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PREFACE

The goal of this fifth edition of Simulation Modeling and Analysis remains the
same as that for the first four editions: to give a comprehensive and state-of-the-art
treatment of all the important aspects of a simulation study, including modeling,
simulation software, model verification and validation, input modeling, random-
number generators, generating random variates and processes, statistical design and
analysis of simulation experiments, and to highlight major application areas such as
manufacturing. The book strives to motivate intuition about simulation and model-
ing, as well as to present them in a technically correct yet clear manner. There are
many examples and problems throughout, as well as extensive references to the
simulation and related literature for further study.
The book can serve as the primary text for a variety of courses, for example

* A first course in simulation at the junior, senior, or beginning-graduate-student
level in engineering, manufacturing, business, or computer science (Chaps. 1
through 4 and parts of Chaps. 5 through 9 and 13). At the end of such a course,
the student will be prepared to carry out complete and effective simulation stud-
ies, and to take advanced simulation courses.

* A second course in simulation for graduate students in any of the above disciplines
(most of Chaps. 5 through 12). After completing this course, the student should be
familiar with the more advanced methodological issues involved in a simulation
study, and should be prepared to understand and conduct simulation research.

* An introduction to simulation as part of a general course in operations research or
management science (parts of Chaps. 1, 3, 5, 6,9, and 13).

For instructors who have adopted the book for use in a course, I have made
available for download from the website www.mhhe.com/law a number of teaching
support materials. These include a comprehensive set of solutions to the Problems
and all the computer code for the simulation models and random-number generators
in Chaps. 1, 2, and 7. Adopting instructors should contact their local McGraw-Hill
representative for login identification and a password to gain access to the material
on this site; local representatives can be identified by calling 1-800-338-3987 or by
using the representative locator at www.mhhe.com.

The book can also serve as a definitive reference for simulation practitioners
and researchers. To this end I have included a detailed discussion of many practical
examples gleaned in part from my own experiences and consulting projects. I have

xXvi



PREFACE XVii

also made major efforts to link subjects to the relevant research literature, both in
print and on the web, and to keep this material up to date. Prerequisites for under-
standing the book are knowledge of basic calculus-based probability and statistics
(although I give a review of these topics in Chap. 4) and some experience with
computing. For Chaps. 1 and 2 the reader should also be familiar with a general-
purpose programming language such as C. Occasionally I will also make use of a
small amount of linear algebra or matrix theory. More advanced or technically dif-
ficult material is located in starred sections or in appendixes to chapters. At the
beginning of each chapter, I suggest sections for a first reading of that chapter.

I have made numerous changes and additions to the fourth edition of the book
to arrive at this fifth edition, but the organization has remained mostly the same.
I have moved the material on other types of simulation from Chap. 1 to a new
Chap. 13, which is discussed below. Chapter 2 on modeling complex systems has been
updated to reflect the latest research on efficient event-list management. Chapter 3
has been rewritten and expanded to reflect the current state of the art in simulation
software. A common example is now given in three of the leading general-purpose
simulation packages. The discussion of confidence intervals and hypothesis tests in
Chap. 4 has been greatly enhanced, making the chapter a much more self-contained
treatment of the basic probability and statistics needed for the remainder of the
book. Chapter 5 makes clearer the distinction between validating and calibrating a
model, which is often misunderstood. For Chap. 6 on input modeling, the latest
developments in accounting for input-model uncertainty and in modeling arrival
processes are discussed. Chapter 7 provides recommendations on the best-available
random-number generators. Chapter 8 on generating random variates and processes
has only had minor updates. Many of the statistical design-and-analysis methods of
Chaps. 9 through 12 have been expanded and updated extensively to reflect current
practice and recent research. In particular, Chap. 9 contains a comprehensive dis-
cussion of the latest fixed-sample-size and sequential methods for estimating the
steady-state mean of a simulated system. The discussion of ranking-and-selection
procedures in Chap. 10 has been expanded to include newer and more efficient
methods that are not based on the classical indifference-zone approach. Chapter 11
on variance-reduction techniques has only had minor changes. In Chap. 12, I give a
much more comprehensive and self-contained discussion of design of experiments
and metamodeling, with a particular emphasis on what designs and metamodels to
use specifically for simulation modeling. The discussion of simulating manufactur-
ing systems is now in a new Chap. 14, which is available on the book’s website
www.mhhe.com/law, rather than in the book itself. It has been brought up to date in
terms of the latest simulation-software packages and uses of simulation for manu-
facturing applications. There is a new Chap. 13 that discusses agent-based simulation
and system dynamics, as well as other types of simulation that were previously
discussed in Chap. 1 of the fourth edition. A student version of the ExpertFit
distribution-fitting software is now available on the book’s website; it can be used
to analyze the data sets corresponding to the examples and problems in Chap. 6. The
references for all the chapters are collected together at the end of the book, to make
this material more compact and convenient to the reader. A large and thorough sub-
ject index enhances the book’s value as a reference.



XViii PREFACE

C OU rS e This text is available as an eBook at www.

CourseSmart.com. At CourseSmart you can take

advantage of significant savings off the cost of a

print textbook, reduce their impact on the environment, and gain access to powerful

web tools for learning. CourseSmart eBooks can be viewed online or downloaded

to a computer. The eBooks allow readers to do full text searches, add highlighting

and notes, and share notes with others. CourseSmart has the largest selection of

eBooks available anywhere. Visit www.CourseSmart.com to learn more and to try a
sample chapter.

I would first like to thank my former coauthor David Kelton for his numerous
contributions to the first three editions of the book. The formal reviewers for the
fifth edition were Christos Alexopoulos (Georgia Institute of Technology), Russell
Barton (Pennsylvania State University), Chun-Hung Chen (George Mason Univer-
sity), Shane Henderson (Cornell University), Jack Kleijnen (Tilberg University),
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CHAPTER 1

Basic Simulation Modeling

Recommended sections for a first reading: 1.1 through 1.4 (except 1.4.7), 1.7, 1.8

1.1
THE NATURE OF SIMULATION

This is a book about techniques for using computers to imitate, or simulate, the
operations of various kinds of real-world facilities or processes. The facility or pro-
cess of interest is usually called a system, and in order to study it scientifically we
often have to make a set of assumptions about how it works. These assumptions,
which usually take the form of mathematical or logical relationships, constitute a
model that is used to try to gain some understanding of how the corresponding
system behaves.

If the relationships that compose the model are simple enough, it may be pos-
sible to use mathematical methods (such as algebra, calculus, or probability theory)
to obtain exact information on questions of interest; this is called an analytic solu-
tion. However, most real-world systems are too complex to allow realistic models to
be evaluated analytically, and these models must be studied by means of simulation.
In a simulation we use a computer to evaluate a model numerically, and data are
gathered in order to estimate the desired true characteristics of the model.

As an example of the use of simulation, consider a manufacturing company that
is contemplating building a large extension on to one of its plants but is not sure if
the potential gain in productivity would justify the construction cost. It certainly
would not be cost-effective to build the extension and then remove it later if it does
not work out. However, a careful simulation study could shed some light on the
question by simulating the operation of the plant as it currently exists and as it
would be if the plant were expanded.
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2 BASIC SIMULATION MODELING

Application areas for simulation are numerous and diverse. Below is a list of
some particular kinds of problems for which simulation has been found to be a use-
ful and powerful tool:

* Designing and analyzing manufacturing systems

» Evaluating military weapons systems or their logistics requirements

* Determining hardware requirements or protocols for communications networks

* Determining hardware and software requirements for a computer system

* Designing and operating transportation systems such as airports, freeways, ports,
and subways

» Evaluating designs for service organizations such as call centers, fast-food restau-
rants, hospitals, and post offices

* Reengineering of business processes

* Analyzing supply chains

* Determining ordering policies for an inventory system

* Analyzing mining operations

Simulation is one of the most widely used operations-research and management-
science techniques, if not the most widely used. One indication of this is the Winter
Simulation Conference, which attracts 600 to 800 people every year. In addition,
there are several other simulation conferences that often have more than 100 partici-
pants per year.

There are also several surveys related to the use of operations-research tech-
niques. For example, Lane, Mansour, and Harpell (1993) reported from a longitudi-
nal study, spanning 1973 through 1988, that simulation was consistently ranked as
one of the three most important “operations-research techniques.” The other two
were “math programming” (a catch-all term that includes many individual tech-
niques such as linear programming, nonlinear programming, etc.) and “statistics”
(which is not an operations-research technique per se). Gupta (1997) analyzed
1294 papers from the journal Interfaces (one of the leading journals dealing with
applications of operations research) from 1970 through 1992, and found that simu-
lation was second only to “math programming” among 13 techniques considered.

There have been, however, several impediments to even wider acceptance
and usefulness of simulation. First, models used to study large-scale systems tend
to be very complex, and writing computer programs to execute them can be an
arduous task indeed. This task has been made much easier in recent years by the
development of excellent software products that automatically provide many of
the features needed to “program” a simulation model. A second problem with
simulation of complex systems is that a large amount of computer time is some-
times required. However, this difficulty has become much less severe as com-
puters become faster and cheaper. Finally, there appears to be an unfortunate
impression that simulation is just an exercise in computer programming, albeit a
complicated one. Consequently, many simulation “studies” have been composed
of heuristic model building, programming, and a single run of the program to
obtain “the answer.” We fear that this attitude, which neglects the important
issue of how a properly coded model should be used to make inferences about the
system of interest, has doubtless led to erroneous conclusions being drawn from
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CHAPTER ONE 3

many simulation studies. These questions of simulation methodology, which are
largely independent of the software and hardware used, form an integral part of
the latter chapters of this book.

Perspectives on the historical evolution of simulation modeling may be found
in Nance and Sargent (2002).

In the remainder of this chapter (as well as in Chap. 2) we discuss systems and
models in considerably greater detail and then show how to write computer pro-
grams in a general-purpose language to simulate systems of varying degrees of
complexity. All of the computer code shown in this chapter can be downloaded
from www.mhhe.com/law.

1.2
SYSTEMS, MODELS, AND SIMULATION

A system is defined to be a collection of entities, e.g., people or machines, that act
and interact together toward the accomplishment of some logical end. [This defini-
tion was proposed by Schmidt and Taylor (1970).] In practice, what is meant by “the
system” depends on the objectives of a particular study. The collection of entities
that comprise a system for one study might be only a subset of the overall system
for another. For example, if one wants to study a bank to determine the number of
tellers needed to provide adequate service for customers who want just to cash a
check or make a savings deposit, the system can be defined to be that portion of the
bank consisting of the tellers and the customers waiting in line or being served. If,
on the other hand, the loan officer and the safe-deposit boxes are to be included, the
definition of the system must be expanded in an obvious way. [See also Fishman
(1978, p. 3).] We define the state of a system to be that collection of variables neces-
sary to describe a system at a particular time, relative to the objectives of a study.
In a study of a bank, examples of possible state variables are the number of busy
tellers, the number of customers in the bank, and the time of arrival of each cus-
tomer in the bank.

We categorize systems to be of two types, discrete and continuous. A discrete
system is one for which the state variables change instantaneously at separated
points in time. A bank is an example of a discrete system, since state variables—
e.g., the number of customers in the bank—change only when a customer arrives or
when a customer finishes being served and departs. A continuous system is one for
which the state variables change continuously with respect to time. An airplane
moving through the air is an example of a continuous system, since state variables
such as position and velocity can change continuously with respect to time. Few
systems in practice are wholly discrete or wholly continuous; but since one type of
change predominates for most systems, it will usually be possible to classify a sys-
tem as being either discrete or continuous.

At some point in the lives of most systems, there is a need to study them to try
to gain some insight into the relationships among various components, or to predict
performance under some new conditions being considered. Figure 1.1 maps out dif-
ferent ways in which a system might be studied.
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FIGURE 1.1
Ways to study a system.

» Experiment with the Actual System vs. Experiment with a Model of the System. If
it is possible (and cost-effective) to alter the system physically and then let it
operate under the new conditions, it is probably desirable to do so, for in this case
there is no question about whether what we study is valid. However, it is rarely
feasible to do this, because such an experiment would often be too costly or too
disruptive to the system. For example, a bank may be contemplating reducing the
number of tellers to decrease costs, but actually trying this could lead to long
customer delays and alienation. More graphically, the “system” might not even
exist, but we nevertheless want to study it in its various proposed alternative con-
figurations to see how it should be built in the first place; examples of this situation
might be a proposed communications network, or a strategic nuclear weapons
system. For these reasons, it is usually necessary to build a model as a representa-
tion of the system and study it as a surrogate for the actual system. When using a
model, there is always the question of whether it accurately reflects the system for
the purposes of the decisions to be made; this question of model validity is taken
up in detail in Chap. 5.

* Physical Model vs. Mathematical Model. To most people, the word “model”
evokes images of clay cars in wind tunnels, cockpits disconnected from their
airplanes to be used in pilot training, or miniature supertankers scurrying about
in a swimming pool. These are examples of physical models (also called iconic
models), and are not typical of the kinds of models that are usually of interest in
operations research and systems analysis. Occasionally, however, it has been
found useful to build physical models to study engineering or management
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CHAPTER ONE 5

systems; examples include tabletop scale models of material-handling systems,
and in at least one case a full-scale physical model of a fast-food restaurant
inside a warehouse, complete with full-scale, real (and presumably hungry)
humans [see Swart and Donno (1981)]. But the vast majority of models built for
such purposes are mathematical, representing a system in terms of logical and
quantitative relationships that are then manipulated and changed to see how the
model reacts, and thus how the system would react—if the mathematical model
is a valid one. Perhaps the simplest example of a mathematical model is the
familiar relation d = rt, where r is the rate of travel, ¢ is the time spent traveling,
and d is the distance traveled. This might provide a valid model in one instance
(e.g., a space probe to another planet after it has attained its flight velocity) but a
very poor model for other purposes (e.g., rush-hour commuting on congested
urban freeways).

* Analytical Solution vs. Simulation. Once we have built a mathematical model, it
must then be examined to see how it can be used to answer the questions of inter-
est about the system it is supposed to represent. If the model is simple enough,
it may be possible to work with its relationships and quantities to get an exact,
analytical solution. In the d = rt example, if we know the distance to be traveled
and the velocity, then we can work with the model to get r = d/r as the time that
will be required. This is a very simple, closed-form solution obtainable with just
paper and pencil, but some analytical solutions can become extraordinarily com-
plex, requiring vast computing resources; inverting a large nonsparse matrix is a
well-known example of a situation in which there is an analytical formula known
in principle, but obtaining it numerically in a given instance is far from trivial. If
an analytical solution to a mathematical model is available and is computationally
efficient, it is usually desirable to study the model in this way rather than via a
simulation. However, many systems are highly complex, so that valid mathe-
matical models of them are themselves complex, precluding any possibility of an
analytical solution. In this case, the model must be studied by means of simulation,
i.e., numerically exercising the model for the inputs in question to see how they
affect the output measures of performance.

While there may be a small element of truth to pejorative old saws such as “method
of last resort” sometimes used to describe simulation, the fact is that we are very
quickly led to simulation in most situations, due to the sheer complexity of the sys-
tems of interest and of the models necessary to represent them in a valid way.

Given, then, that we have a mathematical model to be studied by means of
simulation (henceforth referred to as a simulation model), we must then look for
particular tools to do this. It is useful for this purpose to classify simulation models
along three different dimensions:

o Static vs. Dynamic Simulation Models. A static simulation model is a representa-
tion of a system at a particular time, or one that may be used to represent a system
in which time simply plays no role; examples of static simulations are certain
Monte Carlo models, discussed in Sec. 13.5. On the other hand, a dynamic simu-
lation model represents a system as it evolves over time, such as a conveyor
system in a factory.
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6 BASIC SIMULATION MODELING

* Deterministic vs. Stochastic Simulation Models. If a simulation model does not
contain any probabilistic (i.e., random) components, it is called deterministic;
a complicated (and analytically intractable) system of differential equations de-
scribing a chemical reaction might be such a model. In deterministic models, the
output is “determined” once the set of input quantities and relationships in the
model have been specified, even though it might take a lot of computer time to
evaluate what it is. Many systems, however, must be modeled as having at least
some random input components, and these give rise to stochastic simulation mod-
els. (For an example of the danger of ignoring randomness in modeling a system,
see Sec. 4.7.) Most queueing and inventory systems are modeled stochastically.
Stochastic simulation models produce output that is itself random, and must
therefore be treated as only an estimate of the true characteristics of the model;
this is one of the main disadvantages of simulation (see Sec. 1.8) and is dealt with
in Chaps. 9 through 12 of this book.

* Continuous vs. Discrete Simulation Models. Loosely speaking, we define discrete
and continuous simulation models analogously to the way discrete and continu-
ous systems were defined above. More precise definitions of discrete (event) sim-
ulation and continuous simulation are given in Secs. 1.3 and 13.3, respectively. It
should be mentioned that a discrete model is not always used to model a discrete
system, and vice versa. The decision whether to use a discrete or a continuous
model for a particular system depends on the specific objectives of the study. For
example, a model of traffic flow on a freeway would be discrete if the character-
istics and movement of individual cars are important. Alternatively, if the cars can
be treated “in the aggregate,” the flow of traffic can be described by differential
equations in a continuous model. More discussion on this issue can be found in
Sec. 5.2, and in particular in Example 5.2.

The simulation models we consider in the remainder of this book, except for
those in Chap. 13, will be discrete, dynamic, and stochastic and will henceforth be
called discrete-event simulation models. (Since deterministic models are a special
case of stochastic models, the restriction to stochastic models involves no loss of
generality.)

1.3
DISCRETE-EVENT SIMULATION

Discrete-event simulation concerns the modeling of a system as it evolves over time
by a representation in which the state variables change instantaneously at separate
points in time. (In more mathematical terms, we might say that the system can
change at only a countable number of points in time.) These points in time are the
ones at which an event occurs, where an event is defined as an instantaneous occur-
rence that may change the state of the system. Although discrete-event simulation
could conceptually be done by hand calculations, the amount of data that must be
stored and manipulated for most real-world systems dictates that discrete-event
simulations be done on a digital computer. (In Sec. 1.4.2 we carry out a small hand
simulation, merely to illustrate the logic involved.)
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CHAPTER ONE 7

EXAMPLE 1.1. Consider a service facility with a single server—e.g., a one-operator
barbershop or an information desk at an airport—for which we would like to estimate the
(expected) average delay in queue (line) of arriving customers, where the delay in queue
of a customer is the length of the time interval from the instant of his arrival at the facility
to the instant he begins being served. For the objective of estimating the average delay of
a customer, the state variables for a discrete-event simulation model of the facility would
be the status of the server, i.e., either idle or busy, the number of customers waiting in
queue to be served (if any), and the time of arrival of each person waiting in queue. The
status of the server is needed to determine, upon a customer’s arrival, whether the cus-
tomer can be served immediately or must join the end of the queue. When the server
completes serving a customer, the number of customers in the queue is used to determine
whether the server will become idle or begin serving the first customer in the queue.
The time of arrival of a customer is needed to compute his delay in queue, which is
the time he begins being served (which will be known) minus his time of arrival. There
are two types of events for this system: the arrival of a customer and the completion of
service for a customer, which results in the customer’s departure. An arrival is an event
since it causes the (state variable) server status to change from idle to busy or the (state
variable) number of customers in the queue to increase by 1. Correspondingly, a depar-
ture is an event because it causes the server status to change from busy to idle or the
number of customers in the queue to decrease by 1. We show in detail how to build a
discrete-event simulation model of this single-server queueing system in Sec. 1.4.

In the above example both types of events actually changed the state of the
system, but in some discrete-event simulation models events are used for purposes
that do not actually effect such a change. For example, an event might be used to
schedule the end of a simulation run at a particular time (see Sec. 1.4.6) or to
schedule a decision about a system’s operation at a particular time (see Sec. 1.5)
and might not actually result in a change in the state of the system. This is why we
originally said that an event may change the state of a system.

1.3.1 Time-Advance Mechanisms

Because of the dynamic nature of discrete-event simulation models, we must keep
track of the current value of simulated time as the simulation proceeds, and we also
need a mechanism to advance simulated time from one value to another. We call the
variable in a simulation model that gives the current value of simulated time the
simulation clock. The unit of time for the simulation clock is never stated explicitly
when a model is written in a general-purpose language such as C, and it is assumed
to be in the same units as the input parameters. Also, there is generally no relation-
ship between simulated time and the time needed to run a simulation on the
computer.

Historically, two principal approaches have been suggested for advancing the
simulation clock: next-event time advance and fixed-increment time advance. Since
the first approach is used by all major simulation software and by most people pro-
gramming their model in a general-purpose language, and since the second is a
special case of the first, we shall use the next-event time-advance approach for all
discrete-event simulation models discussed in this book. A brief discussion of fixed-
increment time advance is given in App. 1A (at the end of this chapter).
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With the next-event time-advance approach, the simulation clock is initialized
to zero and the times of occurrence of future events are determined. The simulation
clock is then advanced to the time of occurrence of the most imminent (first) of these
future events, at which point the state of the system is updated to account for the fact
that an event has occurred, and our knowledge of the times of occurrence of future
events is also updated. Then the simulation clock is advanced to the time of the
(new) most imminent event, the state of the system is updated, and future event
times are determined, etc. This process of advancing the simulation clock from one
event time to another is continued until eventually some prespecified stopping con-
dition is satisfied. Since all state changes occur only at event times for a discrete-
event simulation model, periods of inactivity are skipped over by jumping the clock
from event time to event time. (Fixed-increment time advance does not skip over
these inactive periods, which can eat up a lot of computer time; see App. 1A.) It
should be noted that the successive jumps of the simulation clock are generally vari-
able (or unequal) in size.

EXAMPLE 1.2. We now illustrate in detail the next-event time-advance approach for
the single-server queueing system of Example 1.1. We need the following notation:

t, = time of arrival of the ith customer (7, = 0)
A, = t; — t,_, = interarrival time between (i — 1)st and ith arrivals of customers
S

1 1

. = time that server actually spends serving ith customer (exclusive of customer’s
delay in queue)

= delay in queue of ith customer

=t,+ D, + S, = time that ith customer completes service and departs

. = time of occurrence of ith event of any type (ith value the simulation clock

takes on, excluding the value e, = 0)

i
i

D.
(&
e

Each of these defined quantities will generally be a random variable. Assume that the
probability distributions of the interarrival times A, A,, . . . and the service times
S, S,, ... are known and have cumulative distribution functions (see Sec. 4.2) denoted
by F, and F, respectively. (In general, F/, and Fg would be determined by collecting
data from the system of interest and then specifying distributions consistent with these
data using the techniques of Chap. 6.) At time ¢, = 0 the status of the server is idle, and
the time ¢, of the first arrival is determined by generating A, from F, (techniques for
generating random observations from a specified distribution are discussed in Chap. 8)
and adding it to 0. The simulation clock is then advanced from e, to the time of the next
(first) event, e, = f,. (See Fig. 1.2, where the curved arrows represent advancing the
simulation clock.) Since the customer arriving at time #, finds the server idle, she im-
mediately enters service and has a delay in queue of D, = 0 and the status of the server
is changed from idle to busy. The time, c¢;, when the arriving customer will complete
service is computed by generating S, from F; and adding it to #,. Finally, the time of the
second arrival, £,, is computed as t, = f, + A,, where A, is generated from F,. If 1, < ¢|,
as depicted in Fig. 1.2, the simulation clock is advanced from e, to the time of the next
event, e, = t,. (If ¢, were less than 7,, the clock would be advanced from e, to c,.) Since
the customer arriving at time ¢, finds the server already busy, the number of customers
in the queue is increased from O to 1 and the time of arrival of this customer is recorded;
however, his service time S, is not generated at this time. Also, the time of the third
arrival, 5, is computed as ¢, = 1, + A,. If ¢; < 13, as depicted in the figure, the simulation
clock is advanced from e, to the time of the next event, e; = c¢,, where the customer
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FIGURE 1.2
The next-event time-advance approach illustrated for the single-server queueing system.

completing service departs, the customer in the queue (i.e., the one who arrived at time #,)
begins service and his delay in queue and service-completion time are computed as
D, =c, —tyandc, = ¢, + S, (S, is now generated from F), and the number of custom-
ers in the queue is decreased from 1 to 0. If #; < ¢,, the simulation clock is advanced
from e, to the time of the next event, e, = t,, etc. The simulation might eventually be
terminated when, say, the number of customers whose delays have been observed
reaches some specified value.

1.3.2 Components and Organization of a Discrete-Event
Simulation Model

Although simulation has been applied to a great diversity of real-world systems,
discrete-event simulation models all share a number of common components and
there is a logical organization for these components that promotes the program-
ming, debugging, and future changing of a simulation model’s computer program.
In particular, the following components will be found in most discrete-event simula-
tion models using the next-event time-advance approach programmed in a general-
purpose language:

System state: The collection of state variables necessary to describe the system
at a particular time

Simulation clock: A variable giving the current value of simulated time

Event list: A list containing the next time when each type of event will occur

Statistical counters: Variables used for storing statistical information about
system performance

Initialization routine: A subprogram to initialize the simulation model at time O

Timing routine: A subprogram that determines the next event from the event
list and then advances the simulation clock to the time when that event is
to occur

Event routine: A subprogram that updates the system state when a particular
type of event occurs (there is one event routine for each event type)

Library routines: A set of subprograms used to generate random observations
from probability distributions that were determined as part of the simulation
model
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10 BASIC SIMULATION MODELING

Report generator: A subprogram that computes estimates (from the statistical
counters) of the desired measures of performance and produces a report
when the simulation ends

Main program: A subprogram that invokes the timing routine to determine the
next event and then transfers control to the corresponding event routine to
update the system state appropriately. The main program may also check for
termination and invoke the report generator when the simulation is over.

The logical relationships (flow of control) among these components are shown in
Fig. 1.3. The simulation begins at time O with the main program invoking the
initialization routine, where the simulation clock is set to zero, the system state
and the statistical counters are initialized, and the event list is initialized. After
control has been returned to the main program, it invokes the timing routine to
determine which type of event is most imminent. If an event of type i is the next
to occur, the simulation clock is advanced to the time that event type i will occur

Initialization routine Main program J Timing routine
L. Set simulation 0. Invoke the initialization routine
clock = 0 @ | 1. Determine the next
2. Initialize system state [ > event type, say, i
and statistical > . . l<«— 2. Advance the
1. Invoke the timing routine . . .
counters L Repeatedly | ¢ simulation clock
3. Initialize event list 2. Invoke event routine i

Event routine i l®

Library routines

1. Update system state

2. Update statistical counters

3. Generate future events and add to
event list

Generate random
variates

ty

simulation
over?

Report generator

1. Compute estimates of interest

2. Write report
FIGURE 1.3

Flow of control for the next-event time-advance approach.
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and control is returned to the main program. Then the main program invokes
event routine i, where typically three types of activities occur: (1) The system
state is updated to account for the fact that an event of type i has occurred;
(2) information about system performance is gathered by updating the statistical
counters; and (3) the times of occurrence of future events are generated, and this
information is added to the event list. Often it is necessary to generate random
observations from probability distributions in order to determine these future
event times; we will refer to such a generated observation as a random variate.
After all processing has been completed, either in event routine i or in the main
program, a check is typically made to determine (relative to some stopping con-
dition) if the simulation should now be terminated. If it is time to terminate the
simulation, the report generator is invoked from the main program to compute
estimates (from the statistical counters) of the desired measures of perfor-
mance and to produce a report. If it is not time for termination, control is passed
back to the main program and the main program—timing routine—main program—
event routine—termination check cycle is repeated until the stopping condition is
eventually satisfied.

Before concluding this section, a few additional words about the system state
may be in order. As mentioned in Sec. 1.2, a system is a well-defined collection of
entities. Entities are characterized by data values called attributes, and these attri-
butes are part of the system state for a discrete-event simulation model. Further-
more, entities with some common property are often grouped together in [ists (or
files or sets). For each entity there is a record in the list consisting of the entity’s
attributes, and the order in which the records are placed in the list depends on some
specified rule. (See Chap. 2 for a discussion of efficient approaches for storing lists
of records.) For the single-server queueing facility of Examples 1.1 and 1.2, the enti-
ties are the server and the customers in the facility. The server has the attribute
“server status” (busy or idle), and the customers waiting in queue have the attribute
“time of arrival.” (The number of customers in the queue might also be considered
an attribute of the server.) Furthermore, as we shall see in Sec. 1.4, these customers
in queue will be grouped together in a list.

The organization and action of a discrete-event simulation program using
the next-event time-advance mechanism as depicted above are fairly typical when
programming such simulations in a general-purpose programming language
such as C; it is called the event-scheduling approach to simulation modeling,
since the times of future events are explicitly coded into the model and are sched-
uled to occur in the simulated future. It should be mentioned here that there is
an alternative approach to simulation modeling, called the process approach,
that instead views the simulation in terms of the individual entities involved,
and the code written describes the “experience” of a “typical” entity as it “flows”
through the system; programming simulations modeled from the process point
of view usually requires the use of special-purpose simulation software, as dis-
cussed in Chap. 3. Even when taking the process approach, however, the simula-
tion is actually executed behind the scenes in the event-scheduling logic as
described above.
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1.4
SIMULATION OF A SINGLE-SERVER QUEUEING SYSTEM

This section shows in detail how to simulate a single-server queueing system such
as a one-operator barbershop. Although this system seems very simple compared with
those usually of real interest, how it is simulated is actually quite representative of
the operation of simulations of great complexity.

In Sec. 1.4.1 we describe the system of interest and state our objectives more
precisely. We explain intuitively how to simulate this system in Sec. 1.4.2 by show-
ing a “snapshot” of the simulated system just after each event occurs. Section 1.4.3
describes the language-independent organization and logic of the C code given in
Sec. 1.4.4. The simulation’s results are discussed in Sec. 1.4.5, and Sec. 1.4.6 alters
the stopping rule to another common way to end simulations. Finally, Sec. 1.4.7
briefly describes a technique for identifying and simplifying the event and variable
structure of a simulation.

1.4.1 Problem Statement

Consider a single-server queueing system (see Fig. 1.4) for which the interarrival
times A, A,, . . . are independent and identically distributed (11D) random variables.

O—

A departing customer

Server

Customer in service

Customers in queue

An arriving customer

FIGURE 1.4
A single-server queueing system.

—0O 000 O
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(“Identically distributed” means that the interarrival times have the same probability
distribution.) A customer who arrives and finds the server idle enters service imme-
diately, and the service times S, S,, . . . of the successive customers are IID random
variables that are independent of the interarrival times. A customer who arrives and
finds the server busy joins the end of a single queue. Upon completing service for a
customer, the server chooses a customer from the queue (if any) in a first-in, first-
out (FIFO) manner. (For a discussion of other queue disciplines and queueing sys-
tems in general, see App. 1B.)

