable 
crosses a threshold.

13.5 
MONTE CARLO SIMULATION

We defi ne Monte Carlo simulation as a scheme employing random numbers, that is, 
U(0, 1) random variates, which is used for solving certain stochastic or deterministic 
problems. Thus, a stochastic discrete-event simulation is included in this defi nition. 
The name “Monte Carlo” simulation or method originated during World War II, 
when this approach was applied to problems related to the development of the atomic 
bomb. For a more detailed discussion of Monte Carlo simulation, see Hammersley 
and Handscomb (1964), Halton (1970), Rubinstein (1981, 1992), Morgan (1984), 
Fishman (1996, 2006), Rubinstein et al. (1998), Glasserman (2004), and Rubinstein 
and Kroese (2008). The following example illustrates the application of Monte 
Carlo simulation to a deterministic problem.

E X A M P L E  1 3 . 8 .  Suppose that we want to evaluate the integral

 I 5 #
b

a
 g(x)dx

where g(x) is a real-valued function that is not analytically integrable. (In practice, 
Monte Carlo simulation would probably not be used to evaluate a single integral, since 
there are more effi cient numerical-analysis techniques for this purpose. It is more likely 
to be used on a multiple-integral problem with an ill-behaved integrand.) To see how 
this problem can be approached by Monte Carlo simulation, let Y be the random variable 
(b 2 a)g(X ), where X is a continuous random variable distributed uniformly on [a, b] 
[denoted by U(a, b)]. Then the expected value of Y is

  E(Y ) 5 E[(b 2 a)g(X  )]

  5 (b 2 a)E [g(X  )]

  5 (b 2 a) #
b

a
 g(x) fX (x)dx

  5 (b 2 a) 
#

b

a
 g(x)dx

b 2 a
  5 I
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where fX(x) 5 1y(b 2 a) is the probability density function of a U(a, b) random vari-
able (see Sec. 6.2.2). [For justifi cation of the third equality, see, for example, Ross 
(2003, p. 45).] Thus, the problem of evaluating the integral has been reduced to one of 
estimating the expected value E(Y ). In particular, we shall estimate E(Y ) 5 I by the 
sample mean

 Y(n) 5

^
n

i51

Yi

n
5 (b 2 a) 

^
n

i51

g(Xi)

n

where X1, X2, . . . , Xn are IID U(a, b) random variables. {It is instructive to think of 
Y(n) as an estimate of the area of the rectangle that has a base of length (b 2 a) and 
a height Iy(b 2 a), which is the continuous average of g(x) over [a, b].} Furthermore, 
it can be shown that E[Y(n)] 5 I, that is, Y(n) is an unbiased estimator of I, and 
Var[Y(n)] 5 Var(Y )yn (see Sec. 4.4). Assuming that Var(Y ) is fi nite, it follows that 
Y(n) will be arbitrarily close to I for suffi ciently large n (with probability 1) (see 
Sec. 4.6).
 To illustrate the above scheme numerically, suppose that we would like to evaluate 
the integral

 I 5 #
p

 0
 sin x dx

which can be shown by elementary calculus to have a value of 2. Table 13.2 shows the 
results of applying Monte Carlo simulation to the estimation of this integral for various 
values of n.

E X A M P L E  1 3 . 9 .  We now use Monte Carlo simulation to estimate the characteristics 
of a stochastic system. Consider the system that is shown in Fig. 13.14, where it is de-
sired to send a signal from A to B. Each of the fi ve components is subject to random 
failures, and the components fail independently of each other. Let Y be the time to failure 
of the entire system and let Xi be the time to failure of component i, for i 5 1, 2, . . . , 5. 

TABLE 13.2

Y(n) for various values of n resulting from applying Monte Carlo 
simulation to the estimation of the integral eP0  sin x dx 5 2

n 10 20 40 80 160

Y(n) 2.213 1.951 1.948 1.989 1.993

1

2

3

4

5A B

FIGURE 13.14
Layout of the fi ve-component system.
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716 agent-based simulation and system dynamics

We assume that Xi is exponentially distributed with mean bi days, with the bi’s given in 
Table 13.3. It can be shown that (see Prob. 13.5)

 Y 5 min(max{X1, min[X2, max(X3, X4)]}, X5) (13.5)

Recall from Sec. 8.3.2 that we can generate a random variate Xi from an exponential 
distribution with mean bi using the following expression:

 Xi 5 2bi ln U

where U , U(0, 1). Thus, it takes fi ve random numbers to generate one random variate 
from the distribution of Y. We generated Yj for j 5 1, 2, . . . , 25,000 from Eq. (13.5) and 
obtained Y(25,000) 5 4.33 days, which is an unbiased estimate of the expected time to 
failure, E(Y ). Suppose that we are also interested in estimating the probability that the 
system will function for at least seven days, i.e., p7 5 P(Y $ 7 days). Let the indicator 
function Ij(7, `) be defi ned as

 Ij (7, ` ) 5 c
1

0
 

if Yj $ 7

otherwise

for j 5 1, 2, . . . , 25,000. Then an unbiased estimate of p7 is given by

 p̂7 5

^
25,000

j51

Ij 
(7, ` )

25,000
5 0.19

Finally, we give a histogram of the 25,000 Yj’s in Fig. 13.15.

Monte Carlo simulation is widely used to solve certain problems in statistics 
that are not analytically tractable. For example, it has been applied to estimate the 
critical values or the power of a new hypothesis test. Determining the critical values 
for the Kolmogorov-Smirnov test for normality, discussed in Sec. 6.6, is such an 
application. The advanced reader might also enjoy perusing the technical journals 
Communications in Statistics (Simulation and Computation), Journal of Statistical 
Computation and Simulation, and Technometrics, all of which contain many ex-
amples of this type of Monte Carlo simulation.

Finally, the procedures discussed in Sec. 9.4 can be used to determine the sam-
ple size n required to obtain a specifi ed precision in a Monte Carlo simulation study.

TABLE 13.3

Means for the fi ve components 
(in days)

i Bi

1 10
2  8
3  7
4  5
5  6
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chapter thirteen 717

13.6 
SPREADSHEET SIMULATION

Discrete-event simulation and Monte Carlo simulation can sometimes be done in 
spreadsheets such as Excel if the problem of interest is not too complex. In this 
 regard, Excel provides a random-number generator, the ability to generate random 
values from some basic probability distributions (e.g., normal, uniform, binomial, 
and Poisson), summary statistics (e.g., mean and variance), and graphical plots such 
as a histogram. However, according to Seila (2005), spreadsheets have the follow-
ing important limitations:

• Only simple data structures are available.
• Complex algorithms are diffi cult to implement.
• Spreadsheet simulations may have longer execution times than simulations built 

in a discrete-event simulation package.
• Data storage is limited.

The ease of performing a spreadsheet simulation is facilitated by using the well-
known spreadsheet add-ins @Risk (Palisade Corporation), Crystal Ball (Oracle 
Corporation), and Risk Solver (Frontline Systems Inc.). They provide additional 
probability distributions, an easy mechanism for making independent replications 
of a spreadsheet simulation, and features for performing sensitivity analysis.

h(x)
0.30

0.24

0.18

0.12

0.06

0.00
0.95 4.75 8.55 12.35 16.15 19.95 23.75 27.55 x

FIGURE 13.15
Histogram of 25,000 times to failure for the fi ve-component system.
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718 agent-based simulation and system dynamics

Spreadsheet simulations are widely used for performing risk analyses in ap-
plication areas such as fi nance, manufacturing, project management, and oil and 
gas discovery. Additional information on spreadsheet simulation can be found 
in the books by Evans and Olson (2002), Seila et al. (2003), and Winston and 
Albright (2011).

E X A M P L E  1 3 . 1 0 .  Consider the simple (s, S) inventory system of Example 4.23. If the 
random variable Y is the average total cost per month over the fi rst 12 months, then we 
are interested in estimating the expected value E(Y ), which is given by

 E(Y ) 5
£

^
12

i51

Ci

12

§
5

^
12

i51

E(Ci)

12

In order to estimate E(Y), we developed a spreadsheet simulation in Excel and performed 
1000 replications using independent random numbers. The sample mean and sample vari-
ance of the 1000 observations of Y were 99.34 and 28.04, respectively. [Note that the 
steady-state expected total cost per month is 112.11 (see Example 9.3).] In Fig. 13.16 we 
give a histogram of the 1000 observations of Y, using an interval width of 3. This 
simulation of the inventory system is a discrete-event simulation using the FITA 
approach with Dt 5 1 month.

Note that the Monte Carlo simulation of the fi ve-component system in Exam-
ple 13.9 was also performed using an Excel spreadsheet.

h(x)
0.30

0.20

0.25

0.15

0.10

0.05

0.00
76.50 82.50 88.50 94.50 100.50 106.50 112.50 118.50 x

FIGURE 13.16
Histogram of 1000 observations of the average total cost per month over the fi rst 
12 months, simple (s, S) inventory system.
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chapter thirteen 719

PROBLEMS

13.1. Download a free copy of NetLogo from the website http://ccl.northwestern.edu/
netlogo/. In the “Models Library” open the model “Wolf Sheep Predation” (see the 
category “Biology”) and turn on the “grass?” switch. Use the model to determine why 
the wolf population goes to 0 fairly quickly when the grass regrowth time is set to 10 
(see Fig. 13.4).