The simulation will begin in the “empty-and-idle” state; i.e., no customers are
present and the server is idle. At time 0, we will begin waiting for the arrival of the
first customer, which will occur after the first interarrival time, A, rather than at
time O (which would be a possibly valid, but different, modeling assumption). We
wish to simulate this system until a fixed number (n) of customers have completed
their delays in queue; i.e., the simulation will stop when the nth customer enters
service. Note that the fime the simulation ends is thus a random variable, depending
on the observed values for the interarrival and service-time random variables.

To measure the performance of this system, we will look at estimates of three
quantities. First, we will estimate the expected average delay in queue of the n cus-
tomers completing their delays during the simulation; we denote this quantity by
d(n). The word “expected” in the definition of d(n) means this: On a given run of the
simulation (or, for that matter, on a given run of the actual system the simulation
model represents), the actual average delay observed of the n customers depends on
the interarrival and service-time random variable observations that happen to have
been obtained. On another run of the simulation (or on a different day for the real
system) there would probably be arrivals at different times, and the service times
required would also be different; this would give rise to a different value for the
average of the n delays. Thus, the average delay on a given run of the simulation is
properly regarded as a random variable itself. What we want to estimate, d(n), is the
expected value of this random variable. One interpretation of this is that d(n) is the
average of a large (actually, infinite) number of n-customer average delays. From a
single run of the simulation resulting in customer delays D,, D,, . .., D,, an obvious
estimator of d(n) is

S,

i=1

d(n) =

which is just the average of the n D;’s that were observed in the simulation [so that
d(n) could also be denoted by D(n)]. [Throughout this book, a hat (*) above a sym-
bol denotes an estimator.] It is important to note that by “delay” we do not exclude
the possibility that a customer could have a delay of zero in the case of an arrival
finding the system empty and idle (with this model, we know for sure that D, = 0);
delays with a value of 0 are counted in the average, since if many delays were zero this
would represent a system providing very good service, and our output measure should
reflect this. One reason for taking the average of the D,’s, as opposed to just looking
at them individually, is that they will not have the same distribution (e.g., D, = 0,
but D, could be positive), and the average gives us a single composite measure of all
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the customers’ delays; in this sense, this is not the usual “average” taken in basic
statistics, as the individual terms are not indgpendent random observations from
the same distribution. Note also that by itself, d(n) is an estimator based on a sample
of size /, since we are making only one complete simulation run. From elementary
statistics, we know that a sample of size 1 is not worth much; we return to this issue
in Chaps. 9 through 12.

While an estimate of d(n) gives information about system performance from
the customers’ point of view, the management of such a system may want different
information; indeed, since most real simulations are quite complex and may be
time-consuming to run, we usually collect many output measures of performance,
describing different aspects of system behavior. One such measure for our simple
model here is the expected average number of customers in the queue (but not being
served), denoted by g(n), where the n is necessary in the notation to indicate that
this average is taken over the time period needed to observe the n delays defining
our stopping rule. This is a different kind of “average” than the average delay in
queue, because it is taken over (continuous) time, rather than over customers (being
discrete). Thus, we need to define what is meant by this time-average number of
customers in queue. To do this, let Q(¢) denote the number of customers in queue at
time ¢, for any real number ¢ = 0, and let 7(n) be the time required to observe our
n delays in queue. Then for any time ¢ between 0 and 7(n), Q(¢) is a nonnegative
integer. Further, if we let p, be the expected proportion (which will be between 0 and 1)
of the time that Q(¢) is equal to i, then a reasonable definition of g(n) would be

q(n) = > ip;
i=0
Thus, g(n) is a weighted average of the possible values i for the queue length Q(),
with the weights being the expected proportion of time the queue spends at each of
its possible lengths. To estimate g(n) from a simulation, we simply replace the p,’s
with estimates of them, and get

q(n) = > ip; (1.1)
i=0
where p; is the observed (rather than expected) proportion of the time during the
simulation that there were i customers in the queue. Computationally, however, it is
easier to rewrite g(n) using some geometric considerations. If we let T, be the rotal
time during the simulation that the queue is of length i, then T(n) = T, + T, +
T, + ---and p, = T,/T(n), so that we can rewrite Eq. (1.1) above as

oo

2 i,
g(n) = ’;(On) (1.2)

Figure 1.5 illustrates a possible time path, or realization, of Q(t) for this system in
the case of n = 6; ignore the shading for now. Arrivals occur at times 0.4, 1.6, 2.1,
3.8,4.0,5.6, 5.8, and 7.2. Departures (service completions) occur at times 2.4, 3.1,
3.3, 4.9, and 8.6, and the simulation ends at time 7(6) = 8.6. Remember in looking
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FIGURE 1.5

Q(1), arrival times, and departure times for a realization of a single-server queueing system.

at Fig. 1.5 that Q(#) does not count the customer in service (if any), so between times
0.4 and 1.6 there is one customer in the system being served, even though the queue
is empty [Q(f) = 0]; the same is true between times 3.1 and 3.3, between times 3.8
and 4.0, and between times 4.9 and 5.6. Between times 3.3 and 3.8, however, the
system is empty of customers and the server is idle, as is obviously the case between
times 0 and 0.4. To compute §(n), we must first compute the 7;’s, which can be read
off Fig. 1.5 as the (sometimes separated) intervals over which Q(¢) is equal to 0, 1, 2,
and so on:

T,= (1.6 — 0.0) + (40 —3.1) + (5.6 —49) =32
T,=21—-16) + (3.1 —24) + (49 —4.0) + (5.8 —5.6) =23
T,=24—-21)+ (72 —-58) =17

T, = (86 —-72)=14

(T; = 0 for i = 4, since the queue never grew to those lengths in this realization.)
The numerator in Eq. (1.2) is thus

8

l

iT.=(0xX32)+(1X23)+@2X17)+@BX14) =99 (13)
0

and so our estimate of the time-average number in queue from this particular simu-
lation run is g(6) = 9.9/8.6 = 1.15. Now, note that each of the nonzero terms on
the right-hand side of Eq. (1.3) corresponds to one of the shaded areas in Fig. 1.5:
1 X 2.3 is the diagonally shaded area (in four pieces), 2 X 1.7 is the cross-hatched
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area (in two pieces), and 3 X 1.4 is the screened area (in a single piece). In other
words, the summation in the numerator of Eq. (1.2) is just the area under the Q(t)
curve between the beginning and the end of the simulation. Remembering that “area
under a curve” is an integral, we can thus write

o T(n)
it = owar
i=0 0

and the estimator of g(n) can then be expressed as

T(n)
O(r) dt
n o
q(n) () (1.4)
While Egs. (1.4) and (1.2) are equivalent expressions for ¢(n), Eq. (1.4) is pre-
ferable since the integral in this equation can be accumulated as simple areas of
rectangles as the simulation progresses through time. It is less convenient to carry
out the computations to get the summation in Eq. (1.2) explicitly. Moreover, the
appearance of Eq. (1.4) suggests a continuous average of Q(#), since in a rough
sense, an integral can be regarded as a continuous summation.

The third and final output measure of performance for this system is a measure
of how busy the server is. The expected utilization of the server is the expected pro-
portion of time during the simulation [from time O to time 7(r)] that the server is
busy (i.e., not idle), and is thus a number between 0 and 1; denote it by u(n). From
a single simulation, then, our estimate of u(n) is it(n) = the observed proportion of
time during the simulation that the server is busy. Now i(n) could be computed
directly from the simulation by noting the times at which the server changes status
(idle to busy or vice versa) and then doing the appropriate subtractions and division.
However, it is easier to look at this quantity as a continuous-time average, similar to
the average queue length, by defining the “busy function”

B(1) = { 1 if the server is busy at time ¢
0 if the server is idle at time ¢
and so u(n) could be expressed as the proportion of time that B(?) is equal to 1.

Figure 1.6 plots B(¢) for the same simulation realization as used in Fig. 1.5 for Q(z).
In this case, we get
(33 -04) + (86 —-38) 177

u(n) = 2.6 36 0.90 (1.5)

indicating that the server was busy about 90 percent of the time during this simula-
tion. Again, however, the numerator in Eq. (1.5) can be viewed as the area under the
B(1) function over the course of the simulation, since the height of B(7) is always
either O or 1. Thus,

T(n)
j B(1) dt

0

un) = —T(n)

(1.6)
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FIGURE 1.6
B(t), arrival times, and departure times for a realization of a single-server queueing system
(same realization as in Fig. 1.5).

and we see again that &(n) is the continuous average of the B(¢) function, corre-
sponding to our notion of utilization. As was the case for g(n), the reason for writ-
ing i(n) in the integral form of Eq. (1.6) is that computationally, as the simulation
progresses, the integral of B(f) can easily be accumulated by adding up areas of
rectangles. For many simulations involving “servers” of some sort, utilization statis-
tics are quite informative in identifying bottlenecks (utilizations near 100 percent,
coupled with heavy congestion measures for the queue leading in) or excess capac-
ity (low utilizations); this is particularly true if the “servers” are expensive items
such as robots in a manufacturing system or large mainframe computers in a data-
processing operation.

_ To recap, the three measures of performance are the average delay in queue
d(n), the time-average number of customers in queue ¢(n), and the proportion of
time the server is busy it(n). The average delay in queue is an example of a discrete-
time statistic, since it is defined relative to the collection of random variables {D,} that
have a discrete “time” index, i = 1, 2, . .. . The time-average number in queue and
the proportion of time the server is busy are examples of continuous-time statistics,
since they are defined on the collection of random variables {Q(¢)} and {B(¢)}, re-
spectively, each of which is indexed on the continuous time parameter ¢ € [0, ®).
(The symbol € means “contained in.” Thus, in this case, f can be any nonnegative
real number.) Both discrete-time and continuous-time statistics are common in sim-
ulation, and they furthermore can be other than averages. For example, we might be
interested in the maximum of all the delays in queue observed (a discrete-time sta-
tistic), or the proportion of time during the simulation that the queue contained at
least five customers (a continuous-time statistic).

The events for this system are the arrival of a customer and the departure of a
customer (after a service completion); the state variables necessary to estimate d(n),
q(n), and u(n) are the status of the server (0 for idle and 1 for busy), the number of
customers in the queue, the time of arrival of each customer currently in the queue
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(represented as a list), and the time of the last (i.e., most recent) event. The time of
the last event, defined to be ¢,_, if ¢,_; = t < ¢; (where ¢ is the current time in the
simulation), is needed to compute the width of the rectangles for the area accumula-
tions in the estimates of g(n) and u(n).

1.4.2 Intuitive Explanation

We begin our explanation of how to simulate a single-server queueing system by
showing how its simulation model would be represented inside the computer at time
e, = 0 and the times ¢,, e,, . . ., e;; at which the 13 successive events occur that are
needed to observe the desired number, n = 6, of delays in queue. For expository
convenience, we assume that the interarrival and service times of customers are

A =04,A,=12,A4,=05A4, =17 A =02,
Ag=16,A, =02, A, = 14,4, =109, ..

S, =20,8,=07,8=025,=1128=37,5=06, ...

Thus, between time 0 and the time of the first arrival there is 0.4 time unit, between
the arrivals of the first and second customers there are 1.2 time units, etc., and the
service time required for the first customer is 2.0 time units, etc. Note that it is not
necessary to declare what the time units are (minutes, hours, etc.), but only to be
sure that all time quantities are expressed in the same units. In an actual simulation
(see Sec. 1.4.4), the A,’s and the S;’s would be generated from their corresponding
probability distributions, as needed, during the course of the simulation. The nu-
merical values for the A,’s and the S;’s given above have been artificially chosen so
as to generate the same simulation realization as depicted in Figs. 1.5 and 1.6 illus-
trating the Q(f) and B(f) processes.

Figure 1.7 gives a snapshot of the system itself and of a computer representa-
tion of the system at each of the times ¢, = 0, e, = 04, ..., e;; = 8.6. In the “sys-
tem” pictures, the square represents the server, and circles represent customers; the
numbers inside the customer circles are the times of their arrivals. In the “computer
representation” pictures, the values of the variables shown are after all processing
has been completed at that event. Our discussion will focus on how the computer
representation changes at the event times.

t=20: Initialization. The simulation begins with the main program invoking
the initialization routine. Our modeling assumption was that initially
the system is empty of customers and the server is idle, as depicted in the
“system” picture of Fig. 1.7a. The model state variables are initialized
to represent this: Server status is O [we use O to represent an idle server
and 1 to represent a busy server, similar to the definition of the B(¢)
function], and the number of customers in the queue is 0. There is a
one-dimensional array to store the times of arrival of customers
currently in the queue; this array is initially empty, and as the simula-
tion progresses, its length will grow and shrink. The time of the last
(most recent) event is initialized to 0, so that at the time of the first
event (when it is used), it will have its correct value. The simulation
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FIGURE 1.7

Snapshots of the system and of its computer representation at time 0 and at each of the
13 succeeding event times.
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(continued)
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(continued)



22 BASIC SIMULATION MODELING

Departure P ———— - |
time = 4.9 | System state I |
| ' Al 56

| 4.9 |
| | D| 8.6 |
| | Clock Event list |
: ! 0 SC N Statistical counters | I
| |
| Server  Number Time |

- 5 2.7 2.7 40 | |
I q Qf | Number Total Area Area |
| arrival | delayed delay  under O(¢) under B(¢) |

System Computer representation

)

Arrival F———— — —— ——— —— ———— — — — — — — — — — — |
time = 5.6 | System state I |
| ' Al 58

| 5.6 |
| 5.6 | D| 8.6 |
I | Clock Event list |
1 . P T T T L T T T T T T T T
: ! 36 I Statistical counters I
| |
| Server  Number Time |

- 5 2.7 2.7 47 | |
| status ul:ue Times (;ffleilstt | |
I q (?f | Number Total Area Area |
| arrival | delayed delay  under O(¢) under B(¢) |

System Computer representation

(k)

Arrival P ————— - |
time = 5.8 | System state I |
| ' Al 72

| 5.8 |
| 5.6 | D| 8.6 |
| 1 ) 58 o | Clock Event list |
: ’ | Statistical counters |
| |
| Server  Number Time |

- 5 2.7 2.9 49 | |
s e o i
| 4 Qf | Number Total Area Area |
| arrival | delayed delay  under Q(r) under B(¢) |

System Computer representation

(0]
FIGURE 1.7

(continued)
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FIGURE 1.7
(continued)

clock is set to 0, and the event list, giving the times of the next occur-
rence of each of the event types, is initialized as follows. The time of the
firstarrival is 0 + A, = 0.4, and is denoted by “A” next to the event list.
Since there is no customer in service, it does not even make sense to
talk about the time of the next departure (“D” by the event list), and we
know that the first event will be the initial customer arrival at time 0.4.
However, the simulation progresses in general by looking at the event
list and picking the smallest value from it to determine what the next
event will be, so by scheduling the next departure to occur at time % (or
a very large number in a computer program), we effectively eliminate
the departure event from consideration and force the next event to be
an arrival. Finally, the four statistical counters are initialized to O.
When all initialization is done, control is returned to the main pro-
gram, which then calls the timing routine to determine the next event.
Since 0.4 < oo, the next event will be an arrival at time 0.4, and the
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t=0.4:

timing routine advances the clock to this time, then passes control
back to the main program with the information that the next event is to
be an arrival.

Arrival of customer 1. At time 0.4, the main program passes control to
the arrival routine to process the arrival of the first customer. Figure 1.7
shows the system and its computer representation after all changes
have been made to process this arrival. Since this customer arrived to
find the server idle (status equal to 0), he begins service immediately
and has a delay in queue of D, = 0 (which does count as a delay). The
server status is set to 1 to represent that the server is now busy, but
the queue itself is still empty. The clock has been advanced to the cur-
rent time, 0.4, and the event list is updated to reflect this customer’s
arrival: The next arrival will be A, = 1.2 time units from now, at time
0.4 + 1.2 = 1.6, and the next departure (the service completion of
the customer now arriving) will be S; = 2.0 time units from now, at time
0.4 + 2.0 = 2.4. The number delayed is incremented to 1 (when this
reaches n = 6, the simulation will end), and D, = 0 is added into the
total delay (still at zero). The area under Q() is updated by adding in
the product of the previous value (i.e., the level it had between the last
event and now) of Q(¢) (0 in this case) times the width of the interval
of time from the last event to now, ¢t — (time of last event) = 0.4 — 0 in
this case. Note that the time of the last event used here is its old value (0),
before it is updated to its new value (0.4) in this event routine. Similarly,
the area under B(¢) is updated by adding in the product of its previous
value (0) times the width of the interval of time since the last event.
[Look back at Figs. 1.5 and 1.6 to trace the accumulation of the areas
under Q(f) and B(¢).] Finally, the time of the last event is brought up to
the current time, 0.4, and control is passed back to the main program. It
invokes the timing routine, which scans the event list for the smallest value,
and determines that the next event will be another arrival at time 1.6;
it updates the clock to this value and passes control back to the main
program with the information that the next event is an arrival.

Arrival of customer 2. At this time we again enter the arrival routine,
and Fig. 1.7¢ shows the system and its computer representation after all
changes have been made to process this event. Since this customer
arrives to find the server busy (status equal to 1 upon her arrival), she
must queue up in the first location in the queue, her time of arrival is
stored in the first location in the array, and the number-in-queue vari-
able rises to 1. The time of the next arrival in the event list is updated
to A; = 0.5 time unit from now, 1.6 + 0.5 = 2.1; the time of the next
departure is not changed, since its value of 2.4 is the departure time of
customer 1, who is still in service at this time. Since we are not ob-
serving the end of anyone’s delay in queue, the number-delayed and
total-delay variables are unchanged. The area under Q(¢) is increased
by O [the previous value of Q(¢)] times the time since the last event,
1.6 — 0.4 = 1.2. The area under B(t) is increased by 1 [the previous
value of B(7)] times this same interval of time, 1.2. After updating the
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time of the last event to now, control is passed back to the main pro-
gram and then to the timing routine, which determines that the next
event will be an arrival at time 2.1.

Arrival of customer 3. Once again the arrival routine is invoked, as
depicted in Fig. 1.7d. The server stays busy, and the queue grows by
one customer, whose time of arrival is stored in the queue array’s
second location. The next arrival is updated tot + A, = 2.1 + 1.7 = 3.8,
and the next departure is still the same, as we are still waiting for the
service completion of customer 1. The delay counters are unchanged,
since this is not the end of anyone’s delay in queue, and the two area
accumulators are updated by adding in 1 [the previous values of both
Q(1) and B(r)] times the time since the last event, 2.1 — 1.6 = 0.5.
After bringing the time of the last event up to the present, we go back
to the main program and invoke the timing routine, which looks at the
event list to determine that the next event will be a departure at time 2.4,
and updates the clock to that time.

Departure of customer 1. Now the main program invokes the depar-
ture routine, and Fig. 1.7¢ shows the system and its representation after
this occurs. The server will maintain its busy status, since customer 2
moves out of the first place in queue and into service. The queue
shrinks by 1, and the time-of-arrival array is moved up one place, to
represent that customer 3 is now first in line. Customer 2, now entering
service, will require S, = 0.7 time unit, so the time of the next depar-
ture (that of customer 2) in the event list is updated to S, time units
from now, or to time 2.4 + 0.7 = 3.1, the time of the next arrival (that
of customer 4) is unchanged, since this was scheduled earlier at the
time of customer 3’s arrival, and we are still waiting at this time for
customer 4 to arrive. The delay statistics are updated, since at this time
customer 2 is entering service and is completing her delay in queue.
Here we make use of the time-of-arrival array, and compute the second
delay as the current time minus the second customer’s time of arrival,
orD, =2.4 — 1.6 = 0.8. (Note that the value of 1.6 was stored in the
first location in the time-of-arrival array before it was changed, so
this delay computation would have to be done before advancing the
times of arrival in the array.) The area statistics are updated by adding
in 2 X (2.4 — 2.1) for Q(#) [note that the previous value of Q(¢) was
used], and 1 X (2.4 — 2.1) for B(¢). The time of the last event is updated,
we return to the main program, and the timing routine determines that
the next event is a departure at time 3.1.

Departure of customer 2. The changes at this departure are similar to
those at the departure of customer 1 at time 2.4 just discussed. Note
that we observe another delay in queue, and that after this event is
processed the queue is again empty, but the server is still busy.
Departure of customer 3. Again, the changes are similar to those in
the above two departure events, with one important exception: Since the
queue is now empty, the server becomes idle and we must set the next
departure time in the event list to %, since the system now looks the
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same as it did at time 0 and we want to force the next event to be the
arrival of customer 4.

t=3.8: Arrival of customer 4. Since this customer arrives to find the server
idle, he has a delay of O (i.e., D, = 0) and goes right into service. Thus,
the changes here are very similar to those at the arrival of the first
customer at time ¢ = 0.4.

The remaining six event times are depicted in Fig. 1.7i through 1.7n, and readers
should work through these to be sure they understand why the variables and ar-
rays are as they appear; it may be helpful to follow along in the plots of Q(#) and
B(t) in Figs. 1.5 and 1.6. With the departure of customer 5 at time ¢t = 8.6, cus-
tomer 6 leaves the queue and enters service, at which time the number delayed
reaches 6 (the specified value of n) and the simulation ends. At this point, the
main program invokes the report generator to compute the final output measures
[d(6) =57/6 = 0.95,4(6) =9.9/8.6 = 1.15,and (6) = 7.7/8.6 = 0.90] and
write them out.

A few specific comments about the above example illustrating the logic of a
simulation should be made:

* Perhaps the key element in the dynamics of a simulation is the interaction be-
tween the simulation clock and the event list. The event list is maintained, and the
clock jumps to the next event, as determined by scanning the event list at the end
of each event’s processing for the smallest (i.e., next) event time. This is how the
simulation progresses through time.

* While processing an event, no “simulated” time passes. However, even though
time is standing still for the model, care must be taken to process updates of the
state variables and statistical counters in the appropriate order. For example, it would
be incorrect to update the number in queue before updating the area-under-Q(¢)
counter, since the height of the rectangle to be used is the previous value of Q(¢)
[before the effect of the current event on Q(¢) has been implemented]. Similarly,
it would be incorrect to update the time of the last event before updating the area
accumulators. Yet another type of error would result if the queue list were changed
at a departure before the delay of the first customer in queue were computed,
since his time of arrival to the system would be lost.

* It is sometimes easy to overlook contingencies that seem out of the ordinary but
that nevertheless must be accommodated. For example, it would be easy to forget
that a departing customer could leave behind an empty queue, necessitating that the
server be idled and the departure event again be eliminated from consideration.
Also, termination conditions are often more involved than they might seem at
first sight; in the above example, the simulation stopped in what seems to be the
“usual” way, after a departure of one customer, allowing another to enter service
and contribute the last delay needed, but the simulation could actually have ended
instead with an arrival event—how?

* In some simulations it can happen that two (or more) entries in the event list are tied
for smallest, and a decision rule must be incorporated to break such time ties (this
happens with the inventory simulation considered later in Sec. 1.5). The tie-breaking
rule can affect the results of the simulation, so must be chosen in accordance with
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how the system is to be modeled. In many simulations, however, we can ignore the
possibility of ties, since the use of continuous random variables may make their
occurrence an event with probability 0. In the above model, for example, if the
interarrival-time or service-time distribution is continuous, then a time tie in the
event list is a probability-zero event (though it could still happen during the com-
puter simulation due to finite accuracy in representation of real numbers).

The above exercise is intended to illustrate the changes and data structures
involved in carrying out a discrete-event simulation from the event-scheduling point
of view, and contains most of the important ideas needed for more complex simula-
tions of this type. The interarrival and service times used could have been drawn
from a random-number table of some sort, constructed to reflect the desired proba-
bility distributions; this would result in what might be called a hand simulation,
which in principle could be carried out to any length. The tedium of doing this
should now be clear, so we will next turn to the use of computers (which are not
easily bored) to carry out the arithmetic and bookkeeping involved in longer or more
complex simulations.

1.4.3 Program Organization and Logic

In this section we set up the necessary ingredients for the C program to simulate the
single-server queueing system, which is given in Sec. 1.4.4.

There are several reasons for choosing a general-purpose language such as C,
rather than more powerful high-level simulation software, for introducing computer
simulation at this point:

* By learning to simulate in a general-purpose language, in which one must pay
attention to every detail, there will be a greater understanding of how simulations
actually operate, and thus less chance of conceptual errors if a switch is later
made to high-level simulation software.

* Despite the fact that there is now very good and powerful simulation software
available (see Chap. 3), it is sometimes necessary to write at least parts of com-
plex simulations in a general-purpose language if the specific, detailed logic of
complex systems is to be represented faithfully.

* General-purpose languages are widely available, and entire simulations are some-
times still written in this way.

It is not our purpose in this book to teach any particular simulation software in
detail, although we survey several packages in Chap. 3. With the understanding
promoted by our more general approach and by going through our simulations
in this and the next chapter, the reader should find it easier to learn a specialized
simulation-software product.

The single-server queueing model that we will simulate in the following section
differs in two respects from the model used in the previous section:

e The simulation will end when n = 1000 delays in queue have been completed,
rather than n = 6, in order to collect more data (and maybe to impress the reader
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with the patience of computers, since we have just slugged it out by hand in the
n = 6 case in the preceding section). It is important to note that this change in
the stopping rule changes the model itself, in that the output measures are defined
relative to the stopping rule; hence the presence of the “n” in the notation for the
quantities d(n), g(n), and u(n) being estimated.

* The interarrival and service times will now be modeled as independent random
variables from exponential distributions with mean 1 minute for the interarrival
times and mean 0.5 minute for the service times. The exponential distribution
with mean 8 (any positive real number) is continuous, with probability density
function

1
flx) = Ee”‘/ﬁ forx=0

(See Chaps. 4 and 6 for more information on density functions in general, and on
the exponential distribution in particular.) We make this change here since it is
much more common to generate input quantities (which drive the simulation)
such as interarrival and service times from specified distributions than to assume
that they are “known” as we did in the preceding section. The choice of the
exponential distribution with the above particular values of 3 is essentially arbi-
trary, and is made primarily because it is easy to generate exponential random
variates on a computer. (Actually, the assumption of exponential interarrival
times is often quite realistic; assuming exponential service times, however, is
less plausible.) Chapter 6 addresses in detail the important issue of how one
chooses distribution forms and parameters for modeling simulation input ran-
dom variables.

The single-server queue with exponential interarrival and service times is com-
monly called the M/M/1 queue, as discussed in App. 1B.

To simulate this model, we need a way to generate random variates from an
exponential distribution. First, a random-number generator (discussed in detail in
Chap. 7) is invoked to generate a variate U that is distributed (continuously) uni-
formly between 0 and 1; this distribution will henceforth be referred to as U(0, 1)
and has probability density function

1 ifo=x=1
0 otherwise

f(X)Z{

It is easy to show that the probability that a U(0, 1) random variable falls in any
subinterval [x, x + Ax] contained in the interval [0, 1] is (uniformly) Ax (see
Sec. 6.2.2). The U(0, 1) distribution is fundamental to simulation modeling be-
cause, as we shall see in Chap. 8, a random variate from any distribution can be
generated by first generating one or more U(0, 1) random variates and then perform-
ing some kind of transformation. After obtaining U, we shall take the natural loga-
rithm of it, multiply the result by 3, and finally change the sign to return what we
will show to be an exponential random variate with mean 3, that is, —3 In U.

To see why this algorithm works, recall that the (cumulative) distribution
function of a random variable X is defined, for any real x, to be F(x) = P(X = x)
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(Chap. 4 contains a review of basic probability theory). If X is exponential with
mean 3, then

: ]
Fay = [ ze P
o B

= 1 f— e_x/ﬁ

for any real x = 0, since the probability density function of the exponential distribu-
tion at the argument r = 0 is (1 /B)e_’/ B, To show that our method is correct, we can
try to verify that the value it returns will be less than or equal to x (any nonnegative
real number), with probability F(x) given above:

P(—BInU=x) = P(ln U= —%)

=PU= e—X/B)
=Pl P=U=<1
1 — e /P

The first line in the above is obtained by dividing through by —f (recall that 8 > 0,
so —f8 < 0 and the inequality reverses), the second line is obtained by exponentiat-
ing both sides (the exponential function is monotone increasing, so the inequality is
preserved), the third line is just rewriting, together with knowing that U is in [0, 1]
anyway, and the last line follows since U is U(0, 1), and the interval [e™P 1] is
contained within the interval [0, 1]. Since the last line is F(x) for the exponential
distribution, we have verified that our algorithm is correct. Chapter 8 discusses how
to generate random variates and processes in general.

In our program, we will use a particular method for random-number generation
to obtain the variate U described above, as expressed in the C code of Figs. 7.5 and
7.6 in App. 7A of Chap. 7. While most compilers do have some kind of built-in
random-number generator, many of these are of extremely poor quality and should
not be used; this issue is discussed fully in Chap. 7.

It is convenient (if not the most computationally efficient) to modularize the
programs into several subprograms to clarify the logic and interactions, as discussed
in general in Sec. 1.3.2. In addition to a main program, the simulation program
includes routines for initialization, timing, report generation, and generating expo-
nential random variates, as in Fig. 1.3. It also simplifies matters if we write a separate
routine to update the continuous-time statistics, being the accumulated areas under
the Q(¥) and B(¢) curves. The most important action, however, takes place in the
routines for the events, which we number as follows:

Event description Event type

Arrival of a customer to the system 1
Departure of a customer from the system after completing service

Figure 1.8 contains a flowchart for the arrival event. First, the time of the next
arrival in the future is generated and placed in the event list. Then a check is made
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Arrival
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Schedule the next
arrival event

Is
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busy?

Yes

Set delay =0
for this customer
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Add 1 to the
number in queue

Write error Y Is Add 1 to the
e ber of
message and stop the queue num
simulation full? customers delayed

Store 1tmfleh9f Make the
arrival of this server busy
customer
Schedule a

departure event for
this customer

FIGURE 1.8

Flowchart for arrival routine, queueing model.

to determine whether the server is busy. If so, the number of customers in the queue
is incremented by 1, and we ask whether the storage space allocated to hold the
queue is already full (see the code in Sec. 1.4.4). If the queue is already full, an error
message is produced and the simulation is stopped; if there is still room in the
queue, the arriving customer’s time of arrival is put at the (new) end of the queue.
(This queue-full check could be eliminated if using dynamic storage allocation in a
programming language that supports this.) On the other hand, if the arriving cus-
tomer finds the server idle, then this customer has a delay of 0, which is counted as
a delay, and the number of customer delays completed is incremented by 1. The
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Departure
event

Is
the queue
empty?
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queue
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;
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delayed

!

Schedule a
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for this customer

,

Move each customer
in queue (if any) up
one place

FIGURE 1.9

Flowchart for departure routine, queueing model.

server must be made busy, and the time of departure from service of the arriving
customer is scheduled into the event list.

The departure event’s logic is depicted in the flowchart of Fig. 1.9. Recall that
this routine is invoked when a service completion (and subsequent departure) occurs.
If the departing customer leaves no other customers behind in queue, the server is
idled and the departure event is eliminated from consideration, since the next event
must be an arrival. On the other hand, if one or more customers are left behind by
the departing customer, the first customer in queue will leave the queue and enter
service, so the queue length is reduced by 1, and the delay in queue of this cus-
tomer is computed and registered in the appropriate statistical counter. The number


masud
Highlight


32 BASIC SIMULATION MODELING

delayed is increased by 1, and a departure event for the customer now entering
service is scheduled. Finally, the rest of the queue (if any) is advanced one place.
Our implementation of the list for the queue will be very simple in this chapter, and
is certainly not the most efficient; Chap. 2 discusses better ways of handling lists to
model such things as queues.

In the next section we give an example of how the above setup can be used to
write a program in C. The results are discussed in Sec. 1.4.5. This program is neither
the simplest nor the most efficient possible, but was instead designed to illustrate
how one might organize a program for more complex simulations.

1.4.4 C Program

This section presents a C program for the M/M/1 queue simulation. We use the
ANSI-standard version of the language, as defined by Kernighan and Ritchie (1988),
and in particular use function prototyping. We have also taken advantage of C’s
facility to give variables and functions fairly long names, which thus should be self-
explanatory. (For instance, the current value of simulated time is in a variable called
sim_time.) We have run our C program on several different computers and compil-
ers. The numerical results differed in some cases due to inaccuracies in floating-
point operations. This can matter if, e.g., at some point in the simulation two events
are scheduled very close together in time, and roundoff error results in a different
sequencing of the event’s occurrences. The C math library must be linked, which
might require setting an option depending on the compiler. All code is available at
www.mhhe.com/law.

The external definitions are given in Fig. 1.10. The header file Icgrand.h (listed
in Fig. 7.6) is included to declare the functions for the random-number generator.

/* External definitions for single-server queueing system. */

#include <stdio.h>
#include <math.h>
#include "lcgrand.h" /* Header file for random-number generator. */

#define Q LIMIT 100 /* Limit on queue length. */
#define BUSY 1 /* Mnemonics for server's being busy */
#define IDLE 0 /* and idle. */

int next_event_type, num custs_delayed, num delays_required, num_events,
num_in_qg, server_status;

float area_num in_q, area_server_status, mean_interarrival, mean_service,
sim_time, time_arrival[Q_ LIMIT + 1], time_last_event, time_next_event[3],
total_of_delays;

FILE *infile, *outfile;

void initialize(void);

void timing(void);

void arrive(void);

void depart(void);

void report(void);

void wupdate_time_avg_stats(void);
float expon(float mean);

FIGURE 1.10
C code for the external definitions, queueing model.
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The symbolic constant Q_LIMIT is set to 100, our guess (which might have to be
adjusted by trial and error) as to the longest the queue will ever get. (As mentioned
earlier, this guess could be eliminated if we were using dynamic storage allocation;
while C supports this, we have not used it in our examples.) The symbolic constants
BUSY and IDLE are defined to be used with the server_status variable, for code
readability. File pointers *infile and *outfile are defined to allow us to open the
input and output files from within the code, rather than at the operating-system
level. Note also that the event list, as we have discussed it so far, will be imple-
mented in an array called time_next_event, whose Oth entry will be ignored in order
to make the index agree with the event type.

The code for the main function is shown in Fig. 1.11. The input and output
files are opened, and the number of event types for the simulation is initialized to
2 for this model. The input parameters then are read in from the file mml.in,
which contains a single line with the numbers 1.0, 0.5, and 1000, separated by
blanks. After writing a report heading and echoing the input parameters (as a
check that they were read correctly), the initialization function is invoked. The
“while” loop then executes the simulation as long as more customer delays are
needed to fulfill the 1000-delay stopping rule. Inside the “while” loop, the timing
function is first invoked to determine the type of the next event to occur and to
advance the simulation clock to its time. Before processing this event, the func-
tion to update the areas under the Q(¢) and B(¢) curves is invoked; by doing this at
this time we automatically update these areas before processing each event. Then
a switch statement, based on next_event_type (=1 for an arrival and 2 for a depar-
ture), passes control to the appropriate event function. After the “while” loop is
done, the report function is invoked, the input and output files are closed, and the
simulation ends.

Code for the initialization function is given in Fig. 1.12. Each statement here
corresponds to an element of the computer representation in Fig. 1.7a. Note that the
time of the first arrival, time_next_event[1], is determined by adding an exponential
random variate with mean mean_interarrival, namely, expon(mean_interarrival), to
the simulation clock, sim_time = 0. (We explicitly used “sim_time” in this statement,
although it has a value of 0, to show the general form of a statement to determine
the time of a future event.) Since no customers are present at time sim_time = 0,
the time of the next departure, time_next_event[2], is set to 1.0e + 30 (C notation
for 10°%), guaranteeing that the first event will be an arrival.

The timing function, which is given in Fig. 1.13, is used to compare
time_next_event[1], time_next_event[2], . . . , time_next_event[num_events]
(recall that num_events was set in the main function) and to set next_event_type
equal to the event type whose time of occurrence is the smallest. In case of ties,
the lowest-numbered event type is chosen. Then the simulation clock is advanced
to the time of occurrence of the chosen event type, min_time_next_event. The
program is complicated slightly by an error check for the event list’s being empty,
which we define to mean that all events are scheduled to occur at time = 10%. If
this is ever the case (as indicated by next_event_type = 0), an error message is
produced along with the current clock time (as a possible debugging aid), and the
simulation is terminated.
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main() /* Main function. */

}

/* Open input and output files. */

infile = fopen("mml.in", "r");
outfile = fopen("mml.out", "w");

/* Specify the number of events for the timing function. */
num_events = 2;
/* Read input parameters. */

fscanf (infile, "%f %f %d", &mean_ interarrival, &mean_ service,
&num_delays_required) ;

/* Write report heading and input parameters. */
fprintf (outfile, "Single-server queueing system\n\n");
fprintf (outfile, "Mean interarrival time%11.3f minutes\n\n",
mean_interarrival);
fprintf (outfile, "Mean service time%16.3f minutes\n\n", mean_service);
fprintf (outfile, "Number of customers%14d\n\n", num delays_required);
/* Initialize the simulation. */
initialize();
/* Run the simulation while more delays are still needed. */
while (num_custs_delayed < num_delays_required) {
/* Determine the next event. */
timing();
/* Update time-average statistical accumulators. */
update_time_avg stats();
/* Invoke the appropriate event function. */
switch (next_event_type) {
case 1:
arrive();
break;
case 2:
depart();
break;
}
/* Invoke the report generator and end the simulation. */

report();

fclose(infile);
fclose(outfile);

return 0;

FIGURE 1.11
C code for the main function, queueing model.
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{

/* Initialize the
sim time = 0.0;
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FIGURE 1.12
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tion) event is eliminated from consideration. */

sim time + expon(mean_interarrival);
1.0e+30;

C code for function initialize, queueing model.

void timing(void) /*
{

int i;

float min_time_nex

next_event_type =

Timing function. */

t_event = 1.0e+29;

0;

/* Determine the event type of the next event to occur. */

for (i = 1; i <= num events; ++1i)

if (time_next_

min time_n
next_event
}
/* Check to see wh
if (next_event_typ
/* The event 1
fprintf (outfil
exit(1);
}

/* The event list

_type = i;

event[i] < min_time_next_event) {
ext_event time_next_event[i];

ether the event list is empty. */
e == 0) {
ist is empty, so stop the simulation. */

e, "\nEvent list empty at time %f", sim time);

is not empty, so advance the simulation clock. */

sim_time = min_time_next_event;

}
FIGURE 1.13

C code for function timing, queueing model.

35
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void arrive(void) /* Arrival event function. */

{
float delay;
/* Schedule next arrival. */
time_next_event[l] = sim time + expon(mean_ interarrival);
/* Check to see whether server is busy. */
if (server_status == BUSY) {

/* Server is busy, so increment number of customers in queue. */

++num_in_gq;

/* Check to see whether an overflow condition exists. */

if (num_in_q > Q LIMIT) {

/* The queue has overflowed, so stop the simulation. */
fprintf (outfile, "\nOverflow of the array time_arrival at");
fprintf(outfile, " time %f", sim_time);

exit(2);

}

/* There is still room in the queue, so store the time of arrival of the
arriving customer at the (new) end of time_arrival. */

time_arrival[num in g] = sim time;

}
else {

/* Server is idle, so arriving customer has a delay of zero. (The
following two statements are for program clarity and do not affect
the results of the simulation.) */

delay = 0.0;

total_of_delays += delay;

/* Increment the number of customers delayed, and make server busy. */

++num_custs_delayed;

server_status = BUSY;

/* Schedule a departure (service completion). */

time_next_event[2] = sim time + expon(mean_ service);

}
}

FIGURE 1.14
C code for function arrive, queueing model.

The code for event function arrive is in Fig. 1.14, and follows the discussion as
given in Sec. 1.4.3 and in the flowchart of Fig. 1.8. Note that “sim_time” is the time
of arrival of the customer who is just now arriving, and that the queue-overflow
check is made by asking whether num_in_q is now greater than Q_LIMIT, the
length for which the array time_arrival was dimensioned.

Event function depart, whose code is shown in Fig. 1.15, is invoked from the
main program when a service completion (and subsequent departure) occurs; the
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void depart(void) /* Departure event function. */
{

int i;

float delay;

/* Check to see whether the queue is empty. */
if (num_in g == 0) {

/* The queue is empty so make the server idle and eliminate the
departure (service completion) event from consideration. */

server_status
time_next_event[2]

IDLE;
1.0e+30;

X =

else {

/* The queue is nonempty, so decrement the number of customers in
queue. */

--num_in_gq;

/* Compute the delay of the customer who is beginning service and update
the total delay accumulator. */

delay = sim time - time_arrival[l];
total_of_delays += delay;

/* Increment the number of customers delayed, and schedule departure. */

++num_custs_delayed;
time_next_event[2] = sim_time + expon(mean_service);

/* Move each customer in queue (if any) up one place. */

for (i = 1; i <= num in q; ++i)
time_arrival[i] = time_arrivall[i + 1];

}

FIGURE 1.15
C code for function depart, queueing model.

logic for it was discussed in Sec. 1.4.3, with the flowchart in Fig. 1.9. Note that if
the statement “time_next_event[2] = 1.0e + 30;” just before the “else” were omit-
ted, the program would get into an infinite loop. (Why?) Advancing the rest of the
queue (if any) one place by the “for” loop near the end of the function ensures that
the arrival time of the next customer entering service (after being delayed in queue)
will always be stored in time_arrival[1]. Note that if the queue were now empty
(i.e., the customer who just left the queue and entered service had been the only one
in queue), then num_in_q would be equal to 0, and this loop would not be executed
at all since the beginning value of the loop index, i, starts out at a value (1) that
would already exceed its final value (num_in_q = 0). (Managing the queue in this
simple way is certainly inefficient, and could be improved by using pointers; we
return to this issue in Chap. 2.) A final comment about depart concerns the subtrac-
tion of time_arrival[1] from the clock value, sim_time, to obtain the delay in queue.
If the simulation is to run for a long period of (simulated) time, both sim_time
and time_arrival[1] would become very large numbers in comparison with the
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void report(void) /* Report generator function. */
{

/* Compute and write estimates of desired measures of performance. */

fprintf (outfile, "\n\nAverage delay in queue%1ll.3f minutes\n\n",
total_of_delays / num_custs_delayed);

fprintf(outfile, "Average number in queue%10.3f\n\n",
area_num_in g / sim_time);

fprintf(outfile, "Server utilization%15.3f\n\n",
area_server_status / sim_time);

fprintf (outfile, "Time simulation ended%12.3f minutes", sim time);

}

FIGURE 1.16
C code for function report, queueing model.

difference between them; thus, since they are both stored as floating-point (float)
numbers with finite accuracy, there is potentially a serious loss of precision when
doing this subtraction. For this reason, it may be necessary to make both sim_time
and the time_arrival array of type double if we are to run this simulation out for a
long period of time.

The code for the report function, invoked when the “while” loop in the main
program is over, is given in Fig. 1.16. The average delay is computed by dividing
the total of the delays by the number of customers whose delays were observed, and
the time-average number in queue is obtained by dividing the area under Q(¢), now
updated to the end of the simulation (since the function to update the areas is called
from the main program before processing either an arrival or departure, one of
which will end the simulation), by the clock value at termination. The server utiliza-
tion is computed by dividing the area under B(¢) by the final clock time, and all three
measures are written out directly. We also write out the final clock value itself, to see
how long it took to observe the 1000 delays.

Function update_time_avg_stats is shown in Fig. 1.17. This function is invoked
just before processing each event (of any type) and updates the areas under the
two functions needed for the continuous-time statistics; this routine is separate for

void update_time_avg_stats(void) /* Update area accumulators for time-average
statistics. */
{

float time_since_last_event;
/* Compute time since last event, and update last-event-time marker. */

time_since_last_event
time_last_event

sim_time - time_last_event;
sim time;

/* Update area under number-in-queue function. */
area_num_in_g += num_in_q * time_since_last_event;

/* Update area under server-busy indicator function. */

area_server_status += server_status * time_since_last_event;

}

FIGURE 1.17
C code for function update_time_avg_stats, queueing model.
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float expon(float mean) /* Exponential variate generation function. */
{

/* Return an exponential random variate with mean "mean". */

return -mean * log(lcgrand(1l));
}

FIGURE 1.18
C code for function expon.

coding convenience only, and is not an event routine. The time since the last event
is first computed, and then the time of the last event is brought up to the current time
in order to be ready for the next entry into this function. Then the area under the
number-in-queue function is augmented by the area of the rectangle under Q(¢) dur-
ing the interval since the previous event, which is of width time_since_last_event
and of height num_in_q; remember, this function is invoked before processing
an event, and state variables such as num_in_q still have their previous values.
The area under B(t) is then augmented by the area of a rectangle of width
time_since_last_event and height server_status; this is why it is convenient to
define server_status to be either O or 1. Note that this function, like depart, contains
a subtraction of two floating-point numbers (sim_time — time_last_event), both
of which could become quite large relative to their difference if we were to run
the simulation for a long time; in this case it might be necessary to declare both
sim_time and time_last_event to be of type double.

The function expon, which generates an exponential random variate with mean
B = mean (passed into expon), is shown in Fig. 1.18, and follows the algorithm
discussed in Sec. 1.4.3. The random-number generator lcgrand, used here with an
int argument of 1, is discussed fully in Chap. 7, and is shown specifically in Fig. 7.5.
The C predefined function log returns the natural logarithm of its argument.

The program described here must be combined with the random-number-
generator code from Fig. 7.5. This could be done by separate compilations, fol-
lowed by linking the object codes together in an installation-dependent way.

1.4.5 Simulation Output and Discussion

The output (in a file named mm1.out) is shown in Fig. 1.19. In this run, the average
delay in queue was 0.430 minute, there was an average of 0.418 customer in the
queue, and the server was busy 46 percent of the time. It took 1027.915 simulated
minutes to run the simulation to the completion of 1000 delays, which seems rea-
sonable since the expected time between customer arrivals was 1 minute. (It is not
a coincidence that the average delay, average number in queue, and utilization are
all so close together for this model; see App. 1B.)

Note that these particular numbers in the output were determined, at root, by the
numbers the random-number generator happened to come up with this time. If a dif-
ferent random-number generator were used, or if this one were used in another way
(with another “seed” or “stream,” as discussed in Chap. 7), then different numbers
would have been produced in the output. Thus, these numbers are not to be regarded
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Single-server qQueueing system

Mean interarrival time 1.000 minutes
Mean service time 0.500 minutes
Number of customers 1000
Average delay in queue 0.430 minutes
Average number in queue 0.418
Server utilization 0.460
FIGURE 1.19

Time simulation ended 1027.915 minutes  Output report, queueing model.

as “The Answers,” but rather as estimates (and perhaps poor ones) of the expected
quantities we want to know about, d(n), g(n), and u(n); the statistical analysis of
simulation output data is discussed in Chaps. 9 through 12. Also, the results are
functions of the input parameters, in this case the mean interarrival and service
times, and the n = 1000 stopping rule; they are also affected by the way we initial-
ized the simulation (empty and idle).

In some simulation studies, we might want to estimate steady-state character-
istics of the model (see Chap. 9), i.e., characteristics of a model after the simu-
lation has been running a very long (in theory, an infinite amount of)) time. For
the simple M/M/1 queue we have been considering, it is possible to compute
analytically the steady-state average delay in queue, the steady-state time-average
number in queue, and the steady-state server utilization, all of these measures of
performance being 0.5 [see, e.g., Ross (2003, pp. 480—487)]. Thus, if we wanted to
determine these steady-state measures, our estimates based on the stopping rule
n = 1000 delays were not too far off, at least in absolute terms. However, we were
somewhat lucky, since n = 1000 was chosen arbitrarily! In practice, the choice of
a stopping rule that will give good estimates of steady-state measures is quite dif-
ficult. To illustrate this point, suppose for the M/M/1 queue that the arrival rate of
customers were increased from 1 per minute to 1.98 per minute (the mean inter-
arrival time is now 0.505 minute), that the mean service time is unchanged, and that
we wish to estimate the steady-state measures from a run of length n = 1000 delays,
as before. We performed this simulation run and got values for the average delay,
average number in queue, and server utilization of 17.404 minutes, 34.831, and 0.997,
respectively. Since the true steady-state values of these measures are 49.5 minutes,
98.01, and 0.99 (respectively), it is clear that the stopping rule cannot be chosen
arbitrarily. We discuss how to specify the run length for a steady-state simulation
in Chap. 9.

The reader may have wondered why we did not estimate the expected aver-
age waiting time in the system of a customer, w(n), rather than the expected average
delay in queue, d(n), where the waiting time of a customer is defined as the time
interval from the instant the customer arrives to the instant the customer completes
service and departs. There were two reasons. First, for many queueing systems we
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believe that the customer’s delay in queue while waiting for other customers to be
served is the most troublesome part of the customer’s wait in the system. Moreover,
if the queue represents part of a manufacturing system where the “customers” are
actually parts waiting for service at a machine (the “server”), then the delay in
queue represents a loss, whereas the time spent in service is “necessary.” Our sec-
ond reason for focusing on the delay in queue is one of statistical efficiency. The
usual estimator of w(n) would be

2W, 2D 2
o :

Wwn) = - —= ":; + l:}; = d(n) + S(n) (1.7)

where W, = D, + S, is the waiting time in the system of the ith customer and
S(n) is the average of the n customers’ service times. Since the service-time dis-
tribution would have to be known to perform a simulation in the first place, the
expected or mean service time, E(S), would also be known and an alternative
estimator of w(n) is

w(n) = d(n) + E(S)

[Note that S(n) is an unbiased estimator of E(S) in Eq. (1.7).] In almost all queueing
simulations, w(n) will be a more efficient (less variable) estimator of w(n) than
w(n) and is thus preferable (both estimators are unbiased). Therefore, if one wants an
estimate of w(n), estimate d(n) and add the known expected service time, E(S). In
general, the moral is to replace estimators by their expected values whenever pos-
sible (see the discussion of indirect estimators in Sec. 11.5).

1.4.6 Alternative Stopping Rules

In the above queueing example, the simulation was terminated when the number of
customers delayed became equal to 1000; the final value of the simulation clock
was thus a random variable. However, for many real-world models, the simulation
is to stop after some fixed amount of time, say 8 hours. Since the interarrival and
service times for our example are continuous random variables, the probability of
the simulation’s terminating after exactly 480 minutes is 0 (neglecting the finite
accuracy of a computer). Therefore, to stop the simulation at a specified time, we
introduce a dummy “end-simulation” event (call it an event of type 3), which is
scheduled to occur at time 480. When the time of occurrence of this event (being
held in the third spot of the event list) is less than all other entries in the event list,
the report generator is called and the simulation is terminated. The number of cus-
tomers delayed is now a random variable.

These ideas can be implemented in the program by making changes in the
external definitions, the main function, and the initialize and report functions, as
shown in Figs. 1.20 through 1.23; the rest of the program is unaltered. In Figs. 1.20
and 1.21, note that we now have three events; that the desired simulation run length,
time_end, is now an input parameter (num_delays_required has been removed); and
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/* External definitions for single-server queueing system, fixed run length. */

#include <stdio.h>
#include <math.h>
#include "lcgrand.h" /* Header file for random-number generator. */

#define Q LIMIT 100 /* Limit on queue length. */
#define BUSY 1 /* Mnemonics for server's being busy */
#define IDLE 0 /* and idle. */

int next_event_type, num_custs_delayed, num _events, num_in_g, server_status;
float area_num in_q, area_server_status, mean_interarrival, mean_service,
sim time, time_arrival[Q LIMIT + 1], time_end, time_last_event,
time_next_event[4], total_of_delays;
FILE *infile, *outfile;

void initialize(void);

void timing(void);

void arrive(void);

void depart(void);

void report(void);

void wupdate_time_avg_stats(void);
float expon(float mean);

FIGURE 1.20
C code for the external definitions, queueing model with fixed run length.

that the “switch” statement has been changed. To stop the simulation, the original
“while” loop has been replaced by a “do while” loop in Fig. 1.21, where the loop
keeps repeating itself as long as the type of event just executed is not 3 (end simula-
tion); after a type 3 event is chosen for execution, the loop ends and the simulation
stops. In the main program (as before), we invoke update_time_avg_stats before
entering an event function, so that in particular the areas will be updated to the end
of the simulation here when the type 3 event (end simulation) is next. The only
change to the initialization function in Fig. 1.22 is the addition of the statement
time_next_event[3] = time_end, which schedules the end of the simulation. The
only change to the report function in Fig. 1.23 is to write the number of customers
delayed instead of the time the simulation ends, since in this case we know that the
ending time will be 480 minutes but will not know how many customer delays will
have been completed during that time.

The output file (named mm/alt.out) is shown in Fig. 1.24. The number of
customer delays completed was 475 in this run, which seems reasonable in a
480-minute run where customers are arriving at an average rate of 1 per minute. The
same three measures of performance are again numerically close to each other, but
the first two are somewhat less than their earlier values in the 1000-delay simulation.
A possible reason for this is that the current run is roughly only half as long as the
earlier one, and since the initial conditions for the simulation are empty and idle (an
uncongested state), the model in this shorter run has less chance to become congested.
Again, however, this is just a single run and is thus subject to perhaps considerable
uncertainty; there is no easy way to assess the degree of uncertainty from only a
single run.

If the queueing system being considered had actually been a one-operator
barbershop open from 9 a.m. to 5 p.m., stopping the simulation after exactly 8 hours
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main() /* Main function. */

}

/* Open input and output files. */

infile
outfile

fopen("mmlalt.in", "r");
fopen("mmlalt.out", "w");

/* Specify the number of events for the timing function. */

num_events = 3;

/* Read input parameters. */

fscanf (infile, "%f %f %f", &mean_ interarrival, &mean_ service, &time_end);

/* Write report heading and input parameters. */

fprintf(outfile, "Single-server queueing system with fixed run");

fprintf (outfile, " length\n\n");

fprintf (outfile, "Mean interarrival time%11.3f minutes\n\n",
mean_interarrival);

fprintf (outfile, "Mean service time%16.3f minutes\n\n", mean_service);

fprintf (outfile, "Length of the simulation%9.3f minutes\n\n", time_end);

/* Initialize the simulation. */

initialize();

/* Run the simulation until it terminates after an end-simulation event
(type 3) occurs. */

do {
/* Determine the next event. */
timing();
/* Update time-average statistical accumulators. */
update_time_avg stats();
/* Invoke the appropriate event function. */

switch (next_event_type) {
case 1:
arrive();
break;
case 2:
depart();
break;
case 3:
report();
break;
}

/* If the event just executed was not the end-simulation event (type 3),
continue simulating. Otherwise, end the simulation. */

} while (next_event_type != 3);

fclose(infile);
fclose(outfile);

return 0;

FIGURE 1.21
C code for the main function, queueing model with fixed run length.



void initialize(void) /* Initialization function. */

{

/* Initialize the simulation clock. */

sim time = 0.0;

/* Initialize the state variables. */

server_status = IDLE;

num_in g = 0;

time_last_event = 0.0;

/* Initialize the statistical counters. */

num_custs_delayed = 0;

total_of_ delays = 0.0;

area_num_in g = 0.0;

area_server_status = 0.0;

/* Initialize event list. Since no customers are present, the departure
(service completion) event is eliminated from consideration. The end-
simulation event (type 3) is scheduled for time time_end. */

time_next_event[l] = sim time + expon(mean_ interarrival);

time_next_event[2] = 1.0e+30;

time_next_event[3] = time_end;

}
FIGURE 1.22

C code for function initialize, queueing model with fixed run length.

void report(void) /* Report generator function. */

{
/* Compute and write estimates of desired measures of performance. */
fprintf (outfile, "\n\nAverage delay in queue%11l.3f minutes\n\n",
total_of_delays / num_custs_delayed);
fprintf(outfile, "Average number in queue%10.3f\n\n",
area_num_in q / sim_time);
fprintf (outfile, "Server utilization%15.3f\n\n",
area_server_status / sim_time);
fprintf (outfile, "Number of delays completed%7d",
num_custs_delayed) ;
}
FIGURE 1.23

C code for function report, queueing model with fixed run length.

Single-server queueing system with fixed run length
Mean interarrival time 1.000 minutes
Mean service time 0.500 minutes

Length of the simulation 480.000 minutes

Average delay in queue 0.399 minutes
Average number in queue 0.394
Server utilization 0.464

Number of delays completed 475

FIGURE 1.24
Output report, queueing model with fixed run length.

44



CHAPTER ONE 45

might leave a customer with hair partially cut. In such a case, we might want to
close the door of the barbershop after 8 hours but continue to run the simulation
until all customers present when the door closes (if any) have been served. The
reader is asked in Prob. 1.10 to supply the program changes necessary to implement
this stopping rule (see also Sec. 2.6).

1.4.7 Determining the Events and Variables

We defined an event in Sec. 1.3 as an instantaneous occurrence that may change
the system state, and in the simple single-server queue of Sec. 1.4.1 it was not too
hard to identify the events. However, the question sometimes arises, especially for
complex systems, of how one determines the number and definition of events in
general for a model. It may also be difficult to specify the state variables needed
to keep the simulation running in the correct event sequence and to obtain the
desired output measures. There is no completely general way to answer these
questions, and different people may come up with different ways of representing
a model in terms of events and variables, all of which may be correct. But there
are some principles and techniques to help simplify the model’s structure and to avoid
logical errors.

Schruben (1983b) presented an event-graph method, which was subsequently
refined and extended by Sargent (1988) and Som and Sargent (1989). In this ap-
proach proposed events, each represented by a node, are connected by directed arcs
(arrows) depicting how events may be scheduled from other events and from them-
selves. For example, in the queueing simulation of Sec. 1.4.3, the arrival event
schedules another future occurrence of itself and (possibly) a departure event, and
the departure event may schedule another future occurrence of itself; in addition,
the arrival event must be initially scheduled in order to get the simulation going.
Event graphs connect the proposed set of events (nodes) by arcs indicating the type
of event scheduling that can occur. In Fig. 1.25 we show the event graph for our
single-server queueing system, where the heavy, smooth arrows indicate that an
event at the end of the arrow may be scheduled from the event at the beginning of
the arrow in a (possibly) nonzero amount of time, and the thin jagged arrow indicates
that the event at its end is scheduled initially. Thus, the arrival event reschedules
itself and may schedule a departure (in the case of an arrival who finds the server
idle), and the departure event may reschedule itself (if a departure leaves behind
someone else in queue).

A A

— AN\ Departure

FIGURE 1.25
Event graph, queueing model.
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A

Departure

FIGURE 1.26
Event graph, queueing model with separate “enter-service” event.

For this model, it could be asked why we did not explicitly account for the act
of a customer’s entering service (either from the queue or upon arrival) as a separate
event. This certainly can happen, and it could cause the state to change (i.e., the
queue length to fall by 1). In fact, this could have been put in as a separate event
without making the simulation incorrect, and would give rise to the event diagram
in Fig. 1.26. The two thin smooth arrows each represent an event at the beginning of
an arrow potentially scheduling an event at the end of the arrow without any inter-
vening time, i.e., immediately; in this case the straight thin smooth arrow refers to a
customer who arrives to an empty system and whose “enter-service” event is thus
scheduled to occur immediately, and the curved thin smooth arrow represents a
customer departing with a queue left behind, and so the first customer in the queue
would be scheduled to enter service immediately. The number of events has now
increased by 1, and so we have a somewhat more complicated representation of our
model. One of the uses of event graphs is to simplify a simulation’s event structure
by eliminating unnecessary events. There are several “rules” that allow for simplifi-
cation, and one of them is that if an event node has incoming arcs that are all thin
and smooth (i.e., the only way this event is scheduled is by other events and without
any intervening time), then this event can be eliminated from the model and
its action built into the events that schedule it in zero time. Here, the “enter-service”
event could be eliminated, and its action put partly into the arrival event (when a
customer arrives to an idle server and begins service immediately) and partly into
the departure event (when a customer finishes service and there is a queue from
which the next customer is taken to enter service); this takes us back to the simpler
event graph in Fig. 1.25. Basically, “events” that can happen only in conjunction
with other events do not need to be in the model. Reducing the number of events not
only simplifies model conceptualization, but may also speed its execution. Care
must be taken, however, when “collapsing” events in this way to handle priorities
and time ties appropriately.

Another rule has to do with initialization. The event graph is decomposed into
strongly connected components, within each of which it is possible to “travel” from
every node to every other node by following the arcs in their indicated directions.
The graph in Fig. 1.25 decomposes into two strongly connected components (with
a single node in each), and that in Fig. 1.26 has two strongly connected components
(one of which is the arrival node by itself, and the other of which consists of the
enter-service and departure nodes). The initialization rule states that in any strongly
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FIGURE 1.27
Event graph, queueing model with fixed run length.

connected component of nodes that has no incoming arcs from other event nodes
outside the component, there must be at least one node that is initially scheduled; if
this rule were violated, it would never be possible to execute any of the events in the
component. In Figs. 1.25 and 1.26, the arrival node is such a strongly connected com-
ponent since it has no incoming arcs from other nodes, and so it must be initialized.
Figure 1.27 shows the event graph for the queueing model of Sec. 1.4.6 with the
fixed run length, for which we introduced the dummy “end-simulation” event. Note
that this event is itself a strongly connected component without any arcs coming in,
and so it must be initialized; i.e., the end of the simulation is scheduled as part of
the initialization. Failure to do so would result in erroneous termination of the
simulation.

We have presented only a partial and simplified account of the event-graph
technique. There are several other features, including event-canceling relations,
ways to combine similar events into one, refining the event-scheduling arcs to include
conditional scheduling, and incorporating the state variables needed; see the origi-
nal paper by Schruben (1983b). Sargent (1988) and Som and Sargent (1989) extend
and refine the technique, giving comprehensive illustrations involving a flexible
manufacturing system and computer network models. Event graphs can also be
used to test whether two apparently different models might in fact be equivalent
[Yiicesan and Schruben (1992)], as well as to forecast how computationally inten-
sive a model will be when it is executed [ Yiicesan and Schruben (1998)]. Schruben
and Schruben (www.sigmawiki.com) developed a software package, SIGMA, for
interactive event-graph modeling that runs a model and generates source code. A
general event-graph review and tutorial are given by Buss (1996), and advanced
applications of event graphs are described in Schruben et al. (2003).