13.2. For the wolf sheep predation model of Sec. 13.2.1, make 100 replications with the 
initial number of wolves equal to 50 (the default) and 100 replications with the initial 
number of wolves equal to 75, and all other parameters at their default values (use 
the “BehaviorSpace” option in the “Tools” menu at the top of the screen). Let mi be 
the expected fi nal number of wolves for i 5 50, 75. Construct a 95 percent confi -
dence interval for m50 2 m75 using the Welch confi dence interval (see Sec. 10.2.2). 
What do you conclude?

13.3. For the system of Example 13.3, suppose that the amount of time that a cell is green 
before turning red is exponentially distributed with a mean of 80 minutes. Also assume 
that the amount of time that a cell is red before turning green is exponentially distrib-
uted with a mean of 20 minutes. Discuss the diffi culty in choosing Dt for the FITA 
approach.

13.4. For scenario 2 [i.e., b(0) 5 125] in Example 13.6, what are the values of tend and r(tend)?

13.5. Explain why the expression for Y in Eq. (13.5) is correct?

13.6. For the fi ve-component system of Example 13.9, which of the following three options 
will increase the mean time to failure the most?
(a) Replace component 1 with two such components in parallel.
(b) Replace component 2 with two such components in parallel.
(c) Replace component 5 with two such components in parallel.

 For each option, use Monte Carlo simulation with n 5 25,000. Let mi be the mean time 
to failure if component i is duplicated, for i 5 1, 2, 5. Using the Welch approach and 
the Bonferroni inequality (see Sec. 9.7), construct confi dence intervals for m1 2 m2, 
m1 2 m5, and m2 2 m5 so that the overall confi dence level is at least 95 percent.

13.7. Perform a Monte Carlo simulation to estimate the value of the constant p. Hint: Con-
sider a square with each side having a length of 1. Inscribe a circle inside of the square 
with a radius of 1y2. Then the ratio of the area of the circle to the area of the square is 
py4. Use n 5 25,000 random numbers to obtain your estimate.
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722 TABLE T.1

Critical points t�,G for the t distribution with � df, and zG for the standard normal distribution
g 5 P(T� # t�,g), where T� is a random variable having the t distribution with � df; the last row, where � 5 `, gives the normal critical points 
satisfying g 5 P(Z # zg), where Z is a standard normal random variable

 G

� 0.6000 0.7000 0.8000 0.9000 0.9333 0.9500 0.9600 0.9667 0.9750 0.9800 0.9833 0.9875 0.9900 0.9917 0.9938 0.9950

  1 0.325 0.727 1.376 3.078 4.702 6.314 7.916 9.524 12.706 15.895 19.043 25.452 31.821 38.342 51.334 63.657
  2 0.289 0.617 1.061 1.886 2.456 2.920 3.320 3.679 4.303 4.849 5.334 6.205 6.965 7.665 8.897 9.925
  3 0.277 0.584 0.978 1.638 2.045 2.353 2.605 2.823 3.182 3.482 3.738 4.177 4.541 4.864 5.408 5.841
  4 0.271 0.569 0.941 1.533 1.879 2.132 2.333 2.502 2.776 2.999 3.184 3.495 3.747 3.966 4.325 4.604
  5 0.267 0.559 0.920 1.476 1.790 2.015 2.191 2.337 2.571 2.757 2.910 3.163 3.365 3.538 3.818 4.032
  6 0.265 0.553 0.906 1.440 1.735 1.943 2.104 2.237 2.447 2.612 2.748 2.969 3.143 3.291 3.528 3.707
  7 0.263 0.549 0.896 1.415 1.698 1.895 2.046 2.170 2.365 2.517 2.640 2.841 2.998 3.130 3.341 3.499
  8 0.262 0.546 0.889 1.397 1.670 1.860 2.004 2.122 2.306 2.449 2.565 2.752 2.896 3.018 3.211 3.355
  9 0.261 0.543 0.883 1.383 1.650 1.833 1.973 2.086 2.262 2.398 2.508 2.685 2.821 2.936 3.116 3.250
 10 0.260 0.542 0.879 1.372 1.634 1.812 1.948 2.058 2.228 2.359 2.465 2.634 2.764 2.872 3.043 3.169
 11 0.260 0.540 0.876 1.363 1.621 1.796 1.928 2.036 2.201 2.328 2.430 2.593 2.718 2.822 2.985 3.106
 12 0.259 0.539 0.873 1.356 1.610 1.782 1.912 2.017 2.179 2.303 2.402 2.560 2.681 2.782 2.939 3.055
 13 0.259 0.538 0.870 1.350 1.601 1.771 1.899 2.002 2.160 2.282 2.379 2.533 2.650 2.748 2.900 3.012
 14 0.258 0.537 0.868 1.345 1.593 1.761 1.887 1.989 2.145 2.264 2.359 2.510 2.624 2.720 2.868 2.977
 15 0.258 0.536 0.866 1.341 1.587 1.753 1.878 1.978 2.131 2.249 2.342 2.490 2.602 2.696 2.841 2.947
 16 0.258 0.535 0.865 1.337 1.581 1.746 1.869 1.968 2.120 2.235 2.327 2.473 2.583 2.675 2.817 2.921
 17 0.257 0.534 0.863 1.333 1.576 1.740 1.862 1.960 2.110 2.224 2.315 2.458 2.567 2.657 2.796 2.898
 18 0.257 0.534 0.862 1.330 1.572 1.734 1.855 1.953 2.101 2.214 2.303 2.445 2.552 2.641 2.778 2.878
 19 0.257 0.533 0.861 1.328 1.568 1.729 1.850 1.946 2.093 2.205 2.293 2.433 2.539 2.627 2.762 2.861
 20 0.257 0.533 0.860 1.325 1.564 1.725 1.844 1.940 2.086 2.197 2.285 2.423 2.528 2.614 2.748 2.845
 21 0.257 0.532 0.859 1.323 1.561 1.721 1.840 1.935 2.080 2.189 2.277 2.414 2.518 2.603 2.735 2.831
 22 0.256 0.532 0.858 1.321 1.558 1.717 1.835 1.930 2.074 2.183 2.269 2.405 2.508 2.593 2.724 2.819
 23 0.256 0.532 0.858 1.319 1.556 1.714 1.832 1.926 2.069 2.177 2.263 2.398 2.500 2.584 2.713 2.807
 24 0.256 0.531 0.857 1.318 1.553 1.711 1.828 1.922 2.064 2.172 2.257 2.391 2.492 2.575 2.704 2.797
 25 0.256 0.531 0.856 1.316 1.551 1.708 1.825 1.918 2.060 2.167 2.251 2.385 2.485 2.568 2.695 2.787
 26 0.256 0.531 0.856 1.315 1.549 1.706 1.822 1.915 2.056 2.162 2.246 2.379 2.479 2.561 2.687 2.779
 27 0.256 0.531 0.855 1.314 1.547 1.703 1.819 1.912 2.052 2.158 2.242 2.373 2.473 2.554 2.680 2.771
 28 0.256 0.530 0.855 1.313 1.546 1.701 1.817 1.909 2.048 2.154 2.237 2.368 2.467 2.548 2.673 2.763
 29 0.256 0.530 0.854 1.311 1.544 1.699 1.814 1.906 2.045 2.150 2.233 2.364 2.462 2.543 2.667 2.756
 30 0.256 0.530 0.854 1.310 1.543 1.697 1.812 1.904 2.042 2.147 2.230 2.360 2.457 2.537 2.661 2.750
 40 0.255 0.529 0.851 1.303 1.532 1.684 1.796 1.886 2.021 2.123 2.203 2.329 2.423 2.501 2.619 2.704
 50 0.255 0.528 0.849 1.299 1.526 1.676 1.787 1.875 2.009 2.109 2.188 2.311 2.403 2.479 2.594 2.678
 75 0.254 0.527 0.846 1.293 1.517 1.665 1.775 1.861 1.992 2.090 2.167 2.287 2.377 2.450 2.562 2.643
100 0.254 0.526 0.845 1.290 1.513 1.660 1.769 1.855 1.984 2.081 2.157 2.276 2.364 2.436 2.547 2.626
� 0.253 0.524 0.842 1.282 1.501 1.645 1.751 1.834 1.960 2.054 2.127 2.241 2.326 2.395 2.501 2.576
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appendix 723