In modeling a system, the event-graph technique can be used to simplify the
structure and to detect certain kinds of errors, and is especially useful in complex
models involving a large number of interrelated events. Other considerations should
also be kept in mind, such as continually asking why a particular state variable is
needed; see Prob. 1.4.
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1.5
SIMULATION OF AN INVENTORY SYSTEM

We shall now see how simulation can be used to compare alternative ordering poli-
cies for an inventory system. Many of the elements of our model are representative
of those found in actual inventory systems.

1.5.1 Problem Statement

A company that sells a single product would like to decide how many items it should
have in inventory for each of the next n months (n is a fixed input parameter). The
times between demands are IID exponential random variables with a mean of
0.1 month. The sizes of the demands, D, are IID random variables (independent of
when the demands occur), with

1 w.p. é
2 p3
D= WP
3 w.p. 3
4 w.p. i

where w.p. is read “with probability.”

At the beginning of each month, the company reviews the inventory level and
decides how many items to order from its supplier. If the company orders Z items,
it incurs a cost of K + iZ, where K = $32 is the setup cost and i = $3 is the incre-
mental cost per item ordered. (If Z = 0, no cost is incurred.) When an order is
placed, the time required for it to arrive (called the delivery lag or lead time) is a
random variable that is distributed uniformly between 0.5 and 1 month.

The company uses a stationary (s, S) policy to decide how much to order, i.e.,

_JS—=1 ifI<s
Z_{O ifl =

where [ is the inventory level at the beginning of the month.

When a demand occurs, it is satisfied immediately if the inventory level is at
least as large as the demand. If the demand exceeds the inventory level, the excess
of demand over supply is backlogged and satisfied by future deliveries. (In this case,
the new inventory level is equal to the old inventory level minus the demand size,
resulting in a negative inventory level.) When an order arrives, it is first used to
eliminate as much of the backlog (if any) as possible; the remainder of the order (if
any) is added to the inventory.

So far, we have discussed only one type of cost incurred by the inventory
system, the ordering cost. However, most real inventory systems also have two
additional types of costs, holding and shortage costs, which we discuss after in-
troducing some additional notation. Let /(¢) be the inventory level at time ¢ [note
that I() could be positive, negative, or zero]; let I (f) = max{I(¢), 0} be the num-
ber of items physically on hand in the inventory at time # [note that /*(f) = 0]; and
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FIGURE 1.28
A realization of I(f), I (1), and I"(¢) over time.

let I (#) = max{—I(t), 0} be the backlog at time ¢ [/ (f) = 0 as well]. A possible
realization of I(¢), I"(¢), and I (¢) is shown in Fig. 1.28. The time points at which
1(t) decreases are the ones at which demands occur.

For our model, we shall assume that the company incurs a holding cost of
h = $1 per item per month held in (positive) inventory. The holding cost includes
such costs as warehouse rental, insurance, taxes, and maintenance, as well as the
opportunity cost of having capital tied up in inventory rather than invested else-
where. We have ignored in our formulation the fact that some holding costs are still
incurred when 17 () = 0. However, since our goal is to compare ordering policies,
ignoring this factor, which after all is independent of the policy used, will not affect
our assessment of which policy is best. Now, since 17 (¢) is the number of items held
in inventory at time ¢, the time-average (per month) number of items held in inven-
tory for the n-month period is

Jnﬁ(z) dt
I = o

n

which is akin to the definition of the time-average number of customers in queue
given in Sec. 1.4.1. Thus, the average holding cost per month is Al .

Similarly, suppose that the company incurs a backlog cost of = = $5 per item
per month in backlog; this accounts for the cost of extra record keeping when a
backlog exists, as well as loss of customers’ goodwill. The time-average number of
items in backlog is

Lnr(t) dt

n

so the average backlog cost per month is 77/~
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Assume that the initial inventory level is /(0) = 60 and that no order is out-
standing. We simulate the inventory system for n = 120 months and use the average
total cost per month (which is the sum of the average ordering cost per month,
the average holding cost per month, and the average shortage cost per month) to
compare the following nine inventory policies:

s 20 20 20 20 40 40 40 60 60

S 40 60 80 100 60 80 100 80 100

We do not address here the issue of how these particular policies were chosen for
consideration; statistical techniques for making such a determination are discussed
in Chap. 12.

Note that the state variables for a simulation model of this inventory system are
the inventory level /(¢), the amount of an outstanding order from the company to the
supplier, and the time of the last event [which is needed to compute the areas under
the I'*(¢) and I (¢) functions].

1.5.2 Program Organization and Logic

Our model of the inventory system uses the following types of events:

Event description Event type

Arrival of an order to the company from the supplier

Demand for the product from a customer

End of the simulation after » months

Inventory evaluation (and possible ordering) at the beginning of a month

AW -

We have chosen to make the end of the simulation event type 3 rather than type 4,
since at time 120 both “end-simulation” and “inventory-evaluation” events will
eventually be scheduled and we would like to execute the former event first at this
time. (Since the simulation is over at time 120, there is no sense in evaluating the
inventory and possibly ordering, incurring an ordering cost for an order that will
never arrive.) The execution of event type 3 before event type 4 is guaranteed
because the timing routine gives preference to the lowest-numbered event if two or
more events are scheduled to occur at the same time. In general, a simulation model
should be designed to process events in an appropriate order when time ties occur.
An event graph (see Sec. 1.4.7) appears in Fig. 1.29.

There are three types of random variates needed to simulate this system. The
interdemand times are distributed exponentially, so the same algorithm (and code)
as developed in Sec. 1.4 can be used here. The demand-size random variate D must
be discrete, as described above, and can be generated as follows. First divide the
unit interval into the contiguous subintervals C, = [0, é), C, = [é, %), C, = [%, %),
and C, = [%, 1], and obtain a U(0, 1) random variate U from the random-number
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Order
arrival —/\/\/\*6)

End

simulation

FIGURE 1.29
Event graph, inventory model.

generator. If U falls in C,, return D = 1; if U falls in C,, return D = 2; and so on.
Since the width of C, ist — 0 = £, and since U is uniformly distributed over [0, 1],
the probability that U falls in C, (and thus that we return D = 1) is i this agrees with
the desired probability that D = 1. Similarly, we return D = 2 if U falls in C,, hav-
ing probability equal to the width of C,,3 — & = 1, as desired; and so on for the
other intervals. The subprogram to generate the demand sizes uses this principle
and takes as input the cutoff points defining the above subintervals, which are the
cumulative probabilities of the distribution of D.

The delivery lags are uniformly distributed, but not over the unit interval [0,1].
In general, we can generate a random variate distributed uniformly over any interval
[a,b] by generating a U(0, 1) random number U, and then returning a + U(b — a).
That this method is correct seems intuitively clear, but will be formally justified in
Sec. 8.3.1.

We now describe the logic for event types 1, 2, and 4, which actually involve
state changes.

The order-arrival event is flowcharted in Fig. 1.30, and must make the changes
necessary when an order (which was previously placed) arrives from the supplier.
The inventory level is increased by the amount of the order, and the order-arrival
event must be eliminated from consideration. (See Prob. 1.12 for consideration of
the issue of whether there could be more than one order outstanding at a time for
this model with these parameters.)

A flowchart for the demand event is given in Fig. 1.31, and processes the
changes necessary to represent a demand’s occurrence. First, the demand size is
generated, and the inventory is decremented by this amount. Finally, the time of the
next demand is scheduled into the event list. Note that this is the place where the
inventory level might become negative.
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Order-arrival
event

Increment the inventory
level by the amount
previously ordered

;

Eliminate order-arrival
event from consideration

Demand
event

Generate the size of
this demand

!

Decrement the
inventory level by this
demand size

Schedule the next
demand event

FIGURE 1.30 FIGURE 1.31
Flowchart for order-arrival routine, Flowchart for demand routine,
inventory model. inventory model.

The inventory-evaluation event, which takes place at the beginning of each
month, is flowcharted in Fig. 1.32. If the inventory level I(¢) at the time of the
evaluation is at least s, then no order is placed, and nothing is done except to
schedule the next evaluation into the event list. On the other hand, if I(r) < s, we
want to place an order for § — I(¢) items. This is done by storing the amount of the
order [S — I(#)] until the order arrives, and scheduling its arrival time. In this case as
well, we want to schedule the next inventory-evaluation event.

As in the single-server queueing model, it is convenient to write a separate
nonevent routine to update the continuous-time statistical accumulators. For this
model, however, doing so is slightly more complicated, so we give a flowchart for
this activity in Fig. 1.33. The principal issue is whether we need to update the area
under I (¢) or I"(¢) (or neither). If the inventory level since the last event has been
negative, then we have been in backlog, so the area under / () only should be
updated. On the other hand, if the inventory level has been positive, we need only
update the area under I (¢). If the inventory level has been zero (a possibility), then
neither update is needed. The code for this routine also brings the variable for the
time of the last event up to the present time. This routine will be invoked from the
main program just after returning from the timing routine, regardless of the event
type or whether the inventory level is actually changing at this point. This provides
a simple (if not the most computationally efficient) way of updating integrals for
continuous-time statistics.
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Inventory-
evaluation event

Determine amount
to be ordered [S — I(¢)]

Incur ordering cost and
gather statistics

Schedule order-arrival
event for this order

Schedule the next
inventory-evaluation
event

FIGURE 1.32

Flowchart for inventory-
evaluation routine, inventory
model.

Section 1.5.3 contains a program to simulate this model in C. Neither the timing
nor exponential-variate-generation subprograms will be shown, as they are the same
as for the single-server queueing model in Sec. 1.4. The reader should also note the
considerable similarity between the main programs of the queueing and inventory
models.

1.5.3 C Program

The external definitions are shown in Fig. 1.34. The array prob_distrib_demand will
be used to hold the cumulative probabilities for the demand sizes, and is passed into
the random-integer-generation function random_integer. As for the queueing model,
we must include the header file lcgrand.h (in Fig. 7.6) for the random-number gen-
erator of Fig. 7.5. All code is available at www.mhhe.com/law.

The code for the main function is given in Fig. 1.35. After opening the input and
output files, the number of events is set to 4. The input parameters (except s and S)
are then read in and written out, and a report heading is produced; for each (s, S)
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Update time-average
statistical accumulators

Was I(1)
during the
previous interval
negative, zero, or
positive?

Negative Positive

Update area under Update area under
Ii(t) 7ero 1+([)

FIGURE 1.33

Flowchart for routine to update the continuous-time statistical
accumulators, inventory model.

/* External definitions for inventory system. */

#include <stdio.h>
#include <math.h>
#include "lcgrand.h" /* Header file for random-number generator. */

int amount, bigs, initial inv_level, inv_level, next_event_type, num events,

num_months, num values_demand, smalls;

float area_holding, area_shortage, holding cost, incremental_cost, maxlag,

mean_interdemand, minlag, prob_distrib_demand[26], setup_cost,
shortage_cost, sim_time, time_last_event, time_next_event[5],
total_ordering_cost;

FILE *infile, *outfile;

void initialize(void);

void timing(void);

void order_arrival(void);

void demand(void);

void evaluate(void);

void report(void);

void wupdate_time_avg_stats(void);

float expon(float mean);

int random_integer (float prob_distrib []1);
float uniform(float a, float b);

FIGURE 1.34
C code for the external definitions, inventory model.
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main() /* Main function. */
int i, num_policies;
/* Open input and output files. */

fopen("inv.in", "r");
fopen("inv.out", "w");

infile
outfile

/* Specify the number of events for the timing function. */
num_events = 4;
/* Read input parameters. */

fscanf(infile, "%d %d %d %d %f %f %f %f %f %f %f",
&initial_inv_level, &num months, &num_policies, &num values_demand,
&mean_interdemand, &setup_cost, &incremental cost, &holding cost,
&shortage_cost, &minlag, &maxlag);
for (i = 1; i <= num values_demand; ++i)
fscanf(infile, "%f", &prob_distrib_demand[il]);

/* Write report heading and input parameters. */

fprintf (outfile, "Single-product inventory system\n\n");
fprintf(outfile, "Initial inventory level%24d items\n\n",
initial_inv level);
fprintf (outfile, "Number of demand sizes%25d\n\n", num values_demand) ;
fprintf(outfile, "Distribution function of demand sizes ");
for (i = 1; i <= num_values_demand; ++i)
fprintf (outfile, "%8.3f", prob_distrib_demand[i]);
fprintf(outfile, "\n\nMean interdemand time%26.2f\n\n", mean interdemand) ;
fprintf(outfile, "Delivery lag range%29.2f to%10.2f months\n\n", minlag,
maxlag);
fprintf(outfile, "Length of the simulation%23d months\n\n", num months);
fprintf(outfile, "K =%6.1f i =%6.1f h =%6.1f pi =%6.1f\n\n",
setup_cost, incremental_ cost, holding cost, shortage_cost);
fprintf(outfile, "Number of policies%29d\n\n", num_policies);

fprintf (outfile, " Average Average");
fprintf (outfile, " Average Average\n");
fprintf(outfile, " Policy total cost ordering cost");

fprintf(outfile, " holding cost shortage cost");
/* Run the simulation varying the inventory policy. */
for (i = 1; i <= num policies; ++i) {
/* Read the inventory policy, and initialize the simulation. */

fscanf(infile, "%d %d", &smalls, &bigs);
initialize();

/* Run the simulation until it terminates after an end-simulation event
(type 3) occurs. */

do {
/* Determine the next event. */
timing();
/* Update time-average statistical accumulators. */
update_time_avg_stats();

/* Invoke the appropriate event function. */

FIGURE 1.35
C code for the main function, inventory model.
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switch (next_event_type) {
case 1:
order_arrival();
break;
case 2:
demand () ;
break;
case 4:
evaluate();
break;
case 3:
report () ;
break;
}

/* If the event just executed was not the end-simulation event (type 3),
continue simulating. Otherwise, end the simulation for the current
(s,8) pair and go on to the next pair (if any). */

} while (next_event_type != 3);
}

/* End the simulations. */

fclose(infile);
fclose(outfile);

return 0;

}

FIGURE 1.35
(continued)

pair the simulation will then produce in the report function a single line of output
corresponding to this heading. Then a “for” loop is begun, each iteration of which
performs an entire simulation for a given (s, S) pair; the first thing done in the loop
is to read the next (s, S) pair. The model is initialized, and a “do while” loop is used
to keep simulating as long as the type 3 (end-simulation) event does not occur, as in
Sec. 1.4.6. Inside this loop, the timing function is used to determine the next event
type and to update the simulation clock. After returning from timing with the next
event type, the continuous-time statistics are updated before executing the event
routine itself. A “switch” statement is then used as before to transfer control to the
appropriate event routine. Unlike the fixed-time stopping rule of Sec. 1.4.6, when
the “do while” loop ends here, we do not stop the program, but go to the next step
of the enclosing “for” loop to read in the next (s, S) pair and do a separate simula-
tion; the entire program stops only when the “for” loop is over and there are no more
(s, S) pairs to consider.

The initialization function appears in Fig. 1.36. Observe that the first inventory
evaluation is scheduled at time O since, in general, the initial inventory level could
be less than s. Note also that event type 1 (order arrival) is eliminated from consid-
eration, since our modeling assumption was that there are no outstanding orders
initially.

The event functions order_arrival, demand, and evaluate are shown in Figs. 1.37
through 1.39, and correspond to the general discussion given in Sec. 1.5.2, and
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void initialize(void) /* Initialization function. */

{
/* Initialize the simulation clock. */
sim time = 0.0;
/* Initialize the state variables. */
inv_level = initial_inv_level;
time_last_event = 0.0;
/* Initialize the statistical counters. */
total_ordering cost = 0.0;
area_holding = 0.0;
area_shortage = 0.0;
/* Initialize the event list. Since no order is outstanding, the order-
arrival event is eliminated from consideration. */
time_next_event[1l] = 1.0e+30;
time_next_event[2] = sim time + expon(mean_ interdemand);
time_next_event[3] = num months;
time_next_event[4] = 0.0;
}

FIGURE 1.36
C code for function initialize, inventory model.

void order_arrival(void) /* Order arrival event function. */
{

/* Increment the inventory level by the amount ordered. */
inv_level += amount;

/* Since no order is now outstanding, eliminate the order-arrival event from
consideration. */

time_next_event[1l] = 1.0e+30;
}

FIGURE 1.37
C code for function order_arrival, inventory model.

void demand(void) /* Demand event function. */

t /* Decrement the inventory level by a generated demand size. */
inv_level -= random integer (prob_distrib_demand);
/* Schedule the time of the next demand. */

) time_next_event[2] = sim_time + expon(mean_ interdemand);

FIGURE 1.38
C code for function demand, inventory model.
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void evaluate(void) /* Inventory-evaluation event function. */

{

/* Check whether the inventory level is less than smalls. */
if (inv_level < smalls) {

/* The inventory level is less than smalls, so place an order for the
appropriate amount. */

amount = bigs - inv_level;
total_ordering cost += setup_cost + incremental_cost * amount;

/* Schedule the arrival of the order. */

time_next_event[1l] = sim_time + uniform(minlag, maxlag);

}

/* Regardless of the place-order decision, schedule the next inventory
evaluation. */

time_next_event[4] = sim time + 1.0;

}

FIGURE 1.39
C code for function evaluate, inventory model.

void report(void) /* Report generator function. */
/* Compute and write estimates of desired measures of performance. */
float avg holding cost, avg_ordering cost, avg shortage_cost;

avg_ordering_cost = total_ordering cost / num months;
avg_holding cost = holding cost * area_holding / num_months;
avg_shortage_cost = shortage_cost * area_shortage / num months;
fprintf (outfile, "\n\n(%3d,%3d)%15.2f%15.2f%15.2f%15.2€f",

smalls, bigs,

avg_ordering_cost + avg_holding cost + avg_shortage_cost,

avg_ordering_cost, avg_holding cost, avg_shortage_cost);

}

FIGURE 1.40
C code for function report, inventory model.

to the flowcharts in Figs. 1.30 through 1.32. In evaluate, note that the variable
total_ordering_cost is increased by the ordering cost for any order that might be
placed here.

The report generator is listed in Fig. 1.40, and computes the three components
of the total cost separately, adding them together to get the average total cost per
month. The current values of s and S are written out for identification purposes,
along with the average total cost and its three components (ordering, holding, and
shortage costs).

Function update_time_avg_stats, which was discussed in general in Sec. 1.5.2
and flowcharted in Fig. 1.33, is shown in Fig. 1.41. Note that if the inventory level
inv_level is zero, neither the “if” nor the “else if” condition is satisfied, resulting in
no update at all, as desired. As in the single-server queueing model of Sec. 1.4, it
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void update_time_avg_stats(void) /* Update area accumulators for time-average
statistics. */
{

float time_since_last_event;

/* Compute time since last event, and update last-event-time marker. */

sim time - time_last_event;
sim_time;

time_since_last_event
time_last_event

/* Determine the status of the inventory level during the previous interval.
If the inventory level during the previous interval was negative, update
area_shortage. If it was positive, update area_holding. If it was zero,
no update is needed. */

if (inv_level < 0)

area_shortage -= inv_level * time_since_last_event;
else if (inv_level > 0)

area_holding += inv_level * time_since_last_event;

}

FIGURE 141
C code for function update_time_avg_stats, inventory model.

int random_integer(float prob_distrib[]) /* Random integer generation
function. */
{

int i;
float u;

/* Generate a U(0,1) random variate. */
u = lcgrand(1l);

/* Return a random integer in accordance with the (cumulative) distribution
function prob_distrib. */

for (i = 1; u >= prob_distrib[i]; ++1i)

;
return i;

}

FIGURE 1.42
C code for function random_integer.

might be necessary to make both the sim_time and time_last_event variables be of
type double to avoid severe roundoff error in their subtraction at the top of the
routine if the simulation is to be run for a long period of simulated time.

The code for function random_integer is given in Fig. 1.42, and is general in that
it will generate an integer according to distribution function prob_distrib[I], provided
that the values of prob_distrib[I] are specified. (In our case, prob_distrib[1] = é
prob_distrib[2] = % prob_distrib[3] = % and prob_distrib[4] = 1, all specified to
three-decimal accuracy on input.) The logic agrees with the discussion in Sec. 1.5.2;
note that the input array prob_distrib must contain the cumulative distribution func-
tion rather than the probabilities that the variate takes on its possible values.

The function uniform is given in Fig. 1.43, and is as described in Sec. 1.5.2.
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float uniform(float a, float b) /* Uniform variate generation function. */
{

/* Return a U(a,b) random variate. */

return a + lcgrand(l) * (b - a);
}

FIGURE 1.43
C code for function uniform.

1.5.4 Simulation Output and Discussion

The simulation report (in file inv.out) is given in Fig. 1.44. For this model, there
were some differences in the results across different compilers and computers,
even though the same random-number-generator algorithm was being used;
see the discussion at the beginning of Sec. 1.4.4 for an explanation of this
discrepancy.

Single-product inventory system

Initial inventory level 60 items
Number of demand sizes 4
Distribution function of demand sizes 0.167 0.500 0.833 1.000
Mean interdemand time 0.10 months
Delivery lag range 0.50 to 1.00 months
Length of the simulation 120 months
K = 32.0 i= 3.0 h = 1.0 pi = 5.0
Number of policies 9
Average Average Average Average
Policy total cost ordering cost holding cost shortage cost
( 20, 40) 126.61 99.26 9.25 18.10
( 20, 60) 122.74 90.52 17.39 14.83
( 20, 80) 123.86 87.36 26.24 10.26
( 20,100) 125.32 81.37 36.00 7.95
( 40, 60) 126.37 98.43 25.99 1.95
( 40, 80) 125.46 88.40 35.92 1.14
( 40,100) 132.34 84.62 46.42 1.30
( 60, 80) 150.02 105.69 44.02 0.31
( 60,100) 143.20 89.05 53.91 0.24

FIGURE 1.44
Output report, inventory model.
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The three separate components of the average total cost per month were re-
ported to see how they respond individually to changes in s and S, as a possible
check on the model and the code. For example, fixing s = 20 and increasing S from
40 to 100 increases the holding cost steadily from $9.25 per month to $36.00 per
month, while reducing shortage cost at the same time; the effect of this increase in
S on the ordering cost is to reduce it, evidently since ordering up to larger values of
S implies that these larger orders will be placed less frequently, thereby avoiding the
fixed ordering cost more often. Similarly, fixing S at, say, 100, and increasing s from
20 to 60 leads to a decrease in shortage cost ($7.95, $1.30, $0.24) but an increase in
holding cost ($36.00, $46.42, $53.91), since increases in s translate into less will-
ingness to let the inventory level fall to low values. While we could probably have
predicted the direction of movement of these components of cost without doing
the simulation, it would not have been possible to say much about their magnitude
without the aid of the simulation output.

Since the overall criterion of total cost per month is the sum of three compo-
nents that move in sometimes different directions in reaction to changes in s and S,
we cannot predict even the direction of movement of this criterion without the simu-
lation. Thus, we simply look at the values of this criterion, and it would appear that
the (20, 60) policy is the best, having an average total cost of $122.74 per month.
However, in the present context where the length of the simulation is fixed (the
company wants a planning horizon of 10 years), what we really want to estimate for
each policy is the expected average total cost per month for the first 120 months.
The numbers in Fig. 1.44 are estimates of these expected values, each estimate
based on a sample of size / (simulation run or replication). Since these estimates
may have large variances, the ordering of them may differ considerably from the
ordering of the expected values, which is the desired information. In fact, if we
reran the nine simulations using different U(0, 1) random variates, the estimates
obtained might differ greatly from those in Fig. 1.44. Furthermore, the ordering of
the new estimates might also be different.

We conclude from the above discussion that when the simulation run length is
fixed by the problem context, it will generally not be sufficient to make a single
simulation run of each policy or system of interest. In Chap. 9 we address the issue
of just how many runs are required to get a good estimate of a desired expected
value. Chapters 10 and 12 consider related problems when we are concerned with
several different expected values arising from alternative system designs.

1.6
PARALLEL/DISTRIBUTED SIMULATION
AND THE HIGH LEVEL ARCHITECTURE

The simulations in Secs. 1.4 and 1.5 (as well as those to be considered in Chap. 2)
all operate in basically the same way. A simulation clock and an event list interact
to determine which event will be processed next, the simulation clock is advanced
to the time of this event, and the computer executes the event logic, which may in-
clude updating state variables, updating the event list, and collecting statistics. This
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logic is executed in order of the events’ simulated time of occurrence; i.e., the simu-
lation is sequential. Furthermore, all work is done on a single computer.

In recent years computer technology has enabled individual processors or com-
puters to be linked together into parallel or distributed computing environments.
This allows the possibility of executing different parts of a single simulation model
on multiple processors operating at the same time, or in “parallel,” and thus reduc-
ing the overall time to complete the simulation. Alternatively, two or more different
simulation models operating on separate computers might be tied together over a
network to produce one overall simulation model, where the individual models
interact with each other over time. In this section we introduce these alternative
approaches to executing a simulation model.

1.6.1 Parallel Simulation

Parallel discrete-event simulation [see Fujimoto (1998, 2000, 2003)] is concerned
with the execution of a simulation model on a tightly coupled computer system
(e.g., a supercomputer or a shared-memory multiprocessor). By spreading the exe-
cution of a simulation over several different processors, it is hoped that the model
execution time can be reduced considerably (up to a factor equal to the number of
processors). For example, if one is simulating a communications network with
thousands of nodes or a large military model, then the execution time could be
excessive and parallel simulation might be considered. Another possible use for
parallel simulation is in real-time decision making. For example, in an air-traffic
control system, it might be of interest to simulate several hours of air traffic to
decide “now” how best to reroute traffic [see Wieland (1998)].

To develop a parallel simulation, a model is decomposed into several logical
processes (LPs) (or submodels). The individual LPs (or groups of them) are as-
signed to different processors, each of which goes to work simulating its piece of
the model. The LPs communicate with each other by sending time-stamped mes-
sages or events to each other. For example, a manufacturing system is typically
modeled as an interconnected network of queueing systems, each representing a
different workstation. When a job leaves one workstation, an “arrival” event
must be sent to the next station on the job’s routing (unless the job is leaving
the system).

A crucial issue in parallel simulation is to ensure that events in the overall
simulation model, regardless of their LP, are processed in their proper time sequence.
For example, if the arrival of a particular job to one station is supposed to take place
before the departure of another job from a different station, then there must be a
synchronization mechanism to make sure that this takes place. If each LP processes
all its events (generated either by itself or by another LP) in increasing order of
event time, a requirement called the local causality constraint, then it can be shown
that the parallel simulation will produce exactly the same results as if the overall
simulation model were run sequentially on a single computer.

Each LP can be viewed as a sequential discrete-event simulation model, having
its own local state variables, event list, and simulation clock. The overall parallel
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simulation model, however, does not have global counterparts, as would be the case
in a sequential simulation model.

Historically, two different types of synchronization mechanisms have been used:
conservative and optimistic. In conservative synchronization [see Bryant (1977) and
Chandy and Misra (1979)], the goal is to absolutely avoid violating the local causal-
ity constraint. For example, suppose that a particular LP is currently at simulation
time 25 and is ready to process its next event that has an event time of 30. Then the
synchronization mechanism must make sure that this LP won’t later receive an event
from another LP with an event time of less than 30. Thus, the goal is to determine
when it is actually “safe” to process a particular event, i.e., when can it be guaranteed
that no event will later be received by this LP with a smaller event time.

Conservative synchronization mechanisms have two disadvantages [see
Fujimoto (1998, pp. 444-446)]:

1. They cannot fully exploit the parallelism that is available in a simulation applica-
tion. If event A could possibly affect event B in any way, then A and B must be
executed sequentially. If the simulation model is such that A seldom affects B,
then A and B could have been processed concurrently most of the time.

2. They are not very robust—a seemingly small change in the model can result in
serious degradation in performance.

In optimistic synchronization, violations of the local causality constraint are
allowed to occur, but the synchronization mechanism detects violations and re-
covers from them. As above, each LP simulates its own piece of the model for-
ward in time, but does not wait to receive messages from other processors that
may be moving along at different rates—this waiting is necessary for conservative
synchronization.

The time-warp mechanism [see Jefferson (1985)] is the best-known optimistic
approach. If an LP receives a message that should have been received in its past
(and, thus, possibly affecting its actions from that point on), then a rollback occurs
for the receiving LP, whereby its simulation clock reverts to the (earlier) time of the
incoming message. For example, if LP A has been simulated up to time 50 and a
message from LP B comes in that should have been received at time 40, then the
clock for A is rolled back to 40, and the simulation of A between times 40 and 50 is
canceled since it might have been done incorrectly without knowing the contents of
the time-40 message. Part of the canceled work may have been sending messages
to other LPs, each of which is nullified by sending a corresponding antimessage—
the antimessages may themselves generate secondary rollbacks at their destination
LPs, etc.

Optimistic synchronization mechanisms can exploit the parallelism in a simu-
lation application better than a conservative approach, since they are not limited
by the worst-case scenario (see disadvantage 1 for conservative synchronization).
However, they do have these disadvantages [see Fujimoto (1998, pp. 449-451)]:

1. They incur the overhead computations associated with executing rollbacks.
2. They require more computer memory since the state of each LP must be saved
periodically to recover from a rollback.
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The air-traffic-control application described above used an optimistic synchro-
nization mechanism and ran on a four-processor, shared-memory Sun workstation.
Another example of optimistic synchronization is the Global-Scale Agent Model
(GSAM) of disease propagation [see Parker and Epstein (2011)]. It has been used to
simulate a disease outbreak in a population of 6.5 billion people.

Since computer-processor speeds doubled every 18 months for many years, an
increasingly smaller number of simulation models require the use of parallel simu-
lation to execute in a reasonable amount of time. On the other hand, parallel simula-
tion can enable certain models to be run that do not fit into the memory provided by
a single machine. For example, Fujimoto et al. (2003) have shown that parallel-
simulation methodology allows one to dramatically increase the size of communica-
tions networks that can be simulated.

1.6.2 Distributed Simulation and the High Level Architecture

Distributed simulation is primarily used to create an overall simulation model,
which is a composition of two or more individual simulation models that are located
on networked computers. Interest in this form of distributed simulation began with
the desire to create real-time, man-in-the-loop simulations that could be used for
training military personnel. The SIMNET (SIMulator NETworking) project, which
ran from 1983 to 1990, demonstrated the viability of this concept. This led to the
creation of a set of protocols for interconnecting simulations, which was known as
the Distributed Interactive Simulation (DIS) standard. DIS has given way to the
High Level Architecture (HLA) [see Dahmann et al. (1998), Kuhl et al. (2000), and
the website www.msco.mil], which was developed by the U.S. Department of
Defense (DoD) under the leadership of the Defense Modeling and Simulation Office
(DMSO), which has been redesignated as the Modeling & Simulation Coordination
Office (MSCO).