TABLE T.2

Critical points X2
�,G for the chi-square distribution with � df

g � P(Y� � x2
�,�) where Y� has a chi-square distribution with � df; for large �, use the 

approximation for x2
�,� in Sec. 7.4.1

 G

� 0.250 0.500 0.750 0.900 0.950 0.975 0.990

  1 0.102 0.455 1.323 2.706 3.841 5.024 6.635
  2 0.575 1.386 2.773 4.605 5.991 7.378 9.210
  3 1.213 2.366 4.108 6.251 7.815 9.348 11.345
  4 1.923 3.357 5.385 7.779 9.488 11.143 13.277
  5 2.675 4.351 6.626 9.236 11.070 12.833 15.086
  6 3.455 5.348 7.841 10.645 12.592 14.449 16.812
  7 4.255 6.346 9.037 12.017 14.067 16.013 18.475
  8 5.071 7.344 10.219 13.362 15.507 17.535 20.090
  9 5.899 8.343 11.389 14.684 16.919 19.023 21.666
 10 6.737 9.342 12.549 15.987 18.307 20.483 23.209
 11 7.584 10.341 13.701 17.275 19.675 21.920 24.725
 12 8.438 11.340 14.845 18.549 21.026 23.337 26.217
 13 9.299 12.340 15.984 19.812 22.362 24.736 27.688
 14 10.165 13.339 17.117 21.064 23.685 26.119 29.141
 15 11.037 14.339 18.245 22.307 24.996 27.488 30.578
 16 11.912 15.338 19.369 23.542 26.296 28.845 32.000
 17 12.792 16.338 20.489 24.769 27.587 30.191 33.409
 18 13.675 17.338 21.605 25.989 28.869 31.526 34.805
 19 14.562 18.338 22.718 27.204 30.144 32.852 36.191
 20 15.452 19.337 23.828 28.412 31.410 34.170 37.566
 21 16.344 20.337 24.935 29.615 32.671 35.479 38.932
 22 17.240 21.337 26.039 30.813 33.924 36.781 40.289
 23 18.137 22.337 27.141 32.007 35.172 38.076 41.638
 24 19.037 23.337 28.241 33.196 36.415 39.364 42.980
 25 19.939 24.337 29.339 34.382 37.652 40.646 44.314
 26 20.843 25.336 30.435 35.563 38.885 41.923 45.642
 27 21.749 26.336 31.528 36.741 40.113 43.195 46.963
 28 22.657 27.336 32.620 37.916 41.337 44.461 48.278
 29 23.567 28.336 33.711 39.087 42.557 45.722 49.588
 30 24.478 29.336 34.800 40.256 43.773 46.979 50.892
 40 33.660 39.335 45.616 51.805 55.758 59.342 63.691
 50 42.942 49.335 56.334 63.167 67.505 71.420 76.154
 75 66.417 74.334 82.858 91.061 96.217 100.839 106.393
100 90.133 99.334 109.141 118.498 124.342 129.561 135.807
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Index

Absolute error, 503, 504, 506, 507, 
536, 552

Acceptance-complement, 440
Acceptance-rejection method, 441–447, 

449, 451, 454–457, 459, 479, 481, 
482, 485, 486, 595

Accreditation, 248
acslX, 707
Advantages of simulation, 2, 3, 5, 70
Agent, defi nition of, 694–696
Agent-based simulation, 73, 694–707
Alias method, 463, 466–469, 482, 

483, 487
setup for, 466–469, 482, 483, 487

Aliasing of effects, 649–655
Analysis of variance, 592, 637, 643
Analytic model, 1, 4, 5, 40, 76, 77, 251, 

252, 254, 255, 616, 707
Anderson-Darling tests, 356, 357, 363, 

390, 391
Animation, 189, 190, 193, 194, 200, 

206, 207, 255, 265, 268, 548, 
Color Plate

(See also Simulation  packages)
Antithetic variates, 428, 594–600, 623, 

625–627 
with common random numbers, 609, 

610, 626

(See also Synchronization of random 
numbers;

Variance-reduction techniques)
AnyLogic, 212, 698–700, 708
Application areas, 2, 718
Application-oriented simulation 

packages, 183, 213
AR (autoregressive) processes, 373, 512, 

529, 538
generation of, 475, 476

Arena, 69, 182, 193–199, 404, 596, 684, 
686, 694, 707

ARMA (autoregressive moving average)
generation of, 475, 476
processes, 373

Arrival process, 74, 380–385
generation of, 476–481
(See also Poisson process)

Arrival rate, 74, 381–384
ARTA (autoregressive-to-anything) 

processes, 374
generation of, 476

ASAP (Automated Simulation Analysis 
Procedure), 537–540

Assumptions document (See Validation, 
assumptions document)

Attributes, 11, 86–102, 110, 111, 122, 
136, 137, 186, 595

Law01323_ndx_759-782.indd Page 759  02/12/13  11:10 AM user Law01323_ndx_759-782.indd Page 759  02/12/13  11:10 AM user /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



760 index

Bit, 396, 405–410
Blocked customers, 80, 84
Blocked experimental designs, 273, 589, 

631, 641
Boids, 696, 697, 700
Bonferroni inequality, 545–548, 555, 

565–569, 638, 644
Bootstapping, 277, 334, 357
Bottleneck, 134, 148, 170, 174
Box plot, 278, 324, 325, 328

C, 7, 11, 12, 29, 32–39, 41–44, 53–60, 
69, 85, 93–101, 103–107, 109–119, 
121–133, 136–147, 150–163, 
177–179, 181, 182, 243, 401, 
404, 419–423

C++, 69, 181–183, 200, 422
Calibration, 266, 267

(See also Validation)
Cauchy distribution, 483
Center point, 661–663, 668, 669
Central composite design, 661–664, 

668–671, 677–679
Central limit theorem, 233, 237, 427, 

500, 501, 532, 561
Chi-square distribution, 290, 293, 294, 

347, 348, 386, 410–412, 586
critical points, 347–349, 386, 410, 723
generation from, 450, 451

Chi-square tests, 269, 345–351, 358, 359, 
363, 390, 391

choice of intervals, 349–352, 358, 
363, 390

critical points, 347–349, 386, 410, 723
critical values (See Critical points)
estimated parameters, 348–351, 363
all parameters known, 347, 358, 

409–412
for random-number generators, 

409–411, 424
(See also Goodness-of-fi t tests)

Code reusability, 213
Coded variables, 657, 658, 661–664, 668, 

669, 672, 673

Autocorrelated, 269, 276, 488, 489, 
512, 528

(See also Correlation)
AutoMod, 66, 213, 404, 520, 

596, 684
Autoregressive method, 527–529, 

533–536
AutoSched, 684
AutoStat, 66, 648, 684
Axial points, 661, 663, 668, 669

Backlogged excess of demand over 
supply, 48–50, 80, 165

Balking, 79, 170
Bank models, 120–134, 163, 164, 177, 

178, 252, 271–273, 275, 325–328, 
489, 490, 497–499, 504–511, 546, 
550–552, 555–559, 592–594, 
596–601

Bar charts, 193, 194, 200, 207
Batch arrival process, 384, 385

generation of, 481
(See also Poisson process)

Batch-means method, 193, 526–528, 
533–542, 553, 555, 565, 581

Bayesian methods, 334, 578
Bernoulli distribution, 216, 306–311

generation from, 464
Bernoulli trial, 306, 308, 309, 311
Beta distribution, 191, 290, 295–297, 

387, 388
generation from, 442–447, 449, 450, 

458, 459, 487
and order statistics, 437, 485
use in no-data case, 375–377

Beta function, 295
Bézier distribution, 366, 367

generation from, 461
multivariate, 372

Bias, 512
Biased estimator (See Estimator, biased)
Binomial distribution, 191, 308, 309, 

509, 717
generation from, 469
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Conditional distribution, 471, 472
Conditional Monte Carlo method, 619
Conditional variance, 619
Conditioning for variance reduction, 

619–623
(See also Variance-reduction 

techniques)
Confi dence intervals, 69, 191, 230, 

233–238, 244, 273–278, 497–510, 
523–548, 550–555, 550–569, 
584–586, 596–598, 600–604, 606, 
614, 637, 638, 640, 643, 644, 646, 
647, 652, 654, 684, 690–692, 719

absolute error, 503, 504, 506, 507, 536, 
552, 555

autoregressive method, 527–529, 
533–536 

batch-means method, 526–528, 
533–541, 553, 555, 565, 581

coverage, 234–238, 244, 499–503, 
506, 507, 526, 527, 533–540, 
545–548, 553, 562, 563, 567

for differences in means, 273–276, 
560–569, 596–598, 600–604

for expected effects, 637, 638, 640, 
643, 644, 646, 647, 652, 654, 
690–692

for expected proportions, 499
fi xed-sample-size procedures, 

498–503, 506–510, 523–536, 
542–548, 560–569

half-length, 236–238, 244, 333, 501, 
503–507, 525, 597, 598, 601–604, 
606, 638, 640

with IID random variables, 233–238
interpretation of, 234, 235, 244
for multiple performance measures, 