The HLA (IEEE Standard 1516-2010) is a software architecture designed to
promote the reuse and interoperation of simulations. It was based on the premise
that no one simulation could satisfy all uses and applications in the defense industry,
and it will ultimately reduce the time and cost required to create a synthetic environ-
ment for a new purpose. The HLA can combine the following DoD-defined types of
simulations:

» Live—real people operating real systems (e.g., a field test)

* Virtual—real people operating simulated systems (e.g., people in a tank-cockpit
simulator fighting simulation-generated enemy forces)

* Constructive—simulated people operating simulated systems (e.g., a discrete-
event simulation)

All DoD simulations are supposed to be HLA-compliant beginning January 1, 2001
unless a waiver is obtained.

An HLA federation consists of a collection of interacting individual simula-
tions, called federates, a Runtime Infrastructure (RTI), and an interface, as shown
in Fig. 1.45. The RTI provides a set of general-purpose services that support the
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FIGURE 1.45
Functional view of an HLA federation.

simulations in carrying out federate-to-federate interactions, and it also provides
functions for federation management. All interactions among the federates go
through the RTI, whose software and algorithms are not defined by the HLA. (RTI
software can be purchased from third-party vendors.) The HLA runtime interface
specification provides a standard mechanism for federates to interact with the RTI,
to invoke the RTI services to support interactions among the federates, and to re-
spond to requests from the RTI. The interface is implementation-independent and
doesn’t depend on the “object” models (e.g., for an entity) and data-exchange
requirements of any federate. [HLA objects do not have methods as in classical
object-oriented simulation (see Sec. 3.6).]

The HLA is formally defined by three components: the interface specification,
the object model template, and the rules. The HLA interface specification describes
the runtime services provided to the federates by the RTI and to the RTI by the
federates. There are six classes of services that provide capabilities for creation and
operation of a federation, for time management (i.e., synchronization), for efficient
routing of data among the federates during the execution of the federation, etc.

The HLA object models are descriptions of the essential sharable elements of
the federation in object terms. Since the HLA is oriented toward interoperability,
object models describe the critical aspects of federates and federations that are
shared across the overall simulation model. The HLA puts no constraints on the
content of the object models, but does require that these models be documented in
a standard format called the Object Model Template (OMT). There are two types of
object models: the Federation Object Model (FOM) and the Simulation Object
Model (SOM). The HLA FOM describes the set of objects, attributes, and interac-
tions (e.g., an event) that are shared across a federation. The HLA SOM describes a
simulation (federate) in terms of the objects, attributes, and interactions that it can
offer to future federations, which facilitates the assessment of whether the simula-
tion is appropriate for participation in a new federation.

The HLA rules summarize the key principles underlying the HLA and are
divided into two groups: federation and federate rules. Federation rules specify that
every federation must have a FOM, that all object representations in a federation
reside in the federates rather than in the RTI, etc. Federate rules state that the public
information for a simulation is documented in a SOM, that local time manage-
ment is done using the time-management services provided by the RTI, etc. [See
Fujimoto (2003) for a discussion of time management in the HLA.]
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HLA federations within the DoD have been used for training military person-
nel, for test and evaluation of military equipment, and for the analysis of new
military systems and tactics. An example of the latter type of application is pro-
vided by the U.S. Navy’s use of HLA to federate the Network Warfare Simulation
(NETWARS) and the Naval Simulation System (NSS) [see Alspaugh et al.
(2004) and Murphy and Flournoy (2002)]. This federation uses conservative time
management.

There is also interest in distributed simulation and the HLA outside of the de-
fense community. For example, the National Institute of Standards and Technology
(NIST) MISSION Project applied HLA to distributed simulations of supply chains
involving multiple organizations (e.g., a supplier and a transportation company)
[see McLean and Riddick (2000)]. A distributed simulation might be necessary
because an organization wants to hide the details of its operations from the other
supply-chain organizations.

Although HLA was originally designed to federate two or more individual sim-
ulations, it is now also being used to self-federate multiple copies of the same simu-
lation model. For example, Fujimoto et al. (2003) and Bodoh and Wieland (2003)
use this approach to parallelize simulation models of large-scale communications
networks and commercial air-traffic control, respectively.

A totally different use of distributed simulation is to make independent replica-
tions of a stand-alone simulation model on networked computers. This will allow an
analyst to make more replications of a particular system configuration in a given
amount of “wall-clock” time, which will result in more statistically precise esti-
mates of the performance measures of interest. This will also allow an analyst to
simulate a larger number of different system configurations in a given amount of
wall-clock time when trying to “optimize” the performance of a system of interest
(see Sec. 12.5). The simulation packages AutoMod and Simio (see Chap. 3) explic-
itly support this use of distributed simulation.

Additional information on parallel and distributed simulation can be found in
the journal ACM Transactions on Modeling and Computer Simulation (TOMACS),
as well as in the annual Proceedings of the Winter Simulation Conference and
the Proceedings of the Workshop on Principles of Advanced and Distributed
Simulation.

1.7
STEPS IN A SOUND SIMULATION STUDY

Now that we have looked in some detail at the inner workings of a discrete-event
simulation, we need to step back and realize that model programming is just
part of the overall effort to design or analyze a complex system by simulation.
Attention must be paid to a variety of other concerns such as modeling system
randomness, validation, statistical analysis of simulation output data, and project
management. Figure 1.46 shows the steps that will compose a typical, sound
simulation study [see also Banks et al. (2010, pp. 16-21) and Law (2003)]. The
number beside the symbol representing each step refers to the more detailed
description of that step below. Note that a simulation study is not a simple
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Steps in a simulation study.

sequential process. As one proceeds with the study, it may be necessary to go
back to a previous step.

1. Formulate the problem and plan the study.

a. Problem of interest is stated by manager.
* Problem may not be stated correctly or in quantitative terms.
* An iterative process is often necessary.


masud
Highlight

masud
Highlight


68 BASIC SIMULATION MODELING

b.

C.

One or more kickoff meetings for the study are conducted, with the project

manager, the simulation analysts, and subject-matter experts (SMEs) in at-

tendance. The following things are discussed:

* Overall objectives of the study

* Specific questions to be answered by the study (required to decide level of
model detail)

* Performance measures that will be used to evaluate the efficacy of differ-
ent system configurations

* Scope of the model

» System configurations to be modeled (required to decide generality of
simulation program)

* Time frame for the study and the required resources

Select the software for the model (see Chap. 3)

2. Collect data and define a model.

a.

Collect information on the system structure and operating procedures.

* No single person or document is sufficient.

* Some people may have inaccurate information—make sure that true SMEs
are identified.

e Operating procedures may not be formalized.

Collect data (if possible) to specify model parameters and input probability
distributions (see Chap. 6).

. Delineate above information and data in a written assumptions document

(see Sec. 5.4.3).

Collect data (if possible) on the performance of the existing system (for
validation purposes in step 6).

. Choosing the level of model detail (see Sec. 5.2), which is an art, should

depend on the following:

* Project objectives
 Performance measures

e Data availability

* Credibility concerns

* Computer constraints

e Opinions of SMEs

* Time and money constraints

There should not be a one-to-one correspondence between each element of
the model and the corresponding element of the system.

Start with a “simple” model and embellish it as needed. Modeling each as-
pect of the system will seldom be required to make effective decisions, and
might result in excessive model execution time, in missed deadlines, or in
obscuring important system factors.

Interact with the manager (and other key project personnel) on a regular
basis (see Sec. 5.4.2).
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3. Is the assumptions document valid?

a. Perform a structured walk-through of the assumptions document before an
audience of managers, analysts, and SMEs (see Sec. 5.4.3). This will
* Help ensure that the model’s assumptions are correct and complete
* Promote interaction among the project members
¢ Promote ownership of the model
» Take place before programming begins, to avoid significant reprogram-
ming later

4. Construct a computer program and verify.

a. Program the model in a programming language (e.g., C, C++, or Java) or in
simulation software (e.g., Arena, ExtendSim, Flexsim, and ProModel).
Benefits of using a programming language are that one is often known, they
offer greater program control, they have a low purchase cost, and they may
result in a smaller model-execution time. The use of simulation software
(see Chap. 3), on the other hand, reduces programming time and results in a
lower project cost.

b. Verify (debug) the simulation computer program (see Sec. 5.3).
5. Make pilot runs.

a. Make pilot runs for validation purposes in step 6.
6. Is the programmed model valid?

a. If there is an existing system, then compare model and system (from step 2)
performance measures for the existing system (see Sec. 5.4.5).

b. Regardless of whether there is an existing system, the simulation analysts
and SMEs should review the model results for correctness.

c. Use sensitivity analyses (see Sec. 5.4.4) to determine what model factors
have a significant impact on performance measures and, thus, have to be
modeled carefully.

7. Design experiments.

a. Specify the following for each system configuration of interest:
* Length of each simulation run
* Length of the warmup period, if one is appropriate
e Number of independent simulation runs using different random numbers
(see Chap. 7)—facilitates construction of confidence intervals

8. Make production runs.

a. Production runs are made for use in step 9.
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9. Analyze output data.

a. Two major objectives in analyzing output data are to
* Determine the absolute performance of certain system configurations (see
Chap. 9)
* Compare alternative system configurations in a relative sense (see Chap. 10
and Sec. 11.2)

10. Document, present, and use results.

a. Document assumptions (see step 2), computer program, and study’s results
for use in the current and future projects.

b. Present study’s results.
e Use animation (see Sec. 3.4.3) to communicate model to managers and
other people who are not familiar with all the model details.
* Discuss model building and validation process to promote credibility.
e Results are used in decision-making process if they are both valid and
credible.

1.8
ADVANTAGES, DISADVANTAGES,
AND PITFALLS OF SIMULATION

We conclude this introductory chapter by listing some good and bad characteristics
of simulation (as opposed to other methods of studying systems), and by noting
some common mistakes made in simulation studies that can impair or even ruin a
simulation project. This subject was also discussed to some extent in Sec. 1.2, but
now that we have worked through some simulation examples, it is possible to be
more specific.

As mentioned in Sec. 1.2, simulation is a widely used and increasingly popular
method for studying complex systems. Some possible advantages of simulation that
may account for its widespread appeal are the following.

* Most complex, real-world systems with stochastic elements cannot be accurately
described by a mathematical model that can be evaluated analytically. Thus, a
simulation is often the only type of investigation possible.

* Simulation allows one to estimate the performance of an existing system under
some projected set of operating conditions.

 Alternative proposed system designs (or alternative operating policies for a single
system) can be compared via simulation to see which best meets a specified
requirement.

* In a simulation we can maintain much better control over experimental conditions
than would generally be possible when experimenting with the system itself (see
Chap. 11).

* Simulation allows us to study a system with a long time frame—e.g., an economic
system—in compressed time, or alternatively to study the detailed workings of a
system in expanded time.


masud
Highlight

masud
Highlight

masud
Highlight


CHAPTER ONE 71

Simulation is not without its drawbacks. Some disadvantages are as follows.

Each run of a stochastic simulation model produces only estimates of a model’s
true characteristics for a particular set of input parameters. Thus, several
independent runs of the model will probably be required for each set of input
parameters to be studied (see Chap. 9). For this reason, simulation models are
generally not as good at optimization as they are at comparing a fixed number
of specified alternative system designs. On the other hand, an analytic model,
if appropriate, can often easily produce the exact true characteristics of that
model for a variety of sets of input parameters. Thus, if a “valid” analytic
model is available or can easily be developed, it will generally be preferable to
a simulation model.

Simulation models are often expensive and time-consuming to develop.

The large volume of numbers produced by a simulation study or the persuasive
impact of a realistic animation (see Sec. 3.4.3) often creates a tendency to place
greater confidence in a study’s results than is justified. If a model is not a “valid”
representation of a system under study, the simulation results, no matter how
impressive they appear, will provide little useful information about the actual
system.

When deciding whether or not a simulation study is appropriate in a given situ-

ation, we can only advise that these advantages and drawbacks be kept in mind and
that all other relevant facets of one’s particular situation be brought to bear as well.
Finally, note that in some studies both simulation and analytic models might be use-
ful. In particular, simulation can be used to check the validity of assumptions needed
in an analytic model. On the other hand, an analytic model can suggest reasonable
alternatives to investigate in a simulation study.

Assuming that a decision has been made to use simulation, we have found the

following pitfalls to the successful completion of a simulation study [see also Law
and McComas (1989)]:

Failure to have a well-defined set of objectives at the beginning of the simulation
study

Failure to have the entire project team involved at the beginning of the study
Inappropriate level of model detail

Failure to communicate with management throughout the course of the simula-
tion study

Misunderstanding of simulation by management

Treating a simulation study as if it were primarily an exercise in computer
programming

Failure to have people with a knowledge of simulation methodology (Chaps. 5,
6, 9, etc.) and statistics on the modeling team

Failure to collect good system data

Inappropriate simulation software

Obliviously using simulation-software products whose complex macro state-
ments may not be well documented and may not implement the desired modeling
logic
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* Belief that easy-to-use simulation packages, which require little or no program-
ming, require a significantly lower level of technical competence

* Misuse of animation

* Failure to account correctly for sources of randomness in the actual system

» Using arbitrary distributions (e.g., normal, uniform, or triangular) as input to the
simulation

* Analyzing the output data from one simulation run (replication) using formulas
that assume independence

* Making a single replication of a particular system design and treating the output
statistics as the “true answers”

e Failure to have a warmup period, if the steady-state behavior of a system is of
interest

* Comparing alternative system designs on the basis of one replication for each
design

» Using the wrong performance measures

We will have more to say about what fo do (rather than what not to do) in the
remaining chapters of this book.

APPENDIX 1A
FIXED-INCREMENT TIME ADVANCE

As mentioned in Sec. 1.3.1, the second principal approach for advancing the simu-
lation clock in a discrete-event simulation model is called fixed-increment time
advance. With this approach, the simulation clock is advanced in increments of
exactly Ar time units for some appropriate choice of Atz. After each update of the
clock, a check is made to determine if any events should have occurred during
the previous interval of length Az. If one or more events were scheduled to have
occurred during this interval, these events are considered to occur at the end of
the interval and the system state (and statistical counters) are updated accordingly.
The fixed-increment time-advance approach is illustrated in Fig. 1.47, where the curved
arrows represent the advancing of the simulation clock and e; (i = 1, 2, .. .) is the
actual time of occurrence of the ith event of any type (not the ith value of the simu-
lation clock). In the time interval [0, A7), an event occurs at time e, but is consid-
ered to occur at time Ar by the model. No events occur in the interval [At, 2Af),
but the model checks to determine that this is the case. Events occur at the times

/\/\/—\/\/

e; At 2At e, e3  3At ey 4At Time

FIGURE 1.47
Illustration of fixed-increment time advance.
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e, and e, in the interval [2Az7, 3Ar), but both events are considered to occur at time
3At, etc. A set of rules must be built into the model to decide in what order to
process events when two or more events are considered to occur at the same time
by the model. Two disadvantages of fixed-increment time advance are the errors
introduced by processing events at the end of the interval in which they occur and
the necessity of deciding which event to process first when events that are not
simultaneous in reality are treated as such by the model. These problems can be
made less severe by making At¢ smaller, but this increases the amount of checking
for event occurrences that must be done and results in an increase in execution
time. Because of these considerations, fixed-increment time advance is generally
not used for discrete-event simulation models when the times between successive
events can vary greatly.

The primary uses of this approach appear to be for systems where it can rea-
sonably be assumed that all events actually occur at one of the times n At (n = 0, 1,
2, ...) for an appropriately chosen At and, unfortunately, for agent-based simulation
(see Sec. 13.2). For example, data in economic systems are often available only
on an annual basis, and it is natural in a simulation model to advance the simulation
clock in increments of 1 year. [See Naylor (1971) for a discussion of simulation of
economic systems. See also Sec. 13.6 for discussion of an inventory system that can
be simulated, without loss of accuracy, by fixed-increment time advance.]

Note that fixed-increment time advance can be realized when using the next-
event time-advance approach by artificially scheduling “events” to occur every At
time units.

APPENDIX 1B
A PRIMER ON QUEUEING SYSTEMS

A queueing system consists of one or more servers that provide service of some kind
to arriving customers. Customers who arrive to find all servers busy (generally) join
one or more gueues (or lines) in front of the servers, hence the name “queueing”
system.

Historically, a large proportion of all discrete-event simulation studies have in-
volved the modeling of a real-world queueing system, or at least some component
of the system being simulated was a queueing system. Thus, we believe that it is
important for the student of simulation to have at least a basic understanding of the
components of a queueing system, standard notation for queueing systems, and
measures of performance that are often used to indicate the quality of service being
provided by a queueing system. Some examples of real-world queueing systems
that have often been simulated are given in Table 1.1. For additional information on
queueing systems in general, see Gross et al. (2009). Bertsekas and Gallager (1992)
is recommended for those interested in queueing models of communications
networks. Finally, Shanthikumar and Buzacott (1993) discuss stochastic models of
manufacturing systems.
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TABLE 1.1
Examples of queueing systems

System Servers Customers
Bank Tellers Customers
Hospital Doctors, nurses, beds Patients
Computer system Central processing unit, Jobs
input/output devices
Manufacturing system Machines, workers Parts
Airport Runways, gates, security Airplanes, travelers
check-in stations
Communications network Nodes, links Messages, packets
1B.1

COMPONENTS OF A QUEUEING SYSTEM

A queueing system is characterized by three components: arrival process, service
mechanism, and queue discipline. Specifying the arrival process for a queueing system
consists of describing how customers arrive to the system. Let A; be the interarrival
time between the arrivals of the (i — 1)st and ith customers (see Sec. 1.3). If A, A,, . ..
are assumed to be IID random variables, we shall denote the mean (or expected)
interarrival time by E(A) and call A = 1/E(A) the arrival rate of customers.

The service mechanism for a queueing system is articulated by specifying the
number of servers (denoted by s), whether each server has its own queue or there is
one queue feeding all servers, and the probability distribution of customers’ service
times. Let S, be the service time of the ith arriving customer. If S|, S,, . . . are IID
random variables, we shall denote the mean service time of a customer by E(S) and
call w = 1/E(S) the service rate of a server.

The queue discipline of a queueing system refers to the rule that a server uses
to choose the next customer from the queue (if any) when the server completes the
service of the current customer. Commonly used queue disciplines include

FIFO: Customers are served in a first-in, first-out manner.

LIFO: Customers are served in a last-in, first-out manner (see Prob. 2.17).

Priority: Customers are served in order of their importance (see Prob. 2.22) or
on the basis of their service requirements (see Probs. 1.24, 2.20, and 2.21).

1B.2
NOTATION FOR QUEUEING SYSTEMS

Certain queueing systems occur so often in practice that standard notations have
been developed for them. In particular, consider the queueing system shown in
Fig. 1.48, which has the following characteristics:

1. s servers in parallel and one FIFO queue feeding all servers
2. A, A,, ...are lID random variables.

3. 5., S,,...arelID random variables.

4. The A/’s and S;’s are independent.
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FIGURE 1.48
A GI/G/s queue.

We call such a system a GI/G/s queue, where GI (general independent) refers to the
distribution of the A;’s and G (general) refers to the distribution of the S;’s. If specific
distributions are given for the A;’s and the S;’s (as is always the case for simulation),
symbols denoting these distributions are used in place of GI and G. The symbol M
is used for the exponential distribution because of the Markovian, i.e., memoryless,
property of the exponential distribution (see Prob. 4.30), the symbol E, for a
k-Erlang distribution (if X is a k-Erlang random variable, then X = =*_, ¥,, where
the Y;’s are IID exponential random variables), and D for deterministic (or constant)
times. Thus, a single-server queueing system with exponential interarrival times and
service times and a FIFO queue discipline is called an M/M/1 queue.

For any GI/G/s queue, we shall call the quantity p = A/(sw) the utilization factor
of the queueing system (sw is the service rate of the system when all servers are busy).
It is a measure of how heavily the resources of a queueing system are utilized.

1B.3
MEASURES OF PERFORMANCE
FOR QUEUEING SYSTEMS

There are many possible measures of performance for queueing systems. We now
describe four such measures that are usually used in the mathematical study of
queueing systems. The reader should not infer from our choices that these measures
are necessarily the most relevant or important in practice (see Chap. 9 for further
discussion). As a matter of fact, for some real-world systems these measures may
not even be well defined; i.e., they may not exist.

Let

D, = delay in queue of ith customer
W, = D, + §, = waiting time in system of ith customer
Q(t) = number of customers in queue at time ¢

L(¢) = number of customers in system at time # [Q() plus number of customers
being served at time ¢]



76 BASIC SIMULATION MODELING

Then the measures

d= }grolo p w.p. 1
> W
and w = lim w.p. 1
n—o n

(if they exist) are called the steady-state average delay and the steady-state average
waiting time. Similarly, the measures

T
Q(1) dr
0 = lim w.p. 1
T—»
T
[ Ly an
and L= lim~—— w.p. 1
T—x T

(if they exist) are called the steady-state time-average number in queue and the
steady-state time-average number in system. Here and throughout this book, the
qualifier “w.p. 17 (with probability 1) is given for mathematical correctness and has
little practical significance. For example, suppose that X' | D,/n —>d as n —
(w.p. 1) for some queueing system. This means that if one performs a very large (an
infinite) number of experiments, then in virtually every experiment 2;_, D,/n con-
verges to the finite quantity d. Note that p < 1 is a necessary condition for d, w, Q,
and L to exist for a GI/G/s queue.

Among the most general and useful results for queueing systems are the con-
servation equations

0=M and L= Aw

These equations hold for every queueing system for which d and w exist [see
Stidham (1974)]. (Section 11.5 gives a simulation application of these relationships.)
Another equation of considerable practical value is given by

w=d+ E(S)

(see Sec. 1.4.5 and also Sec. 11.5 for further discussion).

It should be mentioned that the measures of performance discussed above can
be analytically computed for M/M/s queues (s = 1), M/G/1 queues for any distribu-
tion G, and for certain other queueing systems. In general, the interarrival-time
distribution, the service-time distribution, or both must be exponential (or a variant
of exponential, such as k-Erlang) for analytic solutions to be possible [see Gross
et al. (2009)].
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FIGURE 1.49
Plot of L = p/(1 — p) for the M/M/1 queue.

For example, in the case of an M/M/1 queue, it can be shown analytically that
the steady-state average number in system is given by

L=p/(1-p)

which we plot as a function of p in Fig. 1.49. Note that L is clearly not a linear
function of p, and for p > 0.8 the plot of L increases exponentially. Although the
formula for L is specifically for the M/M/1 queue, the nonlinear behavior seen in
Fig. 1.49 is indicative of queueing systems in general.

Another interesting (and instructive) example of an analytical solution is the
steady-state average delay in queue for an M/G/1 queue, given by

_Af{Var(S) + [E(S)]*}
21 = AE(S)]

where Var($) denotes the variance of the service-time distribution [see, for example,
Ross (2003, p. 508) for a derivation of this formula]. Thus, we can see that if E(S)
is large, then congestion (here measured by d) will be larger; this is certainly to be
expected. The formula also brings out the perhaps less obvious fact that congestion
also increases if the variability of the service-time distribution is large, even if
the mean service time stays the same. Intuitively, this is because a highly variable
service-time random variable will have a greater chance of taking on a large value
(since it must be positive), which means that the (single) server will be tied up for a
long time, causing the queue to build up.
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PROBLEMS

1.1.

1.2

1.3.

14.

1.5.

1.6.

1.7.

Describe what you think would be the most effective way to study each of the follow-
ing systems, in terms of the possibilities in Fig. 1.1, and discuss why.

(a) A small section of an existing factory

(b) A freeway interchange that has experienced severe congestion

(c) An emergency room in an existing hospital

(d) A pizza-delivery operation

(e) The shuttle-bus operation for a rental-car agency at an airport

(f) A battlefield communications network

For each of the systems in Prob. 1.1, suppose that it has been decided to make a study
via a simulation model. Discuss whether the simulation should be static or dynamic,
deterministic or stochastic, and continuous or discrete.

For the single-server queueing system in Sec. 1.4, define L(¢) to be the fotal number of

customers in the system at time ¢ (including the queue and the customer in service at

time ¢, if any).

(a) Is it true that L(r) = Q(f) + 1? Why or why not?

(b) For the same realization considered for the hand simulation in Sec. 1.4.2, make a
plot of L(7) vs. 7 (similar to Figs. 1.5 and 1.6) between times 0 and 7(6).

(¢) From your plot in part (b), compute €(6) = the time-average number of customers
in the system during the time interval [0, 7(6)]. What is €(6) estimating?

(d) Augment Fig. 1.7 to indicate how €(6) is computed during the course of the
simulation.

For the single-server queue of Sec. 1.4, suppose that we did not want to estimate the
expected average delay in queue; the model’s structure and parameters remain the
same. Does this change the state variables? If so, how?

For the single-server queue of Sec. 1.4, let W, = the fotal time in the system of the
ith customer to finish service, which includes the time in queue plus the time in service
of this customer. For the same realization considered for the hand simulation in
Sec. 1.4.2, compute w(m) = the average time in system of the first m customers to
exit the system, for m = 5; do this by augmenting Fig. 1.7 appropriately. How does
this change the state variables, if at all?

From Fig. 1.5, it is clear that the maximum length of the queue was 3. Write a general
expression for this quantity (for the n-delay stopping rule), and augment Fig. 1.7 so
that it can be computed systematically during the simulation.

Modify the code for the single-server queue in Sec. 1.4.4 to compute and write in
addition the following measures of performance:

(a) The time-average number in the system (see Prob. 1.3)

(b) The average total time in the system (see Prob. 1.5)

(¢) The maximum queue length (see Prob. 1.6)

(d) The maximum delay in queue

(e) The maximum time in the system

(f) The proportion of customers having a delay in queue in excess of 1 minute

Run this program, using the random-number generator given in App. 7A.
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The algorithm in Sec. 1.4.3 for generating an exponential random variate with mean 3
was to return —f In U, where U is a U(0, 1) random variate. This algorithm could
validly be changed to return —f8 In(1 — U). Why?

Run the single-server queueing simulation of Sec. 1.4.4 ten times by placing a loop
around most of the main program, beginning just before the initialization and ending
just after invoking the report generator. Discuss the results. (This is called replicating
the simulation 10 times independently.)

For the single-server queueing simulation of Sec. 1.4, suppose that the facility opens
its doors at 9 A.M. (call this time 0) and closes its doors at 5 .M., but operates until all
customers present (in service or in queue) at 5 P.M. have been served. Change the code
to reflect this stopping rule, and estimate the same performance measures as before.

For the single-server queueing system of Sec. 1.4, suppose that there is room in the
queue for only two customers, and that a customer arriving to find that the queue is full
just goes away (this is called balking). Simulate this system for a stopping rule of
exactly 480 minutes, and estimate the same quantities as in Sec. 1.4, as well as the
expected number of customers who balk.

Consider the inventory simulation of Sec. 1.5.

(a) For this model with these parameters, there can never be more than one order
outstanding (i.e., previously ordered but not yet delivered) at a time. Why?

(b) Describe specifically what changes would have to be made if the delivery lag were
uniformly distributed between 0.5 and 6.0 months (rather than between 0.5 and
1.0 month); no other changes to the model are being considered. Should ordering
decisions be based only on the inventory level 1(¢)?

Modify the inventory simulation of Sec. 1.5 so that it makes five replications of each
(s, S) policy; see Prob. 1.9. Discuss the results. Which inventory policy is best? Are
you sure?

A service facility consists of two servers in series (tandem), each with its own FIFO
queue (see Fig. 1.50). A customer completing service at server 1 proceeds to server 2,
while a customer completing service at server 2 leaves the facility. Assume that the
interarrival times of customers to server 1 are IID exponential random variables with
mean 1 minute. Service times of customers at server 1 are IID exponential random
variables with mean 0.7 minute, and at server 2 are [ID exponential random variables
with mean 0.9 minute. Run the simulation for exactly 1000 minutes and estimate for
each server the expected average delay in queue of a customer, the expected time-
average number of customers in queue, and the expected utilization.

In Prob. 1.14, suppose that there is a travel time from the exit from server 1 to the
arrival to queue 2 (or to server 2). Assume that this travel time is distributed uniformly

— OO0 OL—0000 Ol—

Queue 1 Server 1 Queue 2 Server 2

FIGURE 1.50
A tandem queueing system.
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1.16.

1.17.

1.18.

1.19.

1.20.

between 0 and 2 minutes. Modify the simulation and rerun it under the same con-
ditions to obtain the same performance measures. What is the required dimension
(i.e., length) of the event list?

In Prob. 1.14, suppose that no queueing is allowed for server 2. That is, if a customer
completing service at server 1 sees that server 2 is idle, she proceeds directly to
server 2, as before. However, a customer completing service at server 1 when server 2
is busy with another customer must stay at server 1 until server 2 gets done; this is called
blocking. While a customer is blocked from entering server 2, she receives no addi-
tional service from server 1, but prevents server 1 from taking the first customer, if any,
from queue 1. Furthermore, “fresh” customers continue to arrive to queue 1 during a
period of blocking. Compute the same six performance measures as in Prob. 1.14.

For the inventory system of Sec. 1.5, suppose that if the inventory level I(¢) at the
beginning of a month is less than zero, the company places an express order to its
supplier. [If 0 = I(r) < s, the company still places a normal order.] An express order
for Z items costs the company 48 + 4Z dollars, but the delivery lag is now uniformly
distributed on [0.25, 0.50] month. Run the simulation for all nine policies and estimate
the expected average total cost per month, the expected proportion of time that there
is a backlog, that is, I(f) < 0, and the expected number of express orders placed. Is
express ordering worth it?

For the inventory simulation of Sec. 1.5, suppose that the inventory is perishable, hav-
ing a shelf life distributed uniformly between 1.5 and 2.5 months. That is, if an item
has a shelf life of / months, then / months after it is placed in inventory it spoils and is
of no value to the company. (Note that different items in an order from the supplier
will have different shelf lives.) The company discovers that an item is spoiled only
upon examination before a sale. If an item is determined to be spoiled, it is discarded
and the next item in the inventory is examined. Assume that items in the inventory are
processed in a FIFO manner. Repeat the nine simulation runs and assume the same
costs as before. Also compute the proportion of items taken out of the inventory that
are discarded due to being spoiled.

Consider a service facility with s (where s = 1) parallel servers. Assume that inter-
arrival times of customers are IID exponential random variables with mean E(A) and
that service times of customers (regardless of the server) are IID exponential random
variables with mean E(S). If a customer arrives and finds an idle server, the customer
begins service immediately, choosing the leftmost (lowest-numbered) idle server if
there are several available. Otherwise, the customer joins the tail of a single FIFO
queue that supplies customers to all the servers. (This is called an M/M/s queue; see
App. 1B.) Write a general program to simulate this system that will estimate the ex-
pected average delay in queue, the expected time-average number in queue, and the
expected utilization of each of the servers, based on a stopping rule of n delays having
been completed. The quantities s, E(A), E(S), and n should be input parameters. Run
the model for s = 5, E(A) = 1, E(S) = 4, and n = 1000.