545–548
paired-t, 274, 275, 278, 560–569, 597, 

598, 600–604
for parameters of a distribution, 

332, 333
for probabilities, 509, 540, 541, 

552, 555
for quantiles, 509, 510, 541, 542

Coeffi cient of variation, 320–322, 325, 
326, 360, 499

Combat models (See Military models)
Combined discrete-continuous 

simulation, 188, 713, 714
Combined multiple recursive random-

number generators, 404, 405, 
421–423

Common random numbers, 261, 273, 
278, 404, 405, 427, 428, 561, 563, 
568, 569, 573–575, 588–604, 609, 
610, 616, 623–628, 631, 638, 640, 
641, 684, 691

with antithetic variates, 609, 610, 616
with control variates, 616, 626, 627
in experimental design, 610, 631, 638, 

641, 691
(See also Synchronization of random 

numbers; Variance-reduction 
techniques)

Communications networks, 186, 192, 
213, 255, 263, 280, 475, 496, 516, 
518, 519, 521, 522, 525, 540, 551, 
565, 604, 630, 691

Comparing alternative system 
confi gurations, 48, 50, 60, 61, 109, 
117, 120, 121, 131, 133, 134, 136, 
147–149, 556–586

with the best confi guration, 569, 575
two confi gurations, 560–565, 588–604
(See also Multiple comparisons with 

the best (MCB); Selection of system 
confi gurations)

Complex adaptive system, 697
Composite random-number generators, 

403–405, 421–423
Composition, 324, 437–440, 447, 

474, 486
Compound Poisson process, 385
Computer models, 2, 108–120, 163, 

165–167, 277, 534–536, 551, 691
Conceptual model, 258, 259
Conceptual model validation, 259

(See also Validation, structured 
walk-through)
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Contour plot, 658–661, 663–668, 
673–674, Color Plate

Control variates, 610–617, 626, 627
and common random numbers, 616, 

626, 627
external, 616, 626, 627
and indirect estimation, 616
internal, 615, 616, 626
(See also Variance-reduction 

techniques)
Conveyors, 194, 200, 207
Convolution, 440, 441, 450, 451, 453, 465
Correlated sampling (See Common 

random numbers)
Correlated variates, generation of, 470–476

arbitrary marginals with specifi ed 
correlations, 474, 475

exponential, 471, 473
gamma, 473
lognormal, 472, 473
multivariate Bézier, 474
multivariate Johnson, 474
normal, 472
NORTA (normal-to-anything), 

474, 475
using conditional distributions, 

471, 472
Correlation, 225, 227, 228, 230–232, 242, 

243, 269, 527, 528, 553
for covariance-stationary process, 

227, 228
defi ned, 225
estimation of, 232
for independent random variables, 

225, 230
for inventory system, 227, 228
for M/M/1 queue, 227, 231, 232

Correlation plot, 193, 194, 227, 228, 232, 
270, 316–318

Correlation test for random-number 
generators, 412, 413

Cost module, 188, 194, 200, 210
Covariance, 224–227, 232, 242–244, 529, 

530, 532, 553
for covariance-stationary process, 226, 

227, 528–530

Confi dence intervals —(Cont.)
for ratios of expectations, 550, 551
regenerative method, 527, 530–536, 

541, 550, 551, 554
relationship with hypothesis tests, 239, 

240, 244, 274, 276, 277, 560, 562
relative error, 504–507, 536–541, 

545, 552
replication/deletion approach, 

523–526, 534, 540–548, 553, 564, 
565, 601, 602, 604

robustness to departures from 
normality, 236–238, 499–503, 560

sequential procedures, 505–507, 526, 
536–542, 545, 561–563

simultaneous, 545–548, 565–569, 
638, 640

with specifi ed precision, 503–507, 
536–541, 545, 552, 555

spectrum-analysis method, 527, 529, 
530, 533–537, 539, 541

standardized-time-series method, 276, 
527, 533–536, 555, 565

for steady-state cycle parameters, 
542–545

for steady-state parameters, 511–548
t, 234–237
for terminating simulations, 

497–511, 559
two-sample-t, 562
for validation, 273–276, 277, 278, 562
Welch, 274–276, 278, 563, 564, 

567–569, 603
Willink, 237, 238, 498, 501, 507, 

528, 539
Confounding of effects, 649–654
Conservation equations, 41, 76, 

617–619
Conservative synchronization, 63, 66
Continuous distributions, 191, 285–305

generation from, 428–430, 441–462
Continuous simulation, 6, 249, 693, 

707–713
Continuous system, 3
Continuous-time statistics, 14–18, 49, 78, 

93, 97–99, 123, 163, 164
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Differential equations, 6, 707–713
Digamma function, 289, 296
Disadvantages of simulation, 6, 71
Discrete distributions, 191, 215, 216, 

305–313
generation from, 50, 51, 59, 100, 139, 

143, 162, 430, 433, 434, 449, 450, 
463–470, 482–487

model for demand sizes, 48
model for job types, 134

Discrete-event simulation (DES), 
6–11, 693

advantages, disadvantages, and pitfalls, 
5, 70–72

components and organization, 9–11
steps in, 66–70
time-advance mechanisms, 7–9, 72, 73, 

693, 704–707
Discrete simulation model, 6

(See also Discrete-event simulation)
Discrete system, 3
Discrete-time statistics, 13, 14, 17, 78, 

93, 96, 97, 99
Discrete uniform distribution, 191, 307 

generation from, 464
Distributed simulation, 64–66
Distribution function, 215–219

(See also Empirical distributions)
Distribution-function-differences plot, 

336, 337, 363, Color Plate
Documentation, 67–70, 246, 

258–260, 266
for simulation model, 67–70, 246, 

258–260, 266
for simulation software, 192
(See also Validation)

Dot plot, 265
Double-exponential distribution, 438, 

439, 485
Double-precision arithmetic, 37–39, 58, 

59, 106, 117, 127, 128, 141, 146
Doubly linked list, 87–93
Dymola, 707
Dynamic simulation model, 5, 693
Dynamic system behavior, 548, 549

(See also Animation; Time plots)

defi ned, 224
estimation of, 232, 244, 529, 530

Covariance matrix, 370, 472, 
532, 573

Covariance-stationary process 
(See Stochastic process, 
covariance-stationary)

Coverage (See Confi dence intervals, 
coverage)

Credibility, 68, 70, 247, 248, 251, 258, 
259, 262, 265, 268

(See also Validation)
Crystal Ball, 717
Cube plot, 647
Cumulative distribution function, 

215–219

Data collection, 67, 68, 256, 257, 
283, 284

Debugging (See Verifi cation)
Decision variables, 680–683

(See also Factors) 
Degrees of freedom, 234, 235, 290, 

347, 348, 412, 528–530, 533, 562, 
573, 586

Delay in queue, 7, 40, 41, 75–77, 
617–619

Deletion of output data, 512, 513, 
523–526, 554, 564, 565, 640

(See also Warmup period)
Delivery lag, 48, 79, 165, 692
Density function (See Probability density 

function)
Density-histogram plots, 335, 336, 362, 

366, Color Plate
Dependence, 224, 225, 243
Dependent, 221
Design-Expert, 649, 658, 659, 

662, 668
Design matrix, 633, 636, 641, 642, 

652, 653, 672
Design points, 633
Detail, level of, 5, 68, 71, 249–251, 

258–260
Deterministic simulation model, 6, 708
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point, 229, 330, 490, 498–500, 505, 
508, 509, 512, 513, 516, 524–528, 
530, 531, 533, 541, 542, 545, 546, 
548, 550, 552, 554, 555

of ratio of expectations, 531, 550, 
551, 554

relative error, 504–507, 536–541, 
545, 552

with specifi ed precision, 503–507, 
536–541, 545, 552, 555

strongly consistent, 332, 532, 554
of variance, 229–231, 243
of variance of sample mean, 229–231, 

490, 526–540
(See also Estimating parameters)

Event, 6–9, 26, 27, 41, 45–47, 72, 73, 
713, 714

Event graphs, 45–47, 50, 51, 110, 121, 
122, 136, 137, 163

Event list, 9–11, 18–26, 29, 50, 61, 62, 
85–87, 90–96, 101, 102, 105–107, 
110, 113, 116, 122, 125, 128, 130, 
132, 136, 141, 143, 145, 149, 150, 
157, 158

Event routine, 9–11, 26, 29–32, 36, 37, 
51–53, 56–58, 101, 106, 107, 114, 
115, 117–119, 126–130, 139, 141–146

Event-scheduling approach, 
11, 183–186

Evolution strategies, 684
Exact-approximation method, 435
Exclusive-or operation, 405–408
Execution speed, 188, 683
Execution time, 69, 149, 150, 182, 188

for event-list processing, 149, 150 
for random-number generation, 396
for simulation programs, 2, 8, 69, 73, 

87, 93
for variate generation, 427, 436, 451, 

452, 463
Expected value (See Mean)
Experiment, 214, 215, 629–631
Experimental design, 67, 69, 191, 192, 

251, 261, 629–679
central composite, 661–654, 668, 

677–679

EAR processes (See Exponential 
autoregressive processes)

Ease of use, 186, 187
Economic systems, 73
Emergence, 695–697
Empirical distributions, 191, 278, 283, 

284, 305, 313–316, 336–344, 352, 
353, 389, 390

from continuous grouped data, 
314, 315

from continuous ungrouped data, 305, 
313, 314

from discrete data, 315, 316
exponential tail, 315
generation from, 462–469
for probability plots, 339–344, 390
vs. theoretical distributions, 283, 284

Encapsulation, 212
Enterprise Dynamics, 213
Entity, 3, 11, 183–186
Erlang distribution, 75, 135, 176, 290

generation from, 163, 441, 453
model for service times, 135, 136

Estimating parameters, 330–334, 
364–366

criteria for, 330
maximum likelihood (See Maximum-

likelihood estimators)
without data, 375–380, 392
(See also Estimator)

Estimator, 229–232, 321, 330–334, 
364–366

absolute error, 503, 504, 506, 507, 
536, 552

biased, 231, 232, 332, 490, 508, 
510–512, 521, 523–527, 
531, 534, 536, 550

of correlation, 232
interval (See Confi dence intervals)
jackknife, 532–536, 550, 551
of location parameter, 364–366
maximum likelihood (See Maximum-

likelihood estimators)
of mean, 229–239, 243, 244, 498–507, 

511, 512, 523–540
notation for, 13
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using common random numbers, 638, 
640, 641

Factors, experimental, 629–631
controllable, 630, 631
levels of, 632, 633, 636, 640, 641, 

645, 648
qualitative vs. quantitative, 630, 633
screening, 632–656
uncontrollable, 630, 631

Factor screening, 630, 649, 654
Federate, 64–66
Federation, 64–66
Feedback shift register random-number 

generators, 405–409
Fibonacci generator, 403, 421
Field test, 256, 263–265
FIFO (fi rst-in, fi rst-out), 13, 74
Files (See Lists)
Fixed-increment time advance (FITA), 7, 

72, 73, 693, 699, 703, 704, 
706, 707, 718

Fixed-sample-size procedures, 497–503, 
506–510, 523–536, 540–545, 
560–569 

FlexSim, 69, 212, 213, 684, Color Plate
FlexSim Healthcare, 213
Formulation of problem, 66, 67, 249, 

250, 257, 258, 269
FORTRAN, 86, 401, 419

version of simlib, 86
Fractional factorial designs (See Factorial 

designs, fractional)
Frequency comparisons, 335, 336, 390
Frequency-domain methods, 656

Game of Life, 700, 704
Gamma distribution, 191, 288–290, 296, 

299, 364–366, 386, 387
generation from, 453–456, 486, 487
model for service times, 135
shifted, 364, 365, 486, 487
tests for, 356, 357
truncated, 366
(See also Correlated variates, 

generation of)

factors, 629–631
factor-screening, 632–655
fractional factorial, 649–655, 691
full factorial, 632–649, 690–692
Latin hypercube, 671–679
responses, 629–631 
space-fi lling, 671–679
(See also Factorial designs; Factors, 

experimental)
ExpertFit, 285, 343, 359–364, 380, 

390, 391
Exponential autoregressive (EAR) 

processes, 374, 472
Exponential distribution, 28, 29, 75, 191, 

287, 288
generation from, 28, 29, 99, 100, 162, 

429, 452
memoryless property, 75, 245, 288, 

531, 621
model for interarrival times, 28, 

325–328, 331, 335–338, 343–345, 
350, 355–358, 380, 381

model for service times, 28
shifted, 364, 390, 486, 487
tests for, 350, 354–358

Export data, 188, 194
ExtendSim, 69, 182, 198–206, 648, 684, 

695, 707, 713
External routines, 188
Extreme-value distribution, 292

generation from, 483

F distribution, 451
Face validity, 267

(See also Validation)
Factorial designs, 632–655

confounding in fractional, 
649–655

fractional, 649–655, 691
full, 632–649, 690–692
interpretation of, 637–640, 643–648, 

652–655,  659
relation to regression, 656–660
replicated, 637, 638
resolution of, 650–655, 691
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H&W (Heidelberger and Welch 
procedure), 537–539

Half-length, confi dence interval, 236, 238, 
244, 500, 501, 503–507, 525, 526

using variance reduction, 587, 597, 
598, 601–604, 606, 638, 640

when comparing alternatives, 560–569
Head pointer, 87–92
Hierarchy, 187, 194, 200, 205, 206, 212
Histograms, 193, 262, 279–282, 

322–324, 325–329, 359, 
360, 366, 389

choice of intervals, 323, 327–329
rationale for, 322, 323

HLA (High Level Architecture), 
64–66, 195

Hypothesis tests, 238–240, 244, 269, 
344–358

alternative hypothesis, 238, 239, 244, 
271, 349, 351, 356, 385

Anderson-Darling (See Anderson-
Darling tests)

chi-square (See Chi-square tests)
conservative, 348, 352
critical region, 238
goodness-of-fi t, 260, 344–358, 363
for homogeneity of data, 260, 

385, 386
for independent sample, 318, 319
for initialization bias, 523
Kolmogorov-Smirnov (See 

Kolmogorov-Smirnov tests)
Kruskal-Wallis (See Kruskal-Wallis test)
level of, 238
nonparametric, 277, 318, 319, 385, 

386, 560
null hypothesis, 238–240, 244, 

344, 385
power of, 239, 244, 319, 345, 348, 349, 

351, 352, 356, 523
relationship with confi dence intervals, 

239, 240, 244, 274, 276, 277, 560, 
562, 567, 569

runs, 318, 319, 411, 412, 424
statistic for, 238, 346, 352–358

Gamma function, 288
Gamma processes, 374

generation from, 476
Gaussian process model (See Kriging)
Generalized feedback shift register 

(GFSR) random-number generators, 
407–409

General-purpose simulation packages, 
183, 193–212

Genetic algorithms, 684, 699
Geometric distribution, 191, 309, 

310, 389
generation from, 469, 486
memoryless property, 245, 310
model for demand sizes, 329, 330

GI/G/s queue, 74, 75, 617
Goodness-of-fi t tests, 260, 344–358, 363

Anderson-Darling (See Anderson-
Darling tests)

chi-square (See Chi-square tests)
Kolmogorov-Smirnov (See 

Kolmogorov-Smirnov tests)
for model validation, 269
for Poisson process, 357, 358
properties, 344, 345
for specifi c distributions, 351–358
for testing random-number generators, 

409, 413
(See also Hypothesis tests)

Gradient estimation, 666
Graphics, 189–190, 193, 194, 207, 

Color Plate
animation (See Animation)
for model validation, 262–265, 278
for output reports, 193
for selecting input distributions, 

316–319, 322–329, 335–346, 360, 
362–366

for warmup-period determination, 
513–522, 542–548, 564, 565

(See also Time plots)
Group-screening designs, 655
Gumbel distribution, 292

generation from, 479, 480
(See also Extreme-value distribution)
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Interarrival times, 8, 325–328, 380–385
Inventory models, 48–61, 79, 80, 165, 

227, 228, 329, 330, 493, 495, 498, 
499, 520, 552, 561–563, 566–569, 
572–575, 595, 596, 602–604, 609, 
625, 630, 636–640, 656–668, 685, 
686, 691, 692, 718

statistical properties, 227, 228, 239, 
493, 520, 554, 660, 661, 718

Inverse CDF (See Inverse transform)
Inverse transform, 28, 29, 428–437

advantages of, 436, 437, 590, 595, 605
for continuous distributions, 28, 29, 

428–432, 483–487
disadvantages of, 435, 436
for discrete distributions, 50, 51, 100, 

430, 433, 434, 483, 484
for mixed distributions, 434, 435

IThink, 708

Jackknife estimators, 532–536, 
550, 551

Java, 181–183, 422, 695, 697, 698 
JMP, 201, 649, 671–677
Job-shop models, 134–149, 164, 254, 

255, 585, 601, 602
(See also Manufacturing systems)

Jockeying, 120, 121, 129–132
Johnson distributions, 301–304

multivariate, 371, 372, 474
Johnson SB distribution, 301, 302, 

460, 461
Johnson SU distribution, 303, 304, 461
Joint distribution function, 471–473
Joint probability density function, 221
Joint probability mass function, 

220, 221

Kolmogorov-Smirnov tests, 269, 351–356, 
358, 359, 363, 390, 391, 716

critical values, 353–356
for discrete distributions, 352
for exponential distribution, 354–356

t, 238–240, 244
Type I error, 238, 239, 349, 352
Type II error, 238, 239
unbiased, 349
valid, 347, 349, 351
for validation, 260, 269, 274, 

276, 277
von Neumann rank, 318, 319
(See also Goodness-of-fi t tests)