Repeat Prob. 1.19, but now assume that an arriving customer finding more than one
idle server chooses among them with equal probability. For example, if s = 5 and a
customer arrives to find servers 1, 3, 4, and 5 idle, he chooses each of these servers
with probability 0.25.
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Customers arrive to a bank consisting of three tellers in parallel.

(a) If there is a single FIFO queue feeding all tellers, what is the required dimension
(i.e., length) of the event list for a simulation model of this system?

(b) If each teller has his own FIFO queue and if a customer can jockey (i.e., jump)
from one queue to another (see Sec. 2.6 for the jockeying rules), what is the re-
quired dimension of the event list? Assume that jockeying takes no time.

(c) Repeat part () if jockeying takes 3 seconds.

Assume in all three parts that no events are required to terminate the simulation.

A manufacturing system contains m machines, each subject to randomly occurring
breakdowns. A machine runs for an amount of time that is an exponential random vari-
able with mean 8 hours before breaking down. There are s (where s is a fixed, positive
integer) repairmen to fix broken machines, and it takes one repairman an exponential
amount of time with mean 2 hours to complete the repair of one machine; no more
than one repairman can be assigned to work on a broken machine even if there are
other idle repairmen. If more than s machines are broken down at a given time, they
form a FIFO “repair” queue and wait for the first available repairman. Further, a re-
pairman works on a broken machine until it is fixed, regardless of what else is happen-
ing in the system. Assume that it costs the system $50 for each hour that each machine
is broken down and $10 an hour to employ each repairman. (The repairmen are paid
an hourly wage regardless of whether they are actually working.) Assume that m = 5,
but write general code to accommodate a value of m as high as 20 by changing an
input parameter. Simulate the system for exactly 800 hours for each of the employ-
ment policies s = 1, 2, . . ., 5 to determine which policy results in the smallest
expected average cost per hour. Assume that at time O all machines have just been
“freshly” repaired.

For the facility of Prob. 1.10, suppose that the server normally takes a 30-minute lunch
break at the first time after 12 noon that the facility is empty. If, however, the server
has not gone to lunch by 1 p.m., the server will go after completing the customer in
service at 1 P.M. (Assume in this case that all customers in the queue at 1 p.M. will wait
until the server returns.) If a customer arrives while the server is at lunch, the customer
may leave immediately without being served; this is called balking. Assume that
whether such a customer balks depends on the amount of time remaining before the
server’s return. (The server posts his time of return from lunch.) In particular, a cus-
tomer who arrives during lunch will balk with the following probabilities:

Time remaining before Probability of a
server’s return (minutes) customer’s balking
[20, 30) 0.75
[10, 20) 0.50
[0, 10) 0.25

(The random-integer-generation method discussed in Sec. 1.5.2 can be used to deter-
mine whether a customer balks. For a simpler approach, see Sec. 8.4.1.) Run the simu-
lation and estimate the same measures of performance as before. (Note that the server
is not busy when at lunch and that the time-average number in queue is computed
including data from the lunch break.) In addition, estimate the expected number of
customers who balk.
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1.24.

1.25.

1.26.

1.27.

For the single-server queueing facility of Sec. 1.4, suppose that a customer’s service
time is known at the instant of arrival. Upon completing service for a customer, the
server chooses from the queue (if any) the customer with the smallest service time. Run
the simulation until 1000 customers have completed their delays and estimate the
expected average delay in queue, the expected time-average number in queue, and the
expected proportion of customers whose delay in queue is greater than 1 minute. (This
priority queue discipline is called shortest job first.)

For the tandem queue of Prob. 1.14, suppose that with probability 0.2, a customer
completing service at server 2 is dissatisfied with her overall service and must be com-
pletely served over again (at least once) by both servers. Define the delay in queue of
a customer (in a particular queue) to be the total delay in that queue for all of that
customer’s passes through the facility. Simulate the facility for each of the following
cases (estimate the same measures as before):

(a) Dissatisfied customers join the tail of queue 1.

(b) Dissatisfied customers join the head of queue 1.

A service facility consists of two type A servers and one type B server (not necessarily
in the psychological sense). Assume that customers arrive at the facility with inter-
arrival times that are IID exponential random variables with a mean of 1 minute. Upon
arrival, a customer is determined to be either a type 1 customer or a type 2 customer,
with respective probabilities of 0.75 and 0.25. A type 1 customer can be served by any
server but will choose a type A server if one is available. Service times for type 1 cus-
tomers are IID exponential random variables with a mean of 0.8 minute, regardless of
the type of server. Type 1 customers who find all servers busy join a single FIFO queue
fortype I customers. A type 2 customer requires service from both a type A server and
the type B server simultaneously. Service times for type 2 customers are uniformly
distributed between 0.5 and 0.7 minute. Type 2 customers who arrive to find both type
A servers busy or the type B server busy join a single FIFO queue for type 2 custom-
ers. Upon completion of service of any customer, preference is given to a type 2 cus-
tomer if one is present and if both a type A and the type B server are then idle.
Otherwise, preference is given to a type 1 customer. Simulate the facility for exactly
1000 minutes and estimate the expected average delay in queue and the expected time-
average number in queue for each type of customer. Also estimate the expected pro-
portion of time that each server spends on each type of customer.

A supermarket has two checkout stations, regular and express, with a single checker
per station; see Fig. 1.51. Regular customers have exponential interarrival times with
mean 2.1 minutes and have exponential service times with mean 2.0 minutes. Express

Regular Regular
queue server

—  OO000 OL—
_’QQQQQ QD_’ FIGURE 1.51

Express Express A supermarket checkout
queue server operation.
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customers have exponential interarrival times with mean 1.1 minutes and exponential
service times with mean 0.9 minute. The arrival processes of the two types of custom-
ers are independent of each other. A regular customer arriving to find at least one
checker idle begins service immediately, choosing the regular checker if both are idle;
regular customers arriving to find both checkers busy join the end of the regular queue.
Similarly, an express customer arriving to find an idle checker goes right into service,
choosing the express checker if both are idle; express customers arriving to find both
checkers busy join the end of the express queue, even if it is longer than the regular
queue. When either checker finishes serving a customer, he takes the next customer
from his queue, if any, and if his queue is empty but the other one is not, he takes the
first customer from the other queue. If both queues are empty, the checker becomes
idle. Note that the mean service time of a customer is determined by the customer
type, and not by whether the checker is the regular or express one. Initially, the system
is empty and idle, and the simulation is to run for exactly 8 hours. Compute the aver-
age delay in each queue, the time-average number in each queue, and the utilization of
each checker. What recommendations would you have for further study or improve-
ment of this system? (On June 21, 1983, the Cleveland Plain Dealer, in a story entitled
“Fast Checkout Wins over Low Food Prices,” reported that “Supermarket shoppers
think fast checkout counters are more important than attractive prices, according to a
survey [by] the Food Marketing Institute. . . . The biggest group of shoppers, 39 percent,
replied ‘fast checkouts,” . . . and 28 percent said good or low prices . . . [reflecting]
growing irritation at having to stand in line to pay the cashier.”)

A one-pump gas station is always open and has two types of customers. A police car
arrives every 30 minutes (exactly), with the first police car arriving at time 15 minutes.
Regular (nonpolice) cars have exponential interarrival times with mean 5.6 minutes,
with the first regular car arriving at time 0. Service times at the pump for all cars are
exponential with mean 4.8 minutes. A car arriving to find the pump idle goes right
into service, and regular cars arriving to find the pump busy join the end of a single
queue. A police car arriving to find the pump busy, however, goes to the front of the
line, ahead of any regular cars in line. [If there are already other police cars at the front
of the line, assume that an arriving police car gets in line ahead of them as well.
(How could this happen?)] Initially the system is empty and idle, and the simulation
is to run until exactly 500 cars (of any type) have completed their delays in queue.
Estimate the expected average delay in queue for each type of car separately, the
expected time-average number of cars (of either type) in queue, and the expected
utilization of the pump.

Of interest in telephony are models of the following type. Between two large cities, A
and B, are a fixed number, n, of long-distance lines or circuits. Each line can operate
in either direction (i.e., can carry calls originating in A or B) but can carry only one
call at a time; see Fig. 1.52. If a person in A or B wants to place a call to the other city

Line 1
Line 2
City . City
A : B
Line n FIGURE 1.52

A long-distance telephone system.
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1.30.

and a line is open (i.e., idle), the call goes through immediately on one of the open
lines. If all  lines are busy, the person gets a recording saying that she must hang up
and try later; there are no facilities for queueing for the next open line, so these blocked
callers just go away. The times between attempted calls from A to B are exponential
with mean 10 seconds, and the times between attempted calls from B to A are expo-
nential with mean 12 seconds. The length of a conversation is exponential with mean
4 minutes, regardless of the city of origin. Initially all lines are open, and the simula-
tion is to run for 12 hours; compute the time-average number of lines that are busy, the
time-average proportion of lines that are busy, the total number of attempted calls
(from either city), the number of calls that are blocked, and the proportion of calls that
are blocked. Determine approximately how many lines would be needed so that no
more than 5 percent of the attempted calls will be blocked.

City buses arrive to the maintenance facility with exponential interarrival times with
mean 2 hours. The facility consists of a single inspection station and two identical re-
pair stations; see Fig. 1.53. Every bus is inspected, and inspection times are distributed
uniformly between 15 minutes and 1.05 hours; the inspection station is fed by a single
FIFO queue. Historically, 30 percent of the buses have been found during inspection
to need some repair. The two parallel repair stations are fed by a single FIFO queue,
and repairs are distributed uniformly between 2.1 hours and 4.5 hours. Run the simula-
tion for 160 hours and compute the average delay in each queue, the average length of
each queue, the utilization of the inspection station, and the utilization of the repair
station (defined to be half of the time-average number of busy repair stations, since
there are two stations). Replicate the simulation 5 times. Suppose that the arrival rate
of buses quadrupled, i.e., the mean interarrival time decreased to 30 minutes. Would
the facility be able to handle it? Can you answer this question without simulation?

Inspection

— OO0 O] = -
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FIGURE 1.53
A bus maintenance depot.



CHAPTER 2

Modeling Complex Systems

Recommended sections for a first reading: 2.1 through 2.5

2.1
INTRODUCTION

In Chap. 1 we looked at simulation modeling in general, and then modeled and
coded two specific systems. Those systems were very simple, and it was possible to
program them directly in a general-purpose language, without using any special
simulation software or support programs (other than a random-number generator).
Most real-world systems, however, are quite complex, and coding them without
supporting software can be a difficult and time-consuming task.

In this chapter we first discuss an activity that takes place in most simulations:
list processing. A group of ANSI-standard C support functions, simlib, is then intro-
duced, which takes care of some standard list-processing tasks as well as several
other common simulation activities, such as processing the event list, accumulating
statistics, generating random numbers and observations from a few distributions, as
well as calculating and writing out results. We then use simlib in four example
simulations, the first of which is just the single-server queueing system from Sec. 1.4
(included to illustrate the use of simlib on a familiar model); the last three examples
are somewhat more complex.

Our purpose in this chapter is to illustrate how more complex systems can be
modeled, and to show how list processing and the simlib utility functions can aid in
their programming. Our intention in using a package such as simlib is purely peda-
gogical; it allows the reader to move quickly into modeling more complex systems
and to appreciate how real simulation-software packages handle lists and other data.
We do not mean to imply that simlib is as comprehensive or efficient as, or in any
other way comparable to, the modern commercial simulation software discussed in

85
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Chaps. 3 and 14; in fact, the complete source code for simlib is given in App. 2A and
Fig. 7.5, and can be downloaded from www.mhhe.com/law (along with the code for
all the examples in this chapter). A FORTRAN 77 version of simlib, along with
some documentation specific to it and code for the four example models discussed
in this chapter, can also be downloaded from this website.

2.2
LIST PROCESSING IN SIMULATION

The simulation models considered in Chap. 1 were really quite simple in that they
contained either one or no lists of records other than the event list. Furthermore, the
records in these lists consisted of a single attribute and were always processed in a
first-in, first-out (FIFO) manner. In the queueing example, there was a FIFO list
containing the records of all customers waiting in queue, and each customer record
consisted of a single attribute, the time of arrival. In the inventory example there
were no lists other than the event list. However, most complex simulations require
many lists, each of which may contain a large number of records, consisting in turn
of possibly many attributes each. Furthermore, it is often necessary to process these
lists in a manner other than FIFO. For example, in some models one must be able to
remove that record in a list with the smallest value for a specified attribute (other
than the time the record was placed in the list). If this large amount of information
is not stored and manipulated efficiently, the model may require so much execution
time or so many storage locations that the simulation study would not be feasible.

In Sec. 2.2.1 we discuss two approaches to storing lists of records in a
computer—sequential and linked allocation—and then explain why the latter ap-
proach is preferable for complex simulations. In Sec. 2.2.2 we present a treatment
of linked storage allocation that is sufficient for the development of a simple
C-based simulation “language,” simlib, in Sec. 2.3. This language, which can be
completely mastered in just a few hours of study, provides considerable insight into
the nature of the special-purpose simulation software discussed in Chaps. 3 and 14,
which requires much more time to learn. More important, simlib provides a vehicle
for explaining how to simulate systems that are considerably more complicated than
those discussed in Chap. 1.

2.2.1 Approaches to Storing Lists in a Computer

There are two principal approaches to storing lists of records in a computer. In the
sequential-allocation approach, used in Chap. 1, the records in a list are put into
physically adjacent storage locations, one record after another. This was the ap-
proach taken in Sec. 1.4 with the list of arrival times for customers in the queue.

In the linked-allocation approach, each record in a list contains its usual attrib-
utes and, in addition, pointers (or links) giving the logical relationship of the record
to other records in the list. Records in a list that follow each other logically need not
be stored in physically adjacent locations. A detailed discussion of linked allocation
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is given in Sec. 2.2.2. Linked allocation of lists has several advantages for simula-
tion modeling:

* The time required to process certain kinds of lists can be significantly reduced. For
the queueing example of Sec. 1.4, every time a customer completed service (and
left a nonempty queue behind) we had to move each entry in the arrival-time array
up one storage location; this would be quite inefficient if the queue were long, in
which case the array would contain a large number of records. As we shall see in
Example 2.1, linked allocation expedites processing of such arrays.

* For simulation models where the event list contains a large number of event
records simultaneously, we can speed up event-list processing considerably; see
Example 2.2 and Sec. 2.8 for further discussion.

* For some simulation models, the amount of computer memory required for storage
can be reduced; see the discussion at the end of Sec. 2.2.2.

* Linked allocation provides a general framework that allows one to store and
manipulate many lists simultaneously with ease, whereby records in different lists
may be processed in different ways. This generality is one of the reasons for the
use of the linked-allocation approach by all major simulation software.

2.2.2 Linked Storage Allocation

In this section we present a discussion of linked storage allocation sufficient for
development of the simple C-based simulation “language” simlib, described in the
next section. For a more complete and general discussion of list-processing princi-
ples, see, for example, Knuth (1997, chap. 2).

Suppose that a list of records is to be stored in an array, that the rows of the
array correspond to the records, and that the columns of the array correspond to the
attributes (or data fields) that make up the records. For the queueing simulation of
Sec. 1.4, each customer waiting in the queue had a record in the arrival-time list,
and each record consisted of a single attribute, the corresponding customer’s time
of arrival. In general, a customer’s record might have additional attributes such as
age, a priority number, service requirement, etc.

A list of records is called doubly linked if each record has associated with it a
predecessor link and a successor link. The successor link (or forward pointer) for a
particular record gives the physical row number in the array of the record that logi-
cally succeeds the specified record. If no record succeeds the specified record, the
successor link is set to zero. The predecessor link (or backward pointer) for a par-
ticular record gives the physical row number in the array of the record that logically
precedes the specified record. If no record precedes the specified record, the prede-
cessor link is set to zero. The number of the physical row in the array that contains
the record that is logically first in the list is identified by a head pointer, which is set to
zero when the list contains no records. The physical row number of the record that
is logically last in the list is identified by a tail pointer, which is set to zero when the
list is empty.

At any given time a list will probably occupy only a subset of the rows of
the array in which it is physically stored. The “empty” rows of the array that are
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available for future use are linked together in a list of available space (LAS). The
LAS is usually processed in a LIFO (last-in, first-out) manner: This means that
when a row is needed to store an additional record, the row is taken from the head
of the LAS; and when a row is no longer needed to store a record, the row is returned
to the head of the LAS. Since all operations are done at the head of the LAS, it re-
quires neither a tail pointer nor predecessor links. (We call such a list singly linked.)
At time 0 in a simulation, all rows in the array are members of the LAS, the succes-
sor link of row i is set to i + 1 (except for that of the last row, which is set to 0), all
predecessor links are set to 0, and the head of the LAS is set to 1. (The predecessor
link for a particular row is set to a positive integer only when that row is occupied
by a record.) In languages that support dynamic storage allocation (like C), the LAS
can be thought of as all memory available for dynamic allocation.

EXAMPLE 2.1. For the queueing simulation of Sec. 1.4, consider the list containing
the customers waiting in queue to be served. Each record in this list has the single
attribute, “time of arrival.” Suppose that at time 25 in the simulation there are three
customers in queue, with times of arrival 10, 15, and 25, and that these records are stored
in (physical) rows 2, 3, and 1 of an array with 5 rows and 1 column. (To make the figures
below manageable, we assume that there will never be more than five customers
in queue at any time.) Rows 4 and 5 are members of the LAS. The situation is depicted
in Fig. 2.1. Note that the head pointer of the list is equal to 2, the successor link for
the record in row 2 is equal to 3, the predecessor link for the record in row 3 is equal
to 2, etc.

Suppose that the next event in the simulation (after time 25) is the arrival of a cus-
tomer at time 40 and that we would like to add an appropriate record to the list, which
is to be processed in a FIFO manner. Since the head pointer for the LAS is equal to 4,

List List of available space
Head Head
Physical Physical
row row
2 10 4
3 15 5
1 25 0
/ FIGURE 2.1
Tail State of the lists for the

0 queueing simulation at time 25.
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List List of available space

Head Head

Physical Physical
row row

2

10 5
15 0
25
40
/ FIGURE 2.2
Tail State of the lists for the

queueing simulation at time 40.

the record for the arriving customer will be placed in physical row 4 of the array and
the head pointer of the LAS is now set to 5, which is the value of the successor link for
row 4. Since the new record will be added to the tail of the list and the tail pointer for
the list is now equal to 1, the successor link for the record in row 1 is set to 4, the prede-
cessor link for the new record, i.e., the one in (physical) row 4, is set to 1, the succes-
sor link for the new record is set to 0, and the tail pointer for the list is set to 4. The state
of both lists after these changes have been made is shown in Fig. 2.2.

Suppose that the next event in the simulation (after time 40) is the service comple-
tion at time 50 of the customer who was being served (at least since time 25) and that
we want to remove the record of the customer at the head of the list so that this cus-
tomer can begin service. Since the head pointer for the list is equal to 2 and the succes-
sor link for the record in (physical) row 2 is equal to 3, the time of arrival of the record
in row 2 is used to compute the delay of the customer who will enter service (this delay
is 50 — 10), the head pointer for the list is set to 3, the predecessor link for the record
in row 3 is set to 0, and row 2 (which is no longer needed) is placed at the head of the
LAS by setting its head pointer to 2 and the successor link for row 2 to 5 (the previous
head of the LAS). The state of both lists after these changes have been made is shown
in Fig. 2.3.

Thus, removing a record from the head of the list always requires setting only four
links or pointers. Contrast this with the brute-force approach of Chap. 1, which requires
moving each record in the (sequential) list up by one location. If the list contained, say,
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100 records, this would be a much more time-consuming task than with the linked-list
approach.

While storing a queue as a linked list as in the above example seems fairly
natural, the next example illustrates how the event list can also be processed as a
linked list.

EXAMPLE 2.2. For the inventory simulation of Sec. 1.5, the event list was stored in
an array with each of the four event types having a dedicated physical location. If an
event was not currently scheduled to occur, its entry in the list was set to % (represented
as 10* in the computer). However, for many complex simulations written in a general-
purpose language and for simulations using the special-purpose simulation software
described in Chaps. 3 and 14, the event list is stored as a linked list ranked in increasing
order on event time. Now, events having an event time of o are simply not included in
the event list. Moreover, since the event list is kept ranked in increasing order on the
event times (attribute 1), the next event to occur will always be at the head of the list, so
we need only remove this record to determine the next event time (attribute 1) and its
type (attribute 2). For instance, suppose that the event list for the inventory simulation
is to be stored in an array of 4 rows and 2 columns, column 1 being for the attribute
“event time” and column 2 being for the attribute “event type,” i.e., 1, 2, 3, or 4. Sup-
pose that at time 0 we know that the first demand for the product (event type 2) will
occur at time 0.25, the first inventory evaluation (event type 4) will occur immediately
at time 0, the simulation will end (event type 3) at time 120, and there is no outstanding
order scheduled to arrive (event type 1). The state of the event list and the LAS just after
initialization at time O is shown in Fig. 2.4. Note that event type 1 is not included in the
event list, and that event type 2 is in (physical) row 1 of the array since it was the first
event record to be placed in the event list.
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FIGURE 2.4
State of the lists for the inventory simulation just after
initialization at time 0.

To determine the next (first) event to occur at time 0, the first record is removed
from the event list, the simulation clock is updated to the first attribute of this record,
i.e., the clock is set to 0, the event type of the next event to occur is set to the second at-
tribute of this record, i.e., is set to 4, and row 3, which contained this record, is placed
at the head of the LAS. Since the next event type is 4, an inventory-evaluation event will
occur next (at time 0). Suppose that an order is placed at time O and that it will arrive
from the supplier at time 0.6. To place this order-arrival event in the event list, first 0.6
and 1 are placed in columns 1 and 2, respectively, of row 3 (the head of the LAS), and
then this new record is added to the event list by logically proceeding down the event
list (using the successor links) until the correct location is found. In particular, attribute 1
of the new record (0.6) is first compared with attribute 1 of the record in row 1 (0.25).
Since 0.6 > 0.25, the new record should be farther down the event list. Next, 0.6 is
compared with attribute 1 of the record in row 2 (120). (Note that the successor link of
the record in row 1 is equal to 2.) Since 0.6 < 120, the new record is logically placed
between the records in physical rows 1 and 2 by adjusting the successor and predeces-
sor links for the three records. After this has been done, another inventory-evaluation
event is scheduled at time 1 and placed in the event list in a manner similar to that for
the order-arrival event. The state of both lists after all processing has been done at time
0 is shown in Fig. 2.5.

In the above discussion, a single list was stored in an array where the empty
rows were members of the LAS, but we could just as well store many different lists
simultaneously in the same physical array. There is a single LAS, and the beginning
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FIGURE 2.5
State of the lists for the inventory simulation after all
processing has been done at time 0.

and end of each list are identified by separate head and tail pointers. This approach
can lead to significant savings in storage space for some applications. For example,
suppose that a simulation requires 20 lists, each containing up to 100 records of
10 attributes each. Using the sequential storage method (as in Chap. 1), 20 arrays
with 100 rows and 10 columns each would be required, for a total storage require-
ment of 20,000 locations. Suppose, however, that at any given time an average of
only 25 percent of all available rows are actually being used. Then an alternative
approach might be to store all 20 lists in one array consisting of 1000 rows and
10 columns. This approach would require 10,000 locations for the array plus an
additional 2040 locations for the links and pointers, for a total of 12,040 storage
locations. Furthermore, at a particular point in a simulation, some lists may be
occupying more than their “fair” share of the available rows without causing a
memory overflow condition.

The simple simulation language simlib, developed in the next section, stores all
lists (including the event list) in dynamic memory, which is allocated when needed
to store a new record in a list, and is freed for other uses after a record is removed
from a list.
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2.3
A SIMPLE SIMULATION LANGUAGE: simlib

In this section we describe an easy-to-understand C-based simulation “language,”
simlib, which implements the concept of linked storage allocation presented in
Sec. 2.2.2. The language makes it easy to file a record in a list (the record may be
filed first in the list, last in the list, or so that the list is kept ranked in increasing or
decreasing order on a specified attribute), to remove a record from a list (either the
first record or the last record in the list may be removed), to process the event list,
to compute discrete-time statistics on variables of interest (e.g., the average delay in
queue in a queueing system), to compute continuous-time statistics on variables of
interest (e.g., the time-average number of items in an inventory system), to generate
the random variates used in the examples in this chapter and in Chap. 1, and to pro-
vide output in a “standard” format if desired. Although simlib provides many of the
important features found in special-purpose simulation software (see Chaps. 3
and 14), it is designed for neither completeness nor computational efficiency. Our
reasons for presenting it here are to provide some insight into the operation of simu-
lation software and to provide a vehicle for understanding how to simulate systems
that are much more complicated than those in Chap. 1.

The heart of simlib is a collection of doubly linked lists, all residing together in
dynamic memory, with space allocated as new records are filed into the lists, and
space freed as records are removed from the lists. There is a maximum of 25 lists,
and the records in each list can have up to 10 attributes, with all data stored as type
float. Since simlib uses dynamic storage allocation, the total number of records in
all the lists is limited only by the amount of memory available on the computer.

List 25 is always reserved for the event list, with attribute 1 being the event time
and attribute 2 being the event type. This list is furthermore kept sorted in increas-
ing order on attribute 1 (event time) so that the top (first) record always refers to the
next event.

To use simlib, the file simlib.h must be #included by the user. This file in turn
#includes the file simlibdefs.h. These files are shown in Figs. 2.47 and 2.48 in
App. 2A, and they contain (among other things) declarations and definitions of the
following variables and constants germane to the user:

sim_time The simulation clock, a float variable, updated by simlib function timing
(see the discussion of function timing below)

next_event_type The type of the next event, an int variable, determined by simlib function
timing (see the discussion of function timing below)

transfer([i] A float array with indices i = 1, 2, .. ., 10 (index i = 0 is not used) for
transferring into and out of the lists used in the simulation, where trans-
fer[i] refers to attribute i of a record. The transfer array is also used by
simlib as a place to transfer to the user the values of certain summary
statistics.

maxatr The maximum number of attributes for any record in any list in the
simulation model, an int variable. If maxatr is not set in the main function
by the user, a default value of 10 is used; maxatr cannot be greater than 10.
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list_size[list]

list_rank[list]

FIRST

LAST

INCREASING

DECREASING

LIST_EVENT

EVENT_TIME

EVENT_TYPE

Setting maxatr to a value less than 10, if possible, will result in faster
program execution. Because of the way simlib is written, the user must
specify maxatr to be at least 4.

The current number of records in list “list”, an int array, which is
automatically updated by simlib. The user should not need to alter the
value of list_size[list], but only query its value if appropriate. For exam-
ple, if list 3 has been set up to represent a queue, then list_size[3] will
always be the number in this queue, so that we can tell if it is empty by
asking if list_size[3] is equal to 0.

The attribute number, if any, according to which the records in list “list”
are to be ranked (in increasing or decreasing order) by simlib function
list_file; this is an int array. For example, if list 4 is to be kept so that the
records are ranked on attribute 2, then the user would need to set
list_rank[4] to be equal to 2 before using list_file to file a record in list 4;
one of the arguments in function list_file controls whether the ranking is
increasing or decreasing. Typically, list_rank[list] is set by the user in the
main function. If list “list” is not ranked (i.e., records are inserted only at
the end or the beginning), then list_rank|[list] need not be set at all. Note
that list_rank[25] is set to 1 in the simlib initialization routine init_simlib,
since attribute 1 of the event list (list number 25) is always the event time,
and we wish to keep the event list ranked in increasing order of the event
times.

A symbolic constant for the option of filing or removing a record at the
beginning of a list, automatically set to 1 in simlibdefs.h

A symbolic constant for the option of filing or removing a record at the end
of a list, automatically set to 2 in simlibdefs.h

A symbolic constant for the option of keeping a list ranked in increasing
order according to the attribute specified in the list_rank array, automati-
cally set to 3 in simlibdefs.h

A symbolic constant for the option of keeping a list ranked in decreasing
order according to the attribute specified in the list_rank array, automati-
cally set to 4 in simlibdefs.h

A symbolic constant for the number of the event list, 25, automatically set
to 25 in simlibdefs.h

A symbolic constant for the attribute number of the event time in the event
list, automatically set to 1 in simlibdefs.h

A symbolic constant for the attribute number of the event type in the event
list, automatically set to 2 in simlibdefs.h

These variables and arrays are used or set by the user during the simulation, as ap-
propriate, and must have the names and types given above, as declared in simlib.h.

There are some 19 functions composing simlib, each designed to perform a
frequently occurring simulation activity:

e init_simlib. This function, to be invoked from the user-written main function
at the beginning of each simulation run, allocates storage for the lists, initializes
the successor and predecessor links as well as the head and tail pointers for
each list, initializes the simulation clock to 0, sets list_rank[LIST_EVENT] to
EVENT_TIME to keep the event list ranked on event times, and sets maxatr to a
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default value of 10. Also, the statistical accumulators for functions sampst and
timest (see their discussion below) are set to 0.

list_file(option, list). This function places the attributes of a record that the user
has placed in the transfer array into list “list” (“list” is an int) in a location con-
trolled by the int argument “option”. That is, when list_file is invoked, transfer[i]
is placed in list “list” as attribute i of the new record, fori = 1, 2, . .., maxatr. The
following options are available:

option Action

1 (or FIRST) File the record in transfer before the first record currently in list “list”.
2 (or LAST) File the record in transfer after the last record currently in list “list”.

3 (or INCREASING) File the record in transfer into list “list” so that the list is kept ranked in

increasing order on attribute list_rank[list], which must have been
given a value previously. (If two records have the same value of at-
tribute list_rank([list], the rule is FIFO.)

4 (or DECREASING) File the record in transfer into list “list” so that the list is kept ranked in
decreasing order on attribute list_rank[list], which must have been
given a value previously. (If two records have the same value of
attribute list_rank[list], the rule is FIFO.)

Thus, list_file(l, 3) would file transfer[1], . . . , transfer[maxatr] into list 3, with
this becoming the first record in the list; list_file(FIRST, 3) would do the same
thing. If we want list 2 to be kept ranked in decreasing order according to attribute
4 of the records in that list, then we could execute list_file(DECREASING, 2),
making sure that we had set list_rank[2] to 4 previously, probably in the main
function. Finally, we could schedule an event into the event list by executing
list_fileINCREASING, LIST_EVENT) after setting (at least) transfer[1] to the
time of occurrence of this event, and transfer[2] to the type of this event (see the
description of simlib function event_schedule below, however, for an easier way
to schedule events into the event list). Storage is dynamically allocated by list_file
for the new record in list “list”.

list_remove(option, list). Invoking this function removes a record from list
“list” (an int), and copies it (i.e., its attributes) into the transfer array. The int ar-
gument “option” determines which record is removed:

option Action
1 (or FIRST) Remove the first record from list “list” and place it into the transfer array.
2 (or LAST) Remove the last record from list “list” and place it into the transfer array.