IID (independent and identically 
distributed) random variables, 12

Import data, 188
Importance sampling, 588, 623
Independent random variables, 

220, 221, 243
relationship with uncorrelated random 

variables, 225, 243
Independent replications 

(See Replications)
Independent sample, techniques for 

assessing, 316–319
Indicator function, 438, 439, 468, 

499, 540
Indirect estimation, 41, 76, 617–619

with control variates, 616
(See also Variance-reduction 

techniques)
Inheritance, 200, 212 
Initial conditions for simulation, 188, 

489, 491–495, 510, 511, 523, 
551–553

random, 511, 523, 552, 553
(See also Warmup period)

Initial transient, problem of, 511–523, 
553, 554, 601, 602, 604, 640

(See also Warmup period)
Initialization routine, 9, 10
Input-model uncertainty, 333–334
Interaction effect, 632, 634–638, 640, 

644–655, 657–662, 664, 665, 
690–692

Interaction plot, 638, 640, 674
Interactive debugger, 187, 252
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Linear feedback shift register (LFSR) 
random-number generators, 405–407

Linked storage allocation, 87–92, 149
List of available space, 87–92
Lists, 11, 18, 85–96, 98, 99, 149, 150, 177
Local-area network, 192

(See also Communications networks)
Location parameter, 285, 364–366, 

377–380, 390, 391
Logistic distribution, 355, 483
Log-logistic distribution, 299–301, 

355–357, 365, 366
generation from, 460

Lognormal distribution, 191, 294, 295, 
364, 365, 391

generation from, 458, 486, 487
multivariate, 370, 371
multivariate, generation from, 

472, 473
shifted, 364, 365, 391, 486, 487
tests for, 354, 357
use in no-data case, 377–380

Lotka-Volterra equations,709

M/E2/1 queue, 254
M/G/1 queue, 76, 77, 618
M/M/1 queue, 28, 75, 270

simulated in C, 32–41
simulated in simlib, 102–108
statistical properties, 76, 77, 227, 

232, 233, 241, 318, 319, 492, 493, 
499–503, 511–513, 521–523, 
533–541, 552–554, 557

(See also Queueing systems)
M/M/2 queue, 556, 592–601, 609
M/M/s queue, 76, 80, 254
Machine-breakdown model, 81, 

585, 690
Main effect, 633–640, 643–646, 

649–655
interpretation of, 635–640, 643–648, 

652–655, 659
Main-effect plot, 638, 639
Majorizing function, 442–451, 481, 482, 

485–487

Kolmogorov-Smirnov tests—(Cont.)
for gamma distribution, 356
for log-logistic distribution, 355, 356
for lognormal distribution, 354
for normal distribution, 354
all parameters known, 353, 354, 358, 

413, 414
for random-number generators, 413, 414
for Weibull distribution, 355, 363
(See also Goodness-of-fi t tests)

Kriging, 675–679
Kruskal-Wallis test, 260, 385, 386, 391
Kurtosis, 322

L&C (Law and Carson procedure), 536, 
537, 540

Lag, 227
Lanchester equations, 710–713
Laplace distribution (See Double-

exponential distribution)
Latin hypercube design (LHD), 671–675, 

677–679
Least favorable confi guration (LFC), 575, 

576, 578, 582, 583
Least-squares estimators, 330, 657
Lexis ratio, 321, 322, 329, 330
LIFO (last-in, fi rst-out), 74, 88
Likelihood function, 330–334
Linear congruential random-number 

generators, 397–402, 409–420
code for, 419, 420
generalizations of, 402–405
mixed, 399, 400
multiplicative, 399–402
obtaining nonoverlapping streams for, 

399, 594, 595
overfl ow, 400, 401
period of, 398–402
prime modulus multiplicative, 400, 

401, 419, 420
recommended use, 401
testing, 409–418
used for normal-distribution 

generation, 457
(See also Random-number generators)
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expected utilizations, 16, 17
means, 13–16, 498, 499, 507, 508, 511
multiple, 545–548
probabilities, 509, 540, 541, 552
quantiles, 324, 325, 328, 509, 510, 

541, 542
(See also Steady-state parameters)

Median, 222, 223, 245, 320, 321, 552
MedModel, 213, 684
Memoryless property, 245, 288, 310, 

531, 621
Mersenne twister, 402, 409, 413
Message passing in parallel simulation, 

62, 63
Metaheuristics, 681, 682, 684, 685
Metamodels, 630, 631, 656–679, 681, 692

validation of, 663, 664, 669–671, 673, 
677–679

Midsquare method, 394, 395
Military models, 248, 250, 257, 259, 

262–265, 267, 268, 275–277, 494, 
495, 498, 550, 552, 697, 710–713

Minitab, 201, 649, 685
Minorizing function, 459
Mode, 222, 223, 245, 286, 375–380
Model, 1, 3–7
Model front ends, 188, 194, 200, 205
Modeling, art of, 66–70, 249–251, 

257–260
Monte Carlo simulation, 457, 588, 

714–719
Moving average, 513–520, 542–548, 564, 

565, 602
MSER, 520–522
Multiple comparisons with the best 

(MCB), 569, 575 
Multiple measures of performance, 524, 

545–548,
Multiple recursive random-number 

generators, 402, 403, 413
combined, 404, 405, 421–423

Multiple-comparisons problem, 545, 668
Multivariate distributions and random 

vectors, 367–373
Bézier, 372, 474
generation from, 470–475

Management, interaction with, 66–71, 
247, 248, 250, 257, 258, 269

Manufacturing systems, 186, 241, 249–251, 
256, 257, 260–262, 268, 269, 273, 
277, 279, 280, 282, 495–497, 
515–517, 525, 542–548, 551–555, 
564, 565, 601, 602, 627, 628, 630, 
640–645, 652, 687–690, 692

downtimes for, 257, 260
simulation packages for, 183, 194, 200, 

207, 213
(See also Job-shop models)

Marginal execution time, 427
Marsaglia tables, 465, 466
MASON, 698
Mass function (See Probability mass 

function)
Material-handling systems, 194, 200, 207 
MATLAB, 671, 676, 679
Maximum-likelihood estimators, 330–333, 

348, 354, 355, 386–388, 390–392
derivation of, 331–334
formulas for, 287–290, 292, 293, 295, 

296, 298, 300, 301, 303, 305–307, 
309–311, 313

properties of, 332–334, 364–365
for three-parameter distributions, 

364, 365
(See also Estimating parameters; 

Estimator)
Mean, 222–224, 245, 320, 321

for covariance-stationary process, 
226, 227

defi ned, 222
estimation of, 229–231, 240
of a linear combination, 222
properties, 222
replacement for distribution, 241
sample, 229–240, 243, 244, 270, 

320, 321
Mean-squared error, 512
Measures of performance, 13–17, 68, 

75–77, 191, 192, 249, 250, 493–497, 
507–510,  525, 540–542, 550, 551

expected proportions, 78, 80, 82, 84, 
171, 174, 499, 507–509
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generation from, 457, 458, 486, 487
implication for uncorrelated random 

variables, 225, 243
multivariate, 293, 369, 370
multivariate, generation from, 472
standard, 233, 234, 293
tests for, 354, 357
(See also Central limit theorem)

NORTA (normal-to-anything) random 
vectors, 474, 475 

Nugget parameter, 677–679
Number of replications, 61, 69, 79, 

503–507, 513–515, 524

Object-oriented simulation, 183, 206, 
207, 212, 213

One-factor-at-a-time approach (OFAT), 
632, 638

OPNET Modeler, 213
Optimal computing budget allocation 

approach, 577–581
Optimistic synchronization, 63, 64
Optimization, 71, 192, 630, 664–668, 

671–690
applications, 681 
methods for, 681, 682
software for, 668, 682–690

OptQuest, 194, 208, 579, 684–686
Order statistics, 305, 313, 314, 321, 

339–344, 358, 365, 509, 510, 541
generation of, 437, 485

Output data analysis, 39–41, 60, 61, 
69, 71, 72, 191, 192, 226–240, 
488–555

Output reports, 193
Overfl ow, integer, 400
Overlapping batch means (See Batch-

means method)

Paired-t confi dence interval, 274, 275, 
560–569, 596–598, 600–604, 661

Parallel simulation, 61–64
Parameterization of distributions, 

285, 286

Multivariate distributions and random 
vectors—(Cont.)