After invoking list_remove, the elements in transfer, now being equal to those in
the record just removed, are typically used for some purpose in the simulation.
For example, list_remove(2, 1) removes the last record in list 1 and places it in the
transfer array; list_remove(LAST, 1) does the same thing. Storage is dynamically
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freed by list_remove since space in list “list” for the record just removed is no
longer needed.

e timing. This function, invoked by the user from the main function, accomplishes
what the timing functions of Chap. 1 did, except now timing is an internal simlib
function, and it uses the list structure of the event list exactly as described in
Example 2.2. The type of the next event, next_event_type (a simlib int variable
declared in simlib.h), is determined, and the clock, sim_time, is updated to the
time of this next event. Actually, timing simply invokes list_remove(FIRST,
LIST_EVENT) to remove the first record from list 25, the event list; since the
event list is kept in increasing order on the event time, we know that this will be
the next event to occur. Thus, attributes 1 through maxatr of the first event record
are placed in transfer, and can be used if desired. In particular, it is sometimes
advantageous to make use of attributes other than 1 and 2 in event records; see
Secs. 2.6 and 2.7 as well as Prob. 2.3.

* event_schedule(time_of_event, type_of_event). The user can invoke this func-
tion to schedule an event to occur at time time_of_event (a float) of type
type_of_event (an int) into the event list. Normally, event_schedule will be in-
voked to schedule an event in the simulated future, so time_of event would be of
the form sim_time + time_interval, where time_interval is an interval of time
from now until the event is to happen. If attributes other than 1 (event time) and
2 (event type) of event records are being used in the event list, it is the user’s re-
sponsibility to place their values in the appropriate locations in the transfer array
before invoking event_schedule.

* event_cancel(event_type). This function cancels (removes) the first event in
the event list with event type event_type (an int), if there is such an event, and
places the attributes of the canceled event record in the transfer array. If the event
list does not have an event of type event_type, no action is taken by event_cancel.
If event_cancel finds an event of type event_type and cancels it, the function
returns an int value of 1; if no such event is found, the function returns an int
value of 0.

» sampst(value, variable). This function accumulates and summarizes discrete-
time data, such as customer delays in a queue. There is provision for up to 20
“sampst variables,” maintained and summarized separately, and indexed by the
int argument “variable”. For example, a model could involve three separate
queues, and sampst variables 1, 2, and 3 could be used to accumulate and sum-
marize customer delays in each of these queues, separately. There are three
different typical uses of sampst:

During the simulation. Each time a new value of sampst variable “variable”
is observed (e.g., the end of a delay in queue), its value is placed in the float
argument “value”, and sampst is invoked. For instance, if we have defined
sampst variable 2 to be the delays in queue 2 of a model, we could execute
sampst(delay?2, 2) after having placed the desired delay in the float variable
delay2. The function sampst internally maintains separate registers for
each variable, in which statistics are accumulated to produce the output
described below.
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At the end of the simulation. The user can invoke sampst with the negative
of the variable “variable” desired, to produce summary statistics that are
placed into the transfer array as follows:

i transfer][i]

1 Mean (average) of the values of variable “variable” observed
2 Number of values of variable “variable” observed

3 Maximum value of variable “variable” observed

4 Minimum value of variable “variable” observed

In addition, sampst returns as a float the mean (in its name), the same thing
that is placed into transfer[1], as a convenience since means are often de-
sired. For example, executing sampst(0.0, —2) would place the summary
statistics on sampst variable 2 in the transfer array, as described above, and
return the mean; the desired summary statistics would then typically be
written out by the user, or perhaps used in some other way. Note that in this
use of sampst, the value of “value” is ignored. (A technicality: If no values
for variable “variable” were observed, the mean, maximum, and minimum
are undefined. In this case, sampst returns the mean as 0, the maximum as
—10%, and the minimum as 10*.)

To reset all sampst variable accumulators. The accumulators for all sampst
variables are reinitialized, as at the start of the simulation, by executing
sampst(0.0, 0); note that this is done in init_simlib at time 0. This capabil-
ity would be useful during a simulation if we wanted to start observing
data only after the simulation had “warmed up” for some time, as de-
scribed in Sec. 9.5.1; see also Prob. 2.7.

* timest(value, variable). This function is similar to sampst, but operates instead
on continuous-time data such as the number-in-queue function; see Sec. 1.4.1.
Again, the int argument “variable” refers to one of up to 20 “timest variables” on
which data are accumulated and summarized when desired. For example, timest
variables 1, 2, and 3 could refer to the number of customers in queues 1, 2, and 3,
respectively. As with sampst, there are three “typical” uses:

During the simulation. Each time timest variable “variable” attains a new
value, we must execute timest(value, variable), where the float argument
“value” contains the new (i.e., after the change) value of the variable. For
example, if the length of queue 2 changes as a result of an arrival or
departure to the float variable q2, we would execute timest(q2, 2) to do
the proper accumulation. The accumulators for timest are initialized in
init_simlib under the assumption that all continuous-time functions being
tracked by timest are initially zero; this can be overridden by executing
timest(value, variable) just after invoking init_simlib, where value con-
tains the desired (nonzero) initial value of timest variable “variable”. (This
would be done for each desired timest variable.)
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At the end of the simulation. The user can invoke timest with the negative
of the variable “variable” desired, to produce summary statistics that are
placed into the transfer array as follows:

i transfer][i]

1 Time average of the values of variable “variable” observed, updated to the time of
this invocation

2 Maximum value of variable “variable” observed up to the time of this invocation

3 Minimum value of variable “variable” observed up to the time of this invocation

In addition, timest returns as a float the time average (in its name), the
same thing that is placed into transfer[1], as a convenience since means
are often desired. For example, executing timest(0.0, —2) would place
the summary statistics on timest variable 2 in the transfer array, as
described above, and return the time average; the desired summary statis-
tics would then typically be written out by the user, or perhaps used in
some other way.

To reset all timest variable accumulators. The accumulators for all timest
variables are reinitialized to zero, as at the start of the simulation, by
executing timest(0.0, 0); this is done in init_simlib at time 0. Note that
this assumes that all timest variables should have the value 0, which can
be overridden by immediately executing timest(value, variable) to reset
timest variable “variable” to the value “value”.

* filest(list). This function, typically invoked only at the end of a simulation run,
provides summary data on the number of records in list “list”, placing them into
the transfer array in a manner similar to timest, as follows:

i transfer[i]

1 Time-average number of records in list “list”, updated to the time of this invocation
2 Maximum number of records in list “list”, up to the time of this invocation

3 Minimum number of records in list “list”, up to the time of this invocation

In addition, filest returns as a float the time average (in its name), the same thing
that is placed into transfer[1], as a convenience since means are often desired.
Internally, simlib treats the number of records in a list as a continuous-time func-
tion whose value may rise or fall only at the times of events, so that it is sensible
to speak of the time-average number of records in a list, etc. In addition, simlib
automatically tracks each list in this way, and can produce these statistics when
filest is invoked. Who cares about the history of list lengths? This capability turns
out to be quite convenient, since the number of records in a list often has some
physical meaning. For example, a queue will usually be represented in a simula-
tion by a list, and the number of records in that list is thus identical to the number
of customers in the queue; hence the time-average and maximum number of
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customers in the queue are simply the time average and maximum of the number
of records in the list. Another example is a list being used to represent a server,
where the list will have one record in it if the server is busy and will be empty if
the server is idle; the server utilization is thus the time-average number of records
in this list, since the only possibilities for its length are O and 1. In this way, we
can often (but not always) avoid explicitly tracking a continuous-time function
via timest. However, timest should probably be used instead of filest if the corre-
sponding list is set up merely for convenience in statistics collection, especially
when the function being tracked rises or falls by increments other than 1 (e.g., the
inventory level in the model of Sec. 1.5), due to the overhead in filing and re-
moving many dummy records. Moreover, timest would have to be used instead
of filest if the function being tracked can take on noninteger values. [Internally,
simlib treats the number of records in list “list” as timest variable 20 + list, so
that there are actually 45 timest variables, but only the first 20 are accessible to
the user. Then filest simply invokes timest with variable = —(20 + list) to get
statistics on list “list”.]

out_sampst(unit, lowvar, highvar). If desired, this function may be invoked to
produce the summary statistics on sampst variables lowvar through highvar
(inclusively) and write them to file “unit”’; lowvar and highvar are both int argu-
ments.This produces “standard” output format (which fits within an 80-character
line), and obviates the need for the final invocation of sampst (but not the invoca-
tions during the course of the simulation) and also eliminates the need for fprintf
statements, formatting, etc. The disadvantage of using out_sampst is that the an-
notation and layout of the output cannot be controlled or customized. For example,
out_sampst(outfile, 1, 3) would write summary statistics to file outfile on sampst
variables 1, 2, and 3; sampst(outfile, 4, 4) would write summary statistics on
sampst variable 4. In the simlib simulations later in this chapter, we show ex-
amples of using (and ignoring) this standard-format output option.
out_timest(unit, lowvar, highvar). Similar to out_sampst, this optional function
may be used to produce standard-format output on file “unit” for timest variables
lowvar through highvar.

out_filest(unit, lowfile, highfile). This function uses filest to produce summary
statistics on the number of records in files lowfile through highfile, written to file
“unit”; lowfile and highfile are both int arguments.

expon(mean, stream). This function returns a float with an observation from an
exponential distribution with mean “mean” (a float argument). The int argument
stream is the user-specified random-number stream number, discussed more fully
in Sec. 7.1 and App. 7A. For now, we can think of the stream number as a sepa-
rate, independent random-number generator (or list of random numbers) to be
used for the purpose of generating the desired observations from the exponential
distribution. It is generally a good idea to “dedicate” a random-number stream
to a particular source of randomness in a simulation, such as stream 1 for inter-
arrivals and stream 2 for service times, etc., to facilitate the use of variance-
reduction techniques (see Chap. 11). These techniques can often provide a great
improvement in the statistical precision of simulations. Furthermore, using
dedicated streams can facilitate program verification (debugging). Except for the
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stream specification, this is the same function used in Sec. 1.4.4 for generating
observations from an exponential distribution. There are 100 separate streams
available in simlib; i.e., “stream” must be an int between 1 and 100 inclusively,
and the length of each stream is 100,000 random numbers.

* random_integer(prob_distrib[], stream). This function returns an int with an
observation from a discrete probability distribution with cumulative distribution-
function values specified by the user in the float array prob_distrib. For i a positive
integer between 1 and 25, prob_distrib[i] should be specified by the user,
before invoking random_integer, to be the desired probability of generating a value
less than or equal to i. If the range of random integers desired is 1, 2, . . ., k,
where k < 25, then prob_distrib[k] should be set to 1.0, and it is then not nec-
essary to specify prob_distrib[j] for j > k. The int argument stream, between 1
and 100, gives the random-number stream to be used. Except for the random-
number stream specification, this is the same function used for the inventory
model in Sec. 1.5.3.

¢ uniform(a, b, stream). This function returns a float with an observation from a
(continuous) uniform distribution between a and b (both float arguments). As before,
stream is an int between 1 and 100 giving the random-number stream to be used.

* erlang(m, mean, stream). This function returns a float with an observation
from an m-Erlang distribution with mean “mean” using random-number stream
“stream’; m is an int, mean is a float, and stream is an int. This distribution will
be discussed in Sec. 2.7.

* lcgrand(stream). This is the random-number generator used by simlib, a func-
tion returning a float with an observation from a (continuous) uniform distribu-
tion between 0 and 1, using stream “‘stream” (an int argument). Its code is given in
Fig. 7.5 in App. 7A, instead of in App. 2A. When using simlib, and in particular
#including the file simlib.h, it is not necessary to #include Icgrand.h from Fig. 7.6
in App. 7A, since simlib.h contains the required declarations.

* lcgrandst(zset, stream). This function “sets” the random-number seed for
stream “‘stream” to the long argument zset. It is shown in Fig. 7.5 in App. 7A.

* lcgrandgt(stream). This function returns a long with the current underlying in-
teger for the random-number generator for stream “stream”; it is shown in Fig. 7.5
in App. 7A, and discussed more fully in Chap. 7. It could be used to restart a
subsequent simulation (using lcgrandst) from where the current one left off, as far
as random-number usage is concerned.

This completes the description of simlib, but before proceeding with concrete
examples of its use, we conclude this section with an overview of how simlib’s
components are typically used together in a simulation. It is still up to the user to
write a C main function and event functions, but the simlib functions will make the
coding much easier. First, we must determine the events and decide what lists will
be used for what purpose; the numbering of lists and their attributes is in large mea-
sure arbitrary, but it is essential to be consistent. Also, any sampst and timest vari-
ables to be used must be defined, as should the usage of random-number streams. In
addition to the global variables defined by simlib (via the header file simlib.h), the
user will generally need to declare some global and perhaps local variables through
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the model. In the main function, the following activities take place, roughly in the
order listed:

1. Read and write (for confirmation) the input parameters.

2. Invoke init_simlib to initialize the simlib variables.

3. (If necessary) Set list_rank[list] to the attribute number on which list “list” is to
be ranked, for lists that need to be kept in some sort of order according to the
value of a particular attribute. (If no lists other than the event list are to be ranked,
then this step is skipped.)

4. Set maxatr to the maximum number of attributes used in any list. Note that max-
atr must be at least 4 for proper operation of simlib. If this is skipped, maxatr
defaults to 10 and the simulation will run correctly, but setting maxatr to a smaller
value will make the simulation faster, since it avoids repeated copying of unused
attributes into and out of the lists.

5. (If necessary) Invoke timest to initialize any timest variables that are not to be
zero initially.

6. Initialize the event list by invoking event_schedule for each event to be sched-
uled at time 0. If event attributes beyond the first (event time) and second (event
type) are used in the data structure, it is the user’s responsibility to set trans-
fer[3], transfer[4], etc., before invoking event_schedule for that event. Events
that cannot occur are simply not placed into the event list.

7. Invoke timing to determine next_event_type and update sim_time to the time of
that event.

8. Invoke the appropriate event function (user-written, but using simlib variables
and functions where possible), as determined by next_event_type. This is typi-
cally done with a case statement, routing control to one of several event-function-
invocation statements, as was done in the C programs of Chap. 1.

9. When the simulation ends, invoke a report-generator function (user-written),
which in turn will invoke sampst, timest, or filest and then write out the desired
summary statistics. Alternatively, the report generator could invoke out_sampst,
out_timest, or out_filest to write out the summary statistics in standard format.

While the simulation is running, lists are maintained by using list_file and
list_remove, together with the transfer array to transfer the data in the attributes of
records into and out of lists. When needed, sampst and timest are used to gather
statistics on variables of interest.

A final note on simlib’s capabilities concerns error checking. While no software
package can detect all errors and suggest how to fix them, there are special oppor-
tunities to do some of this in simulation programs, as discussed in Chap. 1. Accord-
ingly, simlib contains several such error checks, and will write out a message (to
standard output) indicating the nature of the error and the clock value when it oc-
curred. For example, simlib function timing checks for a “time reversal,” i.e., an
attempt to schedule an event at a time earlier than the present. Also, there are checks
for illegal list numbers, illegal variable numbers, etc., and for attempting to remove
arecord from a list that is empty.

In Secs. 2.4 through 2.7 we show how to use simlib to simulate systems of vary-
ing complexity.
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2.4
SINGLE-SERVER QUEUEING SIMULATION WITH simlib

2.4.1 Problem Statement

In this section we show how to simulate the single-server queueing system from
Sec. 1.4, using simlib. The model is exactly the same, so that we can concentrate on
the use of simlib without having to worry about the structure of a new model. We
will use the 1000-delay stopping rule, as originally described in Sec. 1.4.3.

2.4.2 simlib Program

The first step is to identify the events; they are the same as before—an arrival is a
type 1 event, and a departure (service completion) is a type 2 event.

Next, we must define the simlib lists and the attributes in their records. It is im-
portant to write this down, as it will be referenced while the program is developed:

List Attribute 1 Attribute 2
1, queue Time of arrival to queue —
2, server — —

25, event list Event time Event type

Note that list 1 (representing the queue) is quite similar to the array time_arrival used
in Sec. 1.4.4, except that now we are taking advantage of simlib’s list-processing
capabilities; list 1 has only a single attribute. List 2 represents the server and either
will be empty (if the server is idle) or will contain a single record (if the server is
busy); a record in list 2 when the server is busy is a “dummy” record, in that it has
no actual attributes. The purpose for defining such a list is to allow the use of filest
at the end of the simulation to get the server utilization. Also, we can tell whether
the server is busy by asking whether list_size[2] is equal to 1. This use of a dummy
list is convenient in that the server_status variable is eliminated, and we need not
use timest during or at the end of the simulation to get the utilization. However, it is
not the most computationally efficient approach, since all the machinery of the
linked lists is invoked whenever the server changes status, rather than simply alter-
ing the value of a server_status variable. (This is a good example of the tradeoff
between computation time and analyst’s time in coding a model.) Finally, list 25 is the
event list, with attribute 1 being event time and attribute 2 being event type; this is
required in all simlib programs, but for some models we will use additional attrib-
utes for the event record in list 25.

Next, we should identify all sampst and timest variables used. Our only sampst
variable is as follows:

sampst variable number Meaning

1 Delays in queue
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/* External definitions for single-server queueing system using simlib. */
#include "simlib.h" /* Required for use of simlib.c. */

#define EVENT_ ARRIVAL
#define EVENT DEPARTURE
#define LIST_QUEUE

#define LIST_SERVER

#define SAMPST DELAYS
#define STREAM INTERARRIVAL
#define STREAM SERVICE

/* Event type for arrival. */

/* Event type for departure. */

/* List number for queue. */

List number for server. */

/* sampst variable for delays in queue. */

/* Random-number stream for interarrivals. */
/* Random-number stream for service times. */

NRERRNRENRE
~
*

/* Declare non-simlib global variables. */

int num_custs_delayed, num_delays_required;
float mean_interarrival, mean_service;
FILE *infile, *outfile;

/* Declare non-simlib functions. */

void init_model (void);
void arrive(void);
void depart(void);
void report(void);

FIGURE 2.6
C code for the external definitions, queueing model with simlib.

Since we can obtain both the number-in-queue and utilization statistics using filest
(or out_filest if standard output format is acceptable), we do not need any timest
variables for this model.

Finally, we allocate separate random-number streams for generating the inter-
arrival and service times, as follows:

Stream Purpose
1 Interarrival times
2 Service times

Figure 2.6 shows the external declarations, which are at the top of the file
mm1smlb.c. The first thing we do is #include the header file simlib.h, which is re-
quired for all programs using simlib. To make the code more readable and more
general, we define symbolic constants for the event types, list numbers, the sampst
variable, and the random-number streams. We must still declare some non-simlib
variables for the model, though far fewer than in Sec. 1.4.4 since much of the infor-
mation is held internally by simlib. And we must still have our own functions,
init_model to initialize this particular model, arrive and depart for the events, and a
report generator, but we no longer need a timing function or the expon function
since they are provided by simlib.

Figure 2.7 shows the main function, which must still be written by the user.
After opening the input and output files, we read the input parameters and then
immediately write them out for confirmation that they were read properly (and to
document our output). Invoking init_simlib initializes simlib, after which we set
maxatr to 4; while we have no records with more than two attributes, maxatr must
be at least 4 for simlib to operate properly. We are not using any ranked lists (other
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main() /* Main function. */

{
/* Open input and output files. */
infile = fopen("mmlsmlb.in", "r");
outfile = fopen("mmlsmlb.out", "w");

/* Read input parameters. */

fscanf (infile, "%f %f %d", &mean_ interarrival, &mean_service,
&num_delays_required) ;

/* Write report heading and input parameters. */
fprintf(outfile, "Single-server queueing system using simlib\n\n");
fprintf(outfile, "Mean interarrival time%11.3f minutes\n\n",
mean_interarrival);

fprintf(outfile, "Mean service time%16.3f minutes\n\n", mean service);
fprintf(outfile, "Number of customers%l4d\n\n\n", num_delays_required);
/* Initialize simlib */
init_simlib();
/* Set maxatr = max(maximum number of attributes per record, 4) */
maxatr = 4; /* NEVER SET maxatr TO BE SMALLER THAN 4. */
/* Initialize the model. */
init_model();
/* Run the simulation while more delays are still needed. */
while (num_custs_delayed < num_delays_required) {

/* Determine the next event. */

timing();

/* Invoke the appropriate event function. */

switch (next_event_type) {

case EVENT_ ARRIVAL:
arrive();

break;

case EVENT DEPARTURE:
depart();
break;

}
/* Invoke the report generator and end the simulation. */
report () ;

fclose(infile);
fclose(outfile);

return 0;

}

FIGURE 2.7
C code for the main function, queueing model with simlib.
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void init_model(void) /* Initialization function. */
{

num_custs_delayed = 0;

event_schedule(sim_time + expon(mean_interarrival, STREAM_INTERARRIVAL),
EVENT_ARRIVAL) ;
}
FIGURE 2.8

C code for function init_model, queueing model with simlib.

than the event list), so we do not need to set anything in the list_rank array; also,
both of the continuous-time functions (queue length and server status) are initially
zero, so we need not override their default values. The user-written function
init_model is then invoked to set up our own, non-simlib modeling variables. The
rest of the main function is similar to Fig. 1.11 for the non-simlib version of this
model, except that we need not update the continuous-time statistical accumulators
since simlib takes care of that internally.

Figure 2.8 shows init_model, which begins by setting the num_custs_delayed
counter to 0 for the number of delays observed. The first arrival event is then sched-
uled by invoking event_schedule with the desired event time (a float) as the first
argument and the event type (an int) as the second argument; note that adding
sim_time to the generated exponential interarrival time in the first argument is not
strictly necessary here since sim_time is now zero, but we write it this way to show
the general form and to emphasize that the first argument of event_schedule is the
(absolute) time in the simulated future when the event is to occur, not the interval of
time from now until then. In Chap. 1 we had to set the time of impossible events to
o (actually, 10°°), but now we simply leave them out of the event list, ensuring that
they cannot be chosen to happen next. Thus, we just do not schedule a departure
event at all here.

In Fig. 2.9 is the code for event function arrive, which begins by using
event_schedule to schedule the next arrival event, in a manner similar to that in
init_model (here, adding sim_time to the generated exponential interarrival time is
necessary since sim_time will be positive). We then check to see whether the server
is busy, by asking whether the server list contains a (dummy) record; this is done by
checking whether list_size[LIST_SERVER] is equal to 1. If so, the arriving cus-
tomer must join the end of the queue, which is done by placing the time of arrival
(the current clock value, sim_time) into the first location of the transfer array, and
by filing this record at the end (option = LAST = 2) of the queue list (list =
LIST_QUEUE = 1). Note that we do not have to check for overflow of the queue
here since simlib is automatically allocating storage dynamically for the lists as it is
needed. On the other hand, if the server is idle, the customer experiences a delay of 0,
which is noted by invoking sampst; this is necessary even though the delay is 0,
since sampst will also increment the number of observations by 1. We increment
num_custs_delayed since a delay is being observed, and a departure event is sched-
uled into the event list; note that we are dedicating stream EVENT_DEPARTURE
(=2) to generating service times.

Event function depart, in Fig. 2.10, checks whether the queue is empty, by look-
ing at the length of the queue list, held by simlib in list_size[ LIST_QUEUE]. If so,
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void arrive(void) /* Arrival event function. */
{
/* Schedule next arrival. */

event_schedule(sim_time + expon(mean_interarrival, STREAM INTERARRIVAL),
EVENT ARRIVAL);

/* Check to see whether server is busy (i.e., list SERVER contains a
record). */

if (list_size[LIST_SERVER] == 1) ({

/* Server is busy, so store time of arrival of arriving customer at end
of list LIST_QUEUE. */

transfer[l] = sim time;
list_file(LAST, LIST QUEUE);
}

else {

/* Server is idle, so start service on arriving customer, who has a
delay of zero. (The following statement IS necessary here.) */

sampst (0.0, SAMPST DELAYS) ;

/* Increment the number of customers delayed. */
++num_custs_delayed;

/* Make server busy by filing a dummy record in list LIST_SERVER. */
list_file(FIRST, LIST_ SERVER);

/* Schedule a departure (service completion). */

event_schedule(sim_time + expon(mean service, STREAM SERVICE),
EVENT_DEPARTURE) ;

}

FIGURE 2.9
C code for function arrive, queueing model with simlib.

the server is made idle by removing the (dummy) record from list LIST_SERVER,
the only action needed; note that we are removing the first record in the list, but we
could also have removed the last one since there is only one record there. On the
other hand, if there is a queue, the first customer is removed from it, and that cus-
tomer’s time of arrival is placed in transfer[1] by list_remove. The delay in queue of
that customer is thus sim_time — transfer[1], which is computed and tallied in
sampst, and the number of delays observed is incremented; as in the examples of
Chap. 1, if the simulation were to be run for a long period of simulated time, it might
be necessary to make both sim_time and transfer of type double to avoid loss of
precision in the subtraction to compute the delay in queue. Finally, the service com-
pletion of this customer is scheduled by invoking event_schedule. Note that we
need no longer move the queue up, since this is done internally by simlib, using
linked lists as discussed in Example 2.1.

The report-generation function is shown in Fig. 2.11, and uses the standard
output formatting in out_sampst for the delay-in-queue measure and out_filest for the
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void depart(void) /* Departure event function. */
{
/* Check to see whether queue is empty. */

if (list_size[LIST QUEUE] == 0)

/* The queue is empty, so make the server idle and leave the departure
(service completion) event out of the event list. (It is currently
not in the event list, having just been removed by timing before
coming here.) */

list_remove (FIRST, LIST SERVER);
else {

/* The queue is nonempty, so remove the first customer from the queue,
register delay, increment the number of customers delayed, and
schedule departure. */

list_remove (FIRST, LIST QUEUE);

sampst (sim_time - transfer[l], SAMPST_DELAYS);

++num_custs_delayed;

event_schedule(sim_time + expon(mean service, STREAM SERVICE),
EVENT_DEPARTURE) ;

}

FIGURE 2.10
C code for function depart, queueing model with simlib.

void report(void) /* Report generator function. */
{

/* Get and write out estimates of desired measures of performance. */

fprintf (outfile, "\nDelays in queue, in minutes:\n");

out_sampst (outfile, SAMPST DELAYS, SAMPST DELAYS);

fprintf(outfile, "\nQueue length (1) and server utilization (2):\n");
out_filest(outfile, LIST QUEUE, LIST_ SERVER);

fprintf(outfile, "\nTime simulation ended:%12.3f minutes\n", sim time);

}

FIGURE 2.11
C code for function report, queueing model with simlib.

number-in-queue and utilization measures. Note that we write out brief headers be-
fore invoking out_sampst and out_filest to make the report a little more readable.

2.4.3 Simulation Output and Discussion

The output file mmIsmlb.out is given in Fig. 2.12, and illustrates the standard
format produced by out_sampst and out_filest. We use general formatting of the
numerical results to avoid the possibility of overflowing the field widths. We get all
characteristics of the output measures, i.e., average, maximum, and minimum, as
well as the number of observations for the discrete-time variables used by sampst.
We also write out the final clock value, as a check.

An important point is that these numerical results are not the same as those in
Fig. 1.19 for the non-simlib version of this same model; in fact, they are quite a bit
different, with the average delay in queue changing from 0.430 in Chap. 1 to 0.525
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Single-server queueing system using simlib

Mean interarrival time 1.000 minutes
Mean service time 0.500 minutes
Number of customers 1000

Delays in queue, in minutes:

SAMPST Number
variable of
number Average values Maximum Minimum
1 0.5248728E+00 0.1000000E+04 0.5633087E+01 0.0000000E+00

Queue length (1) and server utilization (2):

File Time
number average Maximum Minimum
1 0.5400774E+00 0.8000000E+01 0.0000000E+00
2 0.5106925E+00 0.1000000E+01 0.0000000E+00
Time simulation ended: 971.847 minutes
FIGURE 2.12

Output report, queueing model with simlib.

here, a difference of some 22 percent. The reason for this is that we are now using
the concept of “dedicating” a random-number stream to a particular source of ran-
domness, while in Chap. 1 we used the same stream (number 1) for everything.
Both programs are correct, and this illustrates the need for careful statistical analy-
sis of simulation output data, as discussed in Chaps. 9 through 12.

While using simlib did simplify the coding of this model considerably, the
value of such a package becomes more apparent in complex models with richer list
structures. Such models are considered next, in Secs. 2.5 through 2.7.

2.5
TIME-SHARED COMPUTER MODEL

In this section we use simlib to simulate a model of a time-shared computer facility
considered by Adiri and Avi-Itzhak (1969).

2.5.1 Problem Statement

A company has a computer system consisting of a single central processing unit
(CPU) and n terminals, as shown in Fig. 2.13. The operator of each terminal “thinks”
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FIGURE 2.13

Time-shared computer model.

for an amount of time that is an exponential random variable with mean 25 seconds,
and then sends to the CPU a job having service time distributed exponentially with
mean 0.8 second. Arriving jobs join a single queue for the CPU but are served in a
round-robin rather than FIFO manner. That is, the CPU allocates to each job a maxi-
mum service quantum of length ¢ = 0.1 second. If the (remaining) service time of
a job, s seconds, is no more than g, the CPU spends s seconds, plus a fixed swap time
of 7 = 0.015 second, processing the job, which then returns to its terminal. How-
ever, if s > ¢, the CPU spends g + 7 seconds processing the job, which then joins
the end of the queue, and its remaining service time is decremented by ¢ seconds.
This process is repeated until the job’s service is eventually completed, at which
point it returns to its terminal, whose operator begins another think time.

Let R, be the response time of the ith job to finish service, which is defined as
the time elapsing between the instant the job leaves its terminal and the instant it is
finished being processed at the CPU. For each of the cases n = 10, 20, . . ., 80, we
use simlib to simulate the computer system for 1000 job completions (response
times) and estimate the expected average response time of these jobs, the expected
time-average number of jobs waiting in the queue, and the expected utilization of
the CPU. Assume that all terminals are in the think state at time 0. The company
would like to know how many terminals it can have on its system and still provide
users with an average response time of no more than 30 seconds.

2.5.2 simlib Program

The events for this model are:

Event description Event type
Arrival of a job to the CPU from a terminal, at the end of a think time 1
End of a CPU run, when a job either completes its service requirement 2

or has received the maximum processing quantum g
End of the simulation 3
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FIGURE 2.14

Event graph, computer model.

Note that we have defined an end-simulation event, even though the stopping rule
for this model is not a fixed point in simulated time. The end-simulation event is
scheduled at the time the 1000th response time is observed, and is scheduled to
occur immediately, i.e., at that time. Clearly, there are other ways in which this stop-
ping rule could be implemented, as discussed below.