Johnson, 371, 372, 474
lognormal, 370, 371, 472, 473
need for in simulation input, 

367, 368
normal, 369, 370, 472
(See also Correlated variates, 

generation from)

Natural variables, 657–668
Negative binomial distribution, 

191, 311, 312
generation from, 469, 470

Negatively correlated random variables, 
225, 227, 228, 581, 604–608

NetLogo, 698–700, 719
Neural networks, 684, 685, 699
Newton’s method, 290, 292, 300, 

379, 392
Next-event time advance (NETA), 7–9, 

73, 693, 694, 704–706
Nonhomogeneous Poisson process 

(See Nonstationary Poisson 
process)

Nonstationary, 194, 269, 488, 489, 496
(See also Stochastic process)

Nonstationary Poisson process, 194, 209, 
381–384, 391

generation of, 477–481
(See also Poisson process)

Nonterminating simulations, 494–497, 
545, 551, 552

steady-state cycle parameter, 494, 496, 
497,  542–545, 552

steady-state parameter, 40, 494–497, 
511–542, 551–555, 564, 565, 581, 
601, 602, 604

Normal distribution, 191, 233–240, 277, 
292–294, 301, 303, 332, 333, 343, 
354, 357, 486, 487, 491, 499, 500, 
502, 527, 532, 561, 562, 570, 576, 
580, 717

bivariate, 243
critical points, 233, 722
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Powersim, 708
P-P plots, 339–344, 363, 364, 390
Practically signifi cant difference between 

model and system, 275, 277
Predator-prey models, 645–647, 

653–655, 668–675, 677–679, 
699–703, 708–710, 719, 
Color Plate

Predecessor link, 87–92
Primitive element, 400, 401
Primitive over Galois fi eld, 406
Priority queue discipline, 74, 82, 83, 

165–167, 170–172 
Probability density function, 

216–219
joint, 221
marginal, 221

Probability mass function, 215, 216
joint, 220, 221
marginal, 220, 221

Probability plots, 339–346
P-P, 339–346, 363, 364, 390
Q-Q, 339–344, 390

Problem of the initial transient (See 
Initial transient, problem of)

Process approach, 11, 183–186, 208
Process, defi ned, 183, 184
Process Simulator, 213
ProcessModel, 213
Production runs, 69, 524
Programming time, 69, 182
ProModel, 69, 213, 684
Proof 3-D Animation, 213
Pseudorandom numbers, 395

Q-Q plots, 339–344, 390
Quadratic congruential random-number 

generators, 402
QualNet, 213
Quantile, 325, 328, 339–344, 509, 510, 

541, 542
Quantile summary, 324, 325, 328
Queue, 186
Queue discipline, 13, 74, 82, 641

(See also Priority queue discipline)

Pareto distribution, 389
generation from, 483

Peak-load analysis, 496
Pearson type V distribution, 297, 298, 357

generation from, 459, 460, 483
shifted, 364

Pearson type VI distribution, 298, 299
generation from, 460, 483
shifted, 364

Percentile (See Quantile)
Performance measures (See Measures of 

performance)
Perishable inventory, 80
Phase plot, 710
Phi-mixing, 533
Pie charts, 193, 207
Pilot runs, 67, 69, 523, 524, 591, 606
Pitfalls in simulation, 71, 72, 190, 

230–232, 241, 251, 280, 282, 283, 
489, 490, 506–508, 556–559, 632, 
637, 682, 683, 689

(See also Steps in a simulation study)
Plant Simulation, 213
Point estimator (See Estimator, point)
Poisson distribution, 191, 228, 312, 313, 

381, 382
generation from, 470
relationship to nonstationary Poisson 

process, 382
relationship to Poisson process, 381

Poisson process, 357, 358, 380, 381, 
384, 385

compound, 384, 385
generation of, 473
model for job arrivals, 325–328, 496
nonstationary, 381–384, 391
nonstationary, generation of, 

477–481
relationship to exponential distribution, 

257, 381
tests for, 357, 358
(See also Batch arrival process)

Polymorphism, 212
Positively correlated random variables, 

225, 227, 228, 231, 232, 527, 581, 
589–591, 593, 597–599, 601
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reproducibility, 396, 589, 590
test suites, 413
tests for, 409–418
(See also Combined multiple recursive 

random-number generators; 
Composite random-number 
generators; Feedback shift register 
random-number generators; Linear 
congruential random-number 
generators; Mersenne twister; 
Midsquare method; Multiple 
recursive random-number 
generators; Quadratic congruential 
random-number generators; 
Synchronization of random numbers; 
Tausworthe random-number 
generators)

Random-number streams, 99, 100, 190, 
396, 397, 404, 419–423, 594–596

substreams, 404, 405
RANDU random-number generator, 400, 

413, 414, 416–418
Range of a distribution, 286, 321
Ranking and selection, 569–586 
Ratio-of-uniforms method, 448–450, 487

relationship with Acceptance-rejection 
method, 449

Rayleigh distribution, 292
Records, 11, 87–92, 149, 150, 177
Regenerative method, 527, 530–536, 541, 

550, 551, 554 
Regression models (See Metamodels) 
Regression sampling (See Control 

variates)
Relative error, 504–507, 536–541, 

545, 552
Reneging, 177, 178
Repast Simphony, 698–700
Replication/deletion approach, 523–526, 

534, 540–548, 553, 564, 565, 601, 
602, 604

Replications, 191, 489, 511, 523–526, 
551, 556–559, 595, 596, 637

defi ned, 489
Resampling methods, 277, 334, 357

Queueing systems, 6–9, 12–47, 73–77, 
183–186, 227, 252–255, 280, 282, 
283, 531, 537, 552–554, 691

components of, 74
measures of performance for, 75–77
notation for, 74, 75
(See also GI/G/s queue; M/E2/1 queue; 

M/G/1 queue; M/M/1 queue; M/M/2 
queue; M/M/s queue)

Random numbers, 28, 393–425, 714
meaning, 395, 396
(See also Random-number generators; 

Uniform distribution)
Random sample, techniques for 

assessing, 316–319
Random variables, 214–221

continuous, 216–221
correlated, 269–273, 527, 528, 534 
dependent, 221, 222
discrete, 215–217, 220, 221
independent, 220, 221
jointly continuous, 221
jointly discrete, 220, 221
negatively correlated, 225, 227, 228, 

581, 604–608
positively correlated, 225, 227, 228, 

231, 232, 527, 581, 589–591, 593, 
597–599, 601

uncorrelated, 225, 243
(See also Stochastic process)

Random variates, 10, 11, 393, 426
Random vectors, generation of (See 

Correlated variates, generation of)
Randomization, 631
Random-number generators, 28, 59, 60, 

190, 393–425
code for, 419–422
desirable properties of, 396, 397
for Excel, 405
history of, 394–396
importance of, 393, 394, 426
portability, 396, 401, 419, 421
recommended, 402
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subset containing the best 
confi guration, 576, 577, 579, 
583–585

value of information procedures, 578
(See also Comparing alternative 

system confi gurations) 
Sensitivity analysis, 69, 250, 261, 332, 

333, 630, 632
(See also Validation)

Sequential bifurcation, 655
Sequential factorial design, 655
Sequential procedures, 505–507, 526, 

536–542, 545, 561–563, 579–581
Sequential storage allocation, 86, 87, 92
Serial test for random-number generators, 

410, 411, 424
Service mechanism, 74
Service rate, 74
Service time, 9, 74–77, 280, 282, 283, 

359–364
Sets (See Lists)
Shape parameter, 286
Shift (location) parameter, 285, 364–366, 

389–391 
Shifted distributions, 364–366, 389–391

generation from, 486, 487
Shortest-job-fi rst queue discipline, 82, 641

(See also Priority queue discipline)
Shuffl ing generators (See Composite 

generators)
SIMAN, 194
Simio, 66, 182, 206–212, 409, 684, 694, 

Color Plate
simlib, 85, 86, 93–101

C code for, 150–163, 419, 420
FORTRAN version of, 86
model of job shop, 134–149
model of M/M/1 queue, 102–108
model of multiteller bank, 120–134
model of time-shared computer, 

108–120
SimRunner, 684
SIMUL8, 212, 409, 684
SIMULA, 212
Simulated annealing, 684, 685

Resource, 186, 196, 197
Response, 629–631

regression models for, 631, 656–679
Response-surface methodology, 630, 

656–679
Response-surface plot, 658, 660, 662, 

664, 666, 670, Color Plate
Results validation, 262

(See also Validation)
@Risk, 717
Risk Solver, 717
Robustness of variate-generation 

algorithms, 427
Round-robin queue discipline, 109, 165
Run length, 69, 493–503, 510–515, 524, 

526, 527, 531, 533–536
(See also Number of replications)

Runs (See Replications)
Runs tests, 318, 319, 411, 412, 424
Run-time version, 188

(s, S) inventory policy, 48
Sample mean, 229–240, 243, 244
Sample points, 214, 215
Sample space, 214, 215
Sample variance, 229–240, 243, 

244, 270
SBatch (Spaced Batch means), 537–540 
Scale parameter, 285, 286
Scatter diagram, 316–319
Scatter search, 684, 685
Screen-and-select procedure, 576
Selection of system confi gurations, 

569–586
the best confi guration, 556–559, 

570–576, 582–586
with constraints, 581
indifference-zone formulation for, 

570–572, 575–580, 582–586
optimal computing budget allocation 

approach, 577–581
in the presence of correlation, 573–

575, 578, 581, 586 
sequential sampling, 579, 580
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Static simulation model, 5, 694, 714, 715
Statistic, 238, 346, 352, 356, 386
Statistical counters, 9–11
Statistically signifi cant, 274–276, 565, 

567–569, 639
Steady-state cycle parameters, 494, 496, 

497, 542– 545, 552, 554
(See also Steady-state parameters)

Steady-state distribution, 241, 491–493, 
511, 551–553

defi ned, 491–493
Steady-state parameters, 40, 494–496, 

511–513, 526, 531, 542, 564, 
565, 581, 601, 602, 604

autoregressive method, 527–529, 
533–536

batch-means method, 193, 526–528, 
533–542, 553, 555, 565, 581

defi ned, 76, 495, 511, 512, 526, 531
initial transient, problem of, 511–523, 

564, 565, 601, 602, 604, 640
other than means, 540–542
regenerative method, 527, 530–536, 

541, 550, 551, 554
replication/deletion approach, 

523–526, 534, 540–548, 553, 554, 
564, 565, 601, 602, 604

spectrum analysis method, 527, 529, 
530, 533–539, 541

standardized-time-series method, 276, 
527, 533–536, 565

Steady-state simulation (See Steady-state  
parameters)

Steepest descent, 666
Steps in a simulation study, 66–70, 248
Stochastic process, 226–228, 276

continuous-time, 226
covariance-stationary, 226–228, 

230–232, 241, 276, 492, 527–529
discrete-time, 226
generation of, 475, 476
nonstationary, 269, 488, 489, 496
phi-mixing, 533
specifi cation of, 373–375
state space of, 226
strictly stationary, 533

Simulated division, 401
Simulation clock, 7–11, 72, 73, 693, 

704–707, 719
Simulation model, 5, 6
Simulation packages, 2, 11, 69, 93, 

181–213
animation (See Animation) 
application-oriented, 183, 213 
classifi cation of, 183–186
comparison with general-purpose 

programming languages, 69, 182, 183
cost, 188
desirable features, 181, 186–193
execution speed, 188, 683
general-purpose, 183, 193–212
for manufacturing, 183, 193, 200, 

207, 213 
Simulation software (See Simulation 

packages)
SIMULINK, 707
Singly linked list, 88
Skart (Skewness- and autoregression-

adjusted Student’s t analysis), 528, 
537, 539, 540

Skewness, 237, 238, 286, 321, 322, 325, 
326, 329, 330, 360, 560

SLX, 212 
SMEs (See Validation, subject-matter 

experts)
SMORE plot, 208, 211
Space-fi lling designs, 671–679
Spectral test, 402, 416–418
Spectrum, 276, 530
Spectrum-analysis method, 527, 529, 

530, 533–539, 541
Sphericity, 573, 574, 586
Spreadsheet simulation, 717, 718
Standard deviation, 224, 239

(See also Variance)
Standard error, 520
Standardized time series, 276, 527, 

533–536, 565
Startup problem (See Initial transient, 

problem of)
State event, 714
State of a system, 3, 9–11
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index 775

Throughput, 245, 515–517, 525, 
542–548, 551–555, 640

Time average, 14–18, 48, 49, 93, 97–99
Time of last event, 19–23, 38, 59
Time plots, 193, 194, 200, 207, 

548, 549
(See also Moving average)

Time series, 276
Time tie, 50, 73
Time-advance mechanisms, 7–9, 72, 73, 

693, 704–707, 718
Time-series models, 276, 373–375, 

527–530, 533–539
Time-warp mechanism, 63
Tolerance intervals, 510
Trace, 252–254
Trace-driven simulation, 271, 277
Transformed density rejection method, 451
Transient distributions, 491–493, 

511–513, 551
Transportation systems, 167, 168, 178–180, 

255, 257, 260, 265, 279–281
Trapezoidal distribution, 439, 440
Triangular distribution, 191, 304, 305, 

375–377, 380, 392
generation from, 439, 440, 446, 447, 

461, 462, 485, 486
use in no-data case, 375–377, 

380, 392
Truncated distributions, 364–366 

generation from, 436, 437, 484
Turing test (See Validation, Turing test)
Twisted generalized feedback shift 

register (TGFSR) random-number 
generators, 408, 409 

Two-sample-t confi dence interval, 
562, 563

Two-stage sampling, 570–584

Unbiased estimator, 229–231, 498, 
509, 524

Uncorrelated random variables, 225, 243, 
513, 527, 529, 536, 538

relationship with independent random 
variables, 225, 240, 241

Stochastic simulation model, 6, 71, 72
Stopping rules, 13, 27, 28, 39–45, 50, 78, 

79, 102, 109, 120, 136, 494–497, 
503–507, 523–526, 534–540

(See also Number of replications; 
Run length)

Stratifi ed sampling, 588
Strictly stationary, 533
Strong law of large numbers, 240, 554

empirical verifi cation of, 483
Structured walk-through, 250, 251, 

258–260
Sturges’s rule, 323, 328
Subject-matter experts (See Validation, 

subject-matter experts)
Successor link, 87–92
Sugarscape model, 700, 704
Summary statistics, 320–322, 326, 329, 360
Synchronization of random numbers, 

396, 436, 592–605, 616
(See also Antithetic variates; Common 

random numbers; Variance-reduction 
techniques)

System, 1–4
System dynamics, 698, 708–713
System state, 3, 9–11

t distribution, 234–240, 294, 528–530, 
533, 562

critical points, 235, 722
generation from, 451

t test, 238–240, 244, 269
Tabu search, 684, 685
Tail pointer, 87–92
Tandem queue, 79, 82
Tausworthe random-number generators, 

405–407
(See also Feedback shift register 

generators)
Technical support, 192
Terminating simulations, 493–497, 551, 

552, 559, 581
initial conditions, effect of, 494, 510, 511
statistical analysis for, 497–511, 545, 546

Thinning, 477–479
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776 index

estimation of, 229–231, 233, 243, 244
of a linear combination, 224, 243, 

272, 273
properties, 224, 243
sample, 229–239, 243, 244, 270
of sample mean, 230–232, 514

Variance parameter, 533
Variance-reduction techniques, 40, 41, 

82, 396, 427, 428, 436, 561, 563, 
567–569, 573–575, 580, 581, 
587–628, 631, 638, 640, 641, 
684, 691

(See also Antithetic variates; Common 
random numbers; Conditioning for 
variance reduction; Control variates; 
Indirect estimation)

VARTA (vector-autoregressive-to-
anything) processes, 374, 375, 476

Vensim, 698, 708–712
Verifi cation, 67, 69, 187, 189, 246, 248, 

251–255, 396

Waiting time in system, 40, 41, 75, 76, 
78, 557, 584, 617–619

Warmup period, 69, 97, 98, 164, 191, 
241, 510–521, 524–527, 537–539, 
541, 542, 546, 553, 554, 564, 565, 
585, 601, 602, 604, 640

WASSP (WAvelet-based Sequential 
Spectral Procedure), 538, 539

Weibull distribution, 191, 290–292, 361
generation from, 456, 457, 486, 487
shifted, 364, 365
tests for, 355, 357
use in no-data case, 377–380, 392

Welch confi dence interval, 274, 275, 278, 
562, 563, 567–569, 603

Welch’s graphical procedure, 513–521, 
542–548, 553, 564, 565, 602, 604

WELL (Well-Equidistributed Long-
period Linear), 402, 409

Willink confi dence interval, 237, 238, 
498, 501, 507, 528, 539

WITNESS, 213, 404, 596, 684
WITNESS Optimizer, 684, 685, 687–689

Uniform distribution, 28, 29, 191, 286, 
287, 717

generation from, 50, 51, 100, 452
tests for, 353, 354, 357
(See also Random-number generators)

User-defi ned distributions (See Empirical 
distributions)

Utilization, 16, 17, 102, 110
Utilization factor, 75, 76, 552–554

Validation, 67–69, 246–251, 255–277
assessment of an existing model, 246
assumptions document, 68, 258–260
comparison of model and system 

output data, 69, 262–267, 269–277
comparison with another model, 

261, 268
comparison with expert opinion, 69, 

267, 268
conceptual model, 258
data for, 68, 256, 257, 260, 261
graphical plots, 262–265, 278
interaction with management, 68, 247, 

248, 250, 257, 258, 268, 269 
of a metamodel, 663, 664, 669, 670, 

677–679
for nonexistent system, 247, 257
relationship with calibration, 266, 267
relationship with credibility, 247, 248
relationship with output data analysis, 

248, 249
sensitivity analysis, 69, 250, 261, 

332–334, 630, 632
statistical procedures, 260, 269–277
structured walk-through, 68, 69, 

258–260
subject-matter experts, 67–69, 250, 

256, 259–261, 265, 267
Turing test, 265

Value of information approaches, 578
Variance, 77, 222–224, 240, 241, 243

of correlation estimator, 232
for covariance-stationary process, 

226, 227
defi ned, 222
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PLATE 1
Examples of Animations: (a) FlexSim; (b) Simio

(a)

(b)
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PLATE 1 (continued)
Chapter 6: (c) Figure 6.51; (d) Figure 6.52

(d)

(c)
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PLATE 2
Chapter 12: (a) Figure 12.11a; (b) Figure 12.11b

(b)

(a)
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PLATE 2 (continued)
Chapter 13: (c) Figure 13.4; (d) Figure 13.9

(d)

(c)
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