An event graph (see Sec. 1.4.7) for this model is shown in Fig. 2.14. The n sep-
arate initializations of the arrival (i.e., end-think-time) event refer to the fact that
each of the n terminals will be initially scheduled to have such an event. Note also
that the arrival and end-CPU-run events can potentially schedule each other; an ar-
rival can schedule the end of a CPU run if the arriving job finds the CPU idle, and
an end-CPU-run event can schedule an arrival if the job exiting the CPU is finished
and returns to its terminal. Also, an end-CPU-run event can schedule itself in the
case of a job’s leaving the CPU before its total processing is finished, and looping
back to the queue only to find that the queue is empty and the CPU is idle since all
other jobs are at their terminals. Finally, note that the end-simulation event can be
scheduled only from the end-CPU-run event and in zero time, in the case that a fin-
ished job leaves the CPU and supplies the last (1000th) response time required; as
discussed in Sec. 1.4.7, an event having incoming arcs that are all thin and smooth
(representing a scheduling of the event in zero time from the event from which the
smooth arrow emanates) can be eliminated from the model and its action incorpo-
rated elsewhere. Problem 2.2 deals with this issue for this model.

Three lists of records will be used, one corresponding to the jobs in queue (list 1),
one for the job being served by the CPU (list 2), and one for the event list (list 25,
as usual). These lists have the following attributes:

List Attribute 1 Attribute 2
1, queue Time of arrival of Remaining service time
job to computer
2, CPU Time of arrival of Remaining service time after the present CPU pass
job to computer (negative if the present CPU pass is the last one needed
for this job)
25, event list Event time Event type

As in Sec. 2.4, we are using a list to represent a server (list 2 for the CPU), thereby
facilitating estimation of the CPU utilization via filest at the end of the simulation.
Here, however, this “server” list’s attributes are not dummies; they carry necessary
information about the job in service, since it may have to revisit the CPU several
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times, and its time of arrival and remaining service time must be carried along for
it to be processed correctly. Note also that we have matched up the attributes in
lists 1 and 2, so that transferring a record between these lists can be done simply by
invoking list_remove and then list_file without having to rearrange the attributes in
the transfer array. Finally, we are not explicitly keeping track of the terminal of
origin for a job, so that when its processing is complete in the computer we do not
know what terminal to send it back to in order for its next think time to begin. This
would certainly not do in reality, since the terminal operators would be getting each
others’ output back, but in the simulation we need not represent the ownership of
each job by a particular terminal since we want only overall (i.e., over all the termi-
nals) performance measures for the response times. Furthermore, all the terminals
are probabilistically identical, as the think-time and CPU-time distributions are the
same. Problem 2.3 asks that the model be enriched by collecting separate response-
time statistics for each terminal, and allowing the terminal characteristics to vary;
any of these changes would require that the terminal of origin of a job be carried
along with it while it is inside the computer.

Since there is only a single discrete-time statistic of interest (the response
times), we need only a single sampst variable:

sampst variable number Meaning

1 Response times

For each of the continuous-time statistics desired (number in queue and CPU
utilization), there is a corresponding list whose length represents the desired quan-
tity, so we can again obtain the output via filest, and we do not need any of our own
timest variables.

There are two types of random variables for this model, and we use the follow-
ing stream assignments:

Stream Purpose
1 Think times
2 Service times

Figure 2.15 shows the global external definitions for this model, which are at the
top of the file tscomp.c. After #including the header file simlib.h, we define symbolic
constants for the event types, list numbers, sampst variable number, and random-
number streams. The non-simlib variables are declared, including ints for the
minimum and maximum number of terminals across the simulations (min_terms =
10 and max_terms = 80), the increment in the number of terminals across the simu-
lations (incr_terms = 10), the number of terminals for a particular simulation
(num_terms), the number of response times observed in the current simulation
(num_responses), and the number of responses required (num_responses_required =
1000); floats are required only for the input parameters for mean think and service
times, the quantum ¢, and the swap time 7. The user-written, non-simlib functions
are declared, including event functions for arrival and end-CPU-run events; we have
written a non-event function, start_CPU_run, to process a particular activity that
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/* External definitions for time-shared computer model. */
#include "simlib.h" /* Required for use of simlib.c. */

#define EVENT ARRIVAL

#define EVENT_ END_CPU_RUN
#define EVENT_ END_SIMULATION
#define LIST QUEUE

#define LIST CPU

#define SAMPST RESPONSE_TIMES
#define STREAM THINK

#define STREAM_SERVICE

/* Event type for arrival of job to CPU. */
/* Event type for end of a CPU run. */

/* Event type for end of the simulation. */
/* List number for CPU queue. */

/* List number for CPU. */

/* sampst variable for response times. */

/* Random-number stream for think times. */
/* Random-number stream for service times. */

NRERNDR WD R

/* Declare non-simlib global variables. */

int min_terms, max_terms, incr_terms, num_terms, num_ responses,
num_responses_required, term;

float mean_think, mean_service, quantum, swap;

FILE *infile, *outfile;

/* Declare non-simlib functions. */

void arrive(void);

void start_CPU_run(void);
void end_CPU_run(void);
void report(void);

FIGURE 2.15
C code for the external definitions, computer model.

may occur when either an arrival or an end-CPU-run event occurs, avoiding having
to repeat this same block of code in each of those event functions. There is not a sep-
arate model-initialization function since there is little required to initialize this model
(beyond what simlib does in init_simlib), so this activity was simply put into the
main function. For this model we chose not to use the standard output formatting op-
tion, since we are really doing eight separate simulations and would like to arrange
the output data in a customized table, with one line per simulation; also, we wish to
get only the mean of the output performance measures rather than all of their char-
acteristics (maximum, etc.).

The main function is shown in Fig. 2.16. As usual, we open the input and out-
put files, read the input parameters, and then write them out in a report heading.
Since we will be doing eight simulations, with one output line per simulation, we
also write out column headings for the output at this time. A “for” loop setting
num_terms in turn to 10, 20, . . ., 80 then begins, and encompasses the rest of the
main function except for closing the files at the very end; a separate simulation is
run, including initialization and results writing, within this “for” loop for each value
of num_terms. Each simulation begins with a fresh initialization of simlib by in-
voking init_simlib, then sets maxatr to 4, initializes num_responses to 0, and sched-
ules the first arrival to the CPU from each terminal by invoking event_schedule for
each of the num_terms terminals. Note that we will then have num_terms events
scheduled in the event list, all of type 1, each one representing the end of the initial
think time for a particular terminal. A “do while” loop then starts, invoking the tim-
ing function and the appropriate event function as long as the event type is not the
end-simulation event; when the event just executed is the end-simulation event (and
report has been invoked), the “do while” loop ends and we go back to the enclosing
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main() /* Main function. */
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{
/* Open input and output files. */
infile = fopen("tscomp.in", "r");
outfile = fopen("tscomp.out", "w");
/* Read input parameters. */
fscanf (infile, "%d %d %d %d %f %f %f %f",
&min_terms, &max terms, &incr terms, &num responses_required,
&mean_think, &mean_service, &quantum, &swap);
/* Write report heading and input parameters. */
fprintf (outfile, "Time-shared computer model\n\n");
fprintf(outfile, "Number of terminals%9d to%4d by %4d\n\n",
min_terms, max_terms, incr_terms);
fprintf (outfile, "Mean think time %11.3f seconds\n\n", mean_ think);
fprintf(outfile, "Mean service time%11.3f seconds\n\n", mean service);
fprintf (outfile, "Quantum %11.3f seconds\n\n", quantum);
fprintf (outfile, "Swap time %11.3f seconds\n\n", swap);
fprintf (outfile, "Number of jobs processed%12d\n\n\n",
num_responses_required) ;
fprintf (outfile, "Number of Average Average");
fprintf (outfile, " Utilization\n");
fprintf (outfile, "terminals response time number in queue of CPU");
/* Run the simulation varying the number of terminals. */
for (num_terms = min terms; num_terms <= max_terms;
num_terms += incr_terms) {
/* Initialize simlib */
init_simlib();
/* Set maxatr = max(maximum number of attributes per record, 4) */
maxatr = 4; /* NEVER SET maxatr TO BE SMALLER THAN 4. */
/* Initialize the non-simlib statistical counter. */
num_responses = 0;
/* Schedule the first arrival to the CPU from each terminal. */
for (term = 1; term <= num_terms; ++term)
event_schedule (expon (mean_think, STREAM THINK), EVENT ARRIVAL);
/* Run the simulation until it terminates after an end-simulation event
(type EVENT_END SIMULATION) occurs. */
do {
/* Determine the next event. */
timing();
/* Invoke the appropriate event function. */
switch (next_event_type) {
case EVENT_ ARRIVAL:
arrive();
break;
FIGURE 2.16

C code for the main function, computer model.
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case EVENT_END_CPU_RUN:
end_CPU_run();
break;
case EVENT_END_SIMULATION:
report () ;
break;
}

/* If the event just executed was not the end-simulation event (type
EVENT_END_SIMULATION), continue simulating. Otherwise, end the
simulation. */

} while (next_event_type != EVENT END_SIMULATION) ;
}

fclose(infile);
fclose(outfile);

return 0;
}
FIGURE 2.16
(continued)

“for” loop on the number of terminals. The end-simulation event is not scheduled
initially, but will be scheduled in the function end_CPU_run at the time of the
1000th response-time completion, to occur at that time, whereupon the main func-
tion will invoke function report and end the current simulation. When the outer
“for” loop ends, we have run all the simulations we want, including producing the
output for each, and so the entire program ends by closing the files.

The arrival event is flowcharted in Fig. 2.17 and the code is in Fig. 2.18. While
in the computer (i.e., in the queue or in the CPU), each job has its own record with

Function
arrive

Compute job's attributes
and place in queue

No

Invoke start_CPU_run|

FIGURE 2.17
Flowchart for arrival function, computer
model.
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void arrive(void) /* Event function for arrival of job at CPU after think
time. */

{

/* Place the arriving job at the end of the CPU queue.
Note that the following attributes are stored for each job record:
1. Time of arrival to the computer.
2. The (remaining) CPU service time required (here equal to the
total service time since the job is just arriving). */

transfer[l] = sim_time;
transfer[2] = expon(mean_service, STREAM_SERVICE);
list_file(LAST, LIST_QUEUE);

/* If the CPU is idle, start a CPU run. */

if (list_size[LIST CPU] == 0)
start_CPU_run();
}
FIGURE 2.18
C code for function arrive, computer model.

attributes as described earlier. Since this event represents a job’s arrival to the com-
puter at the end of a think time, its attributes must be defined now, so the time of ar-
rival is stored in the first attribute and the total service requirement is generated and
stored in the second attribute. The record for this newly arrived job is then placed at
the end of the queue. It could be, however, that the CPU is actually idle (i.e., the
number of records in list LIST_CPU, list_size[LIST_CPUY], is equal to 0), in which
case the function start_CPU_run is invoked to take this job out of the queue (it
would be the only one there) and place it in the CPU to begin its processing. Implicit
in the logic of this function is that a job arriving to the computer and finding the
CPU idle cannot just go right in, but must first enter the queue and then be removed
immediately; this is really a physical assumption that does matter, since there is a
swap time incurred whenever a job leaves the queue and enters the CPU, as exe-
cuted by function start_CPU_run, to be discussed next.

The non-event function start_CPU_run is flowcharted in Fig. 2.19, and its code
is in Fig. 2.20. This function is designed to be invoked from the event function ar-
rive, as just discussed, or from the event function end_CPU_run; thus it must be
general enough to handle either case. The purpose of the function is to take the first
job out of the queue, place it in the CPU, and schedule the time when it will leave
the CPU, by virtue of either being completely done or having used up an entire
quantum. The first thing to do is to remove the job from the front of the queue, which
is done by invoking list_remove. Next, the time that the job will occupy the CPU is
computed, being the smaller of a quantum and the remaining service time (held in
the job’s second attribute, having just been placed in transfer[2] by list_remove),
plus a swap time. Before filing the job’s record in the CPU list, its remaining service
time (in transfer[2]) is decremented by a full quantum, even if it needs only a par-
tial quantum to get done; in this case the second attribute of the job becomes nega-
tive, and we use this condition as a flag that the job, when leaving the CPU after the
pass just beginning, is done and is to be sent back to its terminal. On the other hand,
if the job will not be done after this pass through the CPU, it will be getting a full
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Remove job from queue
and compute CPU time
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Decrement this job’s
remaining service time
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Place job in CPU

,

Schedule an
end-CPU-run event
for this job on this pass

FIGURE 2.19
Flowchart for function start_ CPU_run, computer model.

void start_CPU_run(void) /* Non-event function to start a CPU run of a job. */
{

float run time;

/* Remove the first job from the queue. */

list_remove (FIRST, LIST QUEUE);

/* Determine the CPU time for this pass, including the swap time. */

if (quantum < transfer[2])

run_time = quantum + swap;
else
run_time = transfer[2] + swap;

/* Decrement remaining CPU time by a full quantum. (If less than a full
quantum is needed, this attribute becomes negative. This indicates that
the job, after exiting the CPU for the current pass, will be done and is
to be sent back to its terminal.) */

transfer[2] -= quantum;

/* Place the job into the CPU. */

list_file(FIRST, LIST_CPU);

/* Schedule the end of the CPU run. */

event_schedule(sim time + run_time, EVENT END_CPU_RUN) ;
}

FIGURE 2.20
C code for function start_ CPU_run, computer model.
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quantum of service this time, and its second attribute should be decremented by a
full quantum, correctly representing the (nonnegative) remaining service time
needed after this CPU pass. Finally, the job is placed in the CPU list by invoking
list_file (note that transfer[1], the time of this job’s arrival to the computer, is al-
ready correctly set since it is from the record that was just removed from the queue
list, where the first attribute has the same definition), and the end of this CPU run is
scheduled into the event list.

Event function end_CPU_run is invoked from the main function when a job
completes a pass through the CPU; it is flowcharted in Fig. 2.21, and its code is
listed in Fig. 2.22. The job is first removed from the CPU, after which a check is
made to see if it still needs more CPU time, i.e., if its second attribute is positive. If
S0, it is simply put back at the end of the queue (note that the attributes for the queue
and CPU lists match up, so that the contents of transfer are correct), and
start_CPU_run is invoked to remove the first job from the queue and begin its pro-
cessing. On the other hand, if the job coming out of the CPU is finished, its response
time, sim_time — transfer[1], is registered with sampst; as before for long simula-
tions, both sim_time and transfer might have to be of type double to avoid loss of
precision in this subtraction. The end of its next think time is scheduled, and the
number of response times observed is incremented. Then a check is made to see
whether this response time was the last one required; if so, an end-simulation event
is scheduled to occur immediately (the first argument passed to event_schedule is
sim_time, the current simulation time), and the timing function will pick off this
end-simulation event immediately (i.e., without the passage of any simulated time),
and the main function will invoke the report function to end this simulation. If, how-
ever, the simulation is not over, start_CPU_run is invoked provided that the queue
is not empty; if the queue is empty, no action is taken and the simulation simply
continues.

The report generator is listed in Fig. 2.23, and it simply writes to the output file
a single line with the number of terminals for the simulation just completed, the av-
erage returned by sampst for the response times, and the time averages returned by
filest for the queue length and server utilization (recall that sampst, timest, and filest
return in their names the averages they compute, in addition to placing the average
into transfer[1]).

2.5.3 Simulation Output and Discussion

The output file, tscomp.out, is shown in Fig. 2.24. As expected, congestion in the
computer gets worse as the number of terminals rises, as measured by the average
response time, average queue length, and CPU utilization. In particular, it appears
that this system could handle about 60 terminals before the average response time
degrades to a value much worse than 30 seconds. At this level, we see that the av-
erage queue length would be around 30 jobs, which could be useful for determining
the amount of space needed to hold these jobs (the maximum queue length might
have been a better piece of information for this purpose); further, the CPU would be
busy nearly all the time with such a system. However, our usual caveat applies to
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Function
end_CPU_run

Remove job from CPU

Does
job require more
CPU time?

Compute response time
of job and gather
statistics

! '

Schedule an arrival event
for the terminal of
this job

:

Add 1 to the number
of jobs processed

Place job at end
of queue

Invoke
start_ CPU_run

Are
enough jobs
done?

Are
there any jobs in
the queue?

Schedule an Yes
end-simulation event
immediately

Invoke
start_ CPU_run

FIGURE 2.21
Flowchart for function end_CPU_run, computer model.
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void end_CPU_run(void) /* Event function to end a CPU run of a job. */
t /* Remove the job from the CPU. */

list_remove (FIRST, LIST CPU);

/* Check to see whether this job requires more CPU time. */

if (transfer[2] > 0.0) {

/* This job requires more CPU time, so place it at the end of the queue
and start the first job in the queue. */

list_file(LAST, LIST QUEUE);
start_CPU_run();

}
else {

/* This job is finished, so collect response-time statistics and send it
back to its terminal, i.e., schedule another arrival from the same
terminal. */

sampst (sim_time - transfer[l], SAMPST RESPONSE_TIMES) ;

event_schedule(sim_time + expon(mean_think, STREAM THINK),

EVENT_ARRIVAL) ;

/* Increment the number of completed jobs. */

++num_responses;

/* Check to see whether enough jobs are done. */

if (num_responses >= num_responses_required)

/* Enough jobs are done, so schedule the end of the simulation
immediately (forcing it to the head of the event list). */
event_schedule(sim_time, EVENT END_ SIMULATION) ;

else

/* Not enough jobs are done; if the queue is not empty, start
another job. */
if (list_size[LIST QUEUE] > 0)
start_CPU_run();
}
}
FIGURE 2.22

C code for function end_CPU_run, computer model.

void report(void) /* Report generator function. */

{
/* Get and write out estimates of desired measures of performance. */
fprintf(outfile, "\n\n%5d%16.3£%16.3£%16.3f", num_terms,
sampst (0.0, -SAMPST RESPONSE_TIMES), filest(LIST_QUEUE),
filest (LIST _CPU));
}
FIGURE 2.23

C code for function report, computer model.
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Time-shared computer model

Number of terminals 10 to 80 by 10

Mean think time 25.000 seconds

Mean service time 0.800 seconds

Quantum 0.100 seconds

Swap time 0.015 seconds

Number of jobs processed 1000

Number of Average Average Utilization

terminals response time number in queue of CPU
10 1.324 0.156 0.358
20 2.165 0.929 0.658
30 5.505 4.453 0.914
40 12.698 12.904 0.998
50 24.593 23.871 0.998
60 31.712 32.958 1.000
70 42.310 42.666 0.999
80 47.547 51.158 1.000

FIGURE 2.24

Output report, computer model.

these conclusions: The output data on which they are based resulted from just a
single run of the system (of somewhat arbitrary length) and are thus of unknown
precision.

2.6
MULTITELLER BANK WITH JOCKEYING

We now use simlib to simulate a multiteller bank where the customers are allowed
to jockey (move) from one queue to another if it seems to be to their advantage.
This model also illustrates how to deal with another common stopping rule for a
simulation.

2.6.1 Problem Statement

A bank with five tellers opens its doors at 9 A.M. and closes its doors at 5 p.M., but
operates until all customers in the bank by 5 p.m. have been served. Assume that the
interarrival times of customers are IID exponential random variables with mean
1 minute and that service times of customers are IID exponential random variables
with mean 4.5 minutes.
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Each teller has a separate queue. An arriving customer joins the shortest queue,
choosing the leftmost shortest queue in case of ties. Let n; be the total number of
customers in front of teller i (including customers in queue as well as the customer
in service, if any) at a particular instant. If the completion of a customer’s service at
teller i causes n; > n; + 1 for some other teller j, then the customer from the tail of
queue j jockeys to the tail of queue i. (If there are two or more such customers, the
one from the closest, leftmost queue jockeys.) If teller i is idle, the jockeying cus-
tomer begins service at teller #; see Fig. 2.25.

The bank’s management is concerned with operating costs as well as the
quality of service currently being provided to customers, and is thinking of chang-
ing the number of tellers. For each of the cases n = 4, 5, 6, and 7 tellers, we use
simlib to simulate the bank and estimate the expected time-average total number of
customers in queue, the expected average delay in queue, and the expected maxi-
mum delay in queue. In all cases we assume that no customers are present when the
bank opens.

2.6.2 simlib Program

The events for this model are:

Event description Event type

Arrival of a customer to the bank 1
Departure of a customer upon completion of his or

her service
Bank closes its doors at 5 p.M. 3

An event graph for this model is given in Fig. 2.26. It is identical to that for the
single-server queue with fixed run length (see Fig. 1.27), except that the end-
simulation event has been replaced by the close-doors event. Even though these two
events fit into the event diagram in the same way, the action they must take is quite
different.

This model requires 2n + 1 lists of records, where 7 is the number of tellers for
a particular simulation run. Lists 1 through n contain the records of the customers
waiting in the respective queues. Lists n + 1 through 2n are used to indicate
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FIGURE 2.26
Event graph, bank model.
whether the tellers are busy. If list n + i (where i = 1, 2, . . ., n) contains one

record, teller i is busy; if it contains no records, teller i is idle. Finally, list 25 is the
event list, as usual. The attributes for all these lists are as follows:

List Attribute 1 Attribute 2 Attribute 3
1 through n, Time of arrival to — —
queues queue
n + 1 through 2n, — — —
tellers
25, event list Event time Event type Teller number if event
type = 2

Here again we are using separate lists for the servers in the model; in this case the
only reason for doing so is to represent the busy/idle status of the servers, since no
meaningful information is stored in the attributes of the records in these lists, and
we are not asking for server utilization statistics. Note also that we are taking ad-
vantage of the opportunity to store more than just the event time and type in the
records in the event list. The reason for this is that in the case of a departure event
(type 2), we need to know the teller number from which the departure will occur in
order to manage the queues and the jockeying rules correctly. A programming im-
plication of this is that we must remember to define a value for transfer[3] before in-
voking the simlib function event_schedule for type 2 events, since event_schedule
copies the attributes into only transfer[1] and transfer[2] before filing the event
record into the event list.

The statistics collection in this model is somewhat different. Since there are
several different queues, a customer may experience his or her delay (the time
elapsing between arrival to the system and commencement of service at some
server) in several different queues, due to the possibility of jockeying. The cus-
tomer carries along the time of his or her arrival (in attribute 1 of the queue lists)
regardless of what queue he or she may be in, so that the delay can be computed
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when service begins. Thus, we simply lump all the customer delays together into a
single sampst variable:

sampst variable number Meaning

1 Delay in queue (or queues)

By using sampst, we will automatically get the maximum delay in queue (or queues)
as well.
We also want to get the time-average total number of customers in queue, which
is computed as follows. If we let Q,(¢) be the number of customers in queue i at time 7,
fori=1,2,...,n,then .
o(r) = > 0,0 2.1
i=1
is the total number of customers in all the queues at time ¢. Thus, what we want to
compute is

Kgom

=" 2.2)

where T is the time the simulation ends (as determined by the stopping rule de-
scribed above). However, if we substitute Eq. (2.1) into Eq. (2.2) and use linearity
of integrals, we get o R R

9=4q T4q+ - +gq,
where

T
jgmm
LU
T

is simply the time-average number of customers in queue i. All this really says is
that the average of the sum of the individual queue lengths is the sum of their aver-
age lengths. Thus, we can use filest (applied to the lists for the individual queues) at
the end of the simulation to obtain the g,’s, and then just add them together to get .
To be sure, ¢ could be obtained directly by defining a timest variable corresponding
to Q(f), incrementing it upon each arrival, and decrementing it with the commence-
ment of each service; but we have to keep the queue lists anyway, so the above ap-
proach is preferred. (Problem 2.4 considers an extension of this model where we
want to know the maximum total number of customers in the queues as well as the
above statistics; the question addressed there concerns whether the maximum of the
total is equal to the total of the maxima.)

There are two types of random variables in this model: interarrival times and
service times. We use the following stream assignments:

A

q; =

Stream Purpose

1 Interarrival times
2 Service times
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/* External definitions for multiteller bank. */
#include "simlib.h" /* Required for use of simlib.c. */

#define EVENT_ ARRIVAL
#define EVENT DEPARTURE
#define EVENT_CLOSE_DOORS
#define SAMPST DELAYS
#define STREAM INTERARRIVAL
#define STREAM SERVICE

/* Event type for arrival of a customer. */

/* Event type for departure of a customer. */
/* Event type for closing doors at 5 P.M. */
/* sampst variable for delays in queue(s). */
/* Random-number stream for interarrivals. */
/* Random-number stream for service times. */

NP R WD

/* Declare non-simlib global variables. */

int min_tellers, max_tellers, num tellers, shortest_length, shortest_queue;
float mean_interarrival, mean_service, length_doors_open;
FILE *infile, *outfile;

/* Declare non-simlib functions. */

void arrive(void);
void depart(int teller);
void jockey(int teller);
void report(void);

FIGURE 2.27
C code for the external definitions, bank model.

Figure 2.27 shows the external definitions and global variables for the model.
As usual, we #include the simlib header file simlib.h and then define symbolic con-
stants for the event types, sampst variable, and random-number stream numbers.
Next, ints are declared for the minimum and maximum number of tellers (4 and 7,
respectively) for the different simulations we will carry out, and for the number of
tellers for a given simulation; the “short” ints pertain to queue-selection decisions of
arriving customers. The input parameters are declared as floats; length_doors_open
is assumed to be read in units of hours, while the time units used elsewhere in
the simulation are minutes, so an adjustment must be made in the code for this. The
functions are prototyped, with arrive being for type 1 events, depart for type 2
events (with an int argument giving the teller number from which the departure is to
occur), jockey being a non-event function with int argument being the teller number
where a service is being completed (so is the possible destination for a jockeying
customer), and report writing the results when the simulation ends at or after 5 p.M.

The main function is shown in Fig. 2.28, and it begins by opening the input and
output files, reading the input parameters, writing them back out, and producing a
report heading. As in the computer model, there is a for loop around most of the
main function, with the index num_tellers representing the number of tellers n for
the current model variant. Invoking init_simlib initializes simlib (note that this
must be done for each model variant, so is inside the for loop), and maxatr is set to
4 (we have no more than 3 attributes in any of our records, but maxatr can be no less
than 4 for simlib to work properly). The first arrival is scheduled, and the close-
doors event is also scheduled, taking care to change the time units to minutes. A
while loop then begins, continuing to run the current simulation so long as the event
list is not empty, after which the current simulation is terminated; some explanation
is required to argue why this is a valid way to implement the termination rule for
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main() /* Main function. */
/* Open input and output files. */

infile
outfile

= fopen("mtbank.in", "r");
= fopen("mtbank.out", "w");

/* Read input parameters. */

fscanf (infile, "%d %d %f %f %f", &min_tellers, &max_tellers,
&mean_interarrival, &mean_service, &length_doors_open) ;

/* Write report heading and input parameters. */

fprintf(outfile, "Multiteller bank with separate queues & jockeying\n\n");
fprintf (outfile, "Number of tellers%16d to%3d\n\n",
min tellers, max_tellers);
fprintf(outfile, "Mean interarrival time%11.3f minutes\n\n",
mean_interarrival);
fprintf (outfile, "Mean service time%16.3f minutes\n\n", mean_ service);
fprintf (outfile,
"Bank closes after%16.3f hours\n\n\n\n", length_doors_open) ;
/* Run the simulation varying the number of tellers. */
for (num_tellers = min_tellers; num_tellers <= max_tellers; ++num_tellers) {
/* Initialize simlib */
init_simlib();
/* Set maxatr = max(maximum number of attributes per record, 4) */
maxatr = 4; /* NEVER SET maxatr TO BE SMALLER THAN 4. */
/* Schedule the first arrival. */

event_schedule (expon(mean_interarrival, STREAM INTERARRIVAL),
EVENT_ARRIVAL) ;

/* Schedule the bank closing. (Note need for consistency of units.) */
event_schedule (60 * length_doors_open, EVENT_ CLOSE_DOORS) ;
/* Run the simulation while the event list is not empty. */
while (list_size[LIST EVENT] != 0) {
/* Determine the next event. */
timing();
/* Invoke the appropriate event function. */
switch (next_event_type) {

case EVENT_ARRIVAL:

arrive();
break;
case EVENT_DEPARTURE:
depart ((int) transfer([3]); /* transfer[3] is teller
number. */
break;

case EVENT_CLOSE_DOORS:
event_cancel (EVENT_ARRIVAL);
break;

}

FIGURE 2.28
C code for the main function, bank model.
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/* Report results for the simulation with num tellers tellers. */

report();
}

fclose(infile);
fclose(outfile);

return 0;
}
FIGURE 2.28
(continued)

the model. So long as it is before 5 p.M. the close-doors event will be in the event
list, and there will always be the next arrival scheduled, so the list will not be
empty. At 5 p.M. the close-doors event will occur, removing this event record from
the list, and the action of this event will be to remove (using simlib function
event_cancel) the next-arrival event, thus “choking off” the arrival stream and re-
moving this event from the event list from then on (since an arrival is scheduled
only upon initialization and by the preceding arrival). The only other types of
events are the departure events; and if there are any customers left in the bank at
5 p.M., some of them will be in service and their departure events will be in the event
list. Eventually (or perhaps immediately at 5 p.M. if there happen to be no customers
in the bank at that time), all the customers in the bank will receive service and de-
part, at which point the event list will become empty and the simulation will end.
As long as the while loop is executing, we have the usual activities of invoking the
timing function, passing control to arrive or depart for an arrival or departure event
(note the int cast on the argument passed to depart, being the teller number in the
third attribute of a departure event record), and executing the close-doors event, as
described above, when it becomes time to do so. When the while loop ends, the cur-
rent simulation is over and report is invoked to produce the output. After the for
loop ends, all the simulations are over, so we close the input and output files and
terminate the program.

A flowchart and the code for the arrival event are given in Figs. 2.29 and 2.30.
The function begins by scheduling the next arrival event. Then a for loop begins,
with index variable “teller” running over the teller numbers, and each teller is
looked at in turn (list numbers n + 1, n + 2, ..., 2n) to see whether they are idle
(i.e., whether list_size[num_tellers + teller] is equal to 0). As soon as an idle teller
is found, the customer’s delay of 0 is registered in sampst, the teller is made busy
by filing a dummy record in that teller’s list, and this customer’s service-completion
event is scheduled. Then the return statement transfers control back to the main
function, and neither the rest of the arrive function nor the rest of this for loop (if
any) is executed. The remainder of the function refers to the case when all tellers
are busy, and the rest of this for loop refers to other, higher-numbered tellers at
whom we don’t want to look in any case due to the preference for the lowest-
numbered idle teller. If this for loop is completed, then all tellers are busy, and
the next for loop searches across the queues to find the shortest one, choosing the
lowest-numbered one if there is a tie. This tie-breaking rule is implemented by the
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FIGURE 2.29

Flowchart for arrival function, bank model.

strict inequality (<) in the if statement in the for loop, meaning that in the left-to-
right search a new choice of the queue would be taken only if the new queue is
strictly shorter than the earlier choice. After finishing this for loop, the int short-
est_queue will contain the queue number chosen, and the arriving customer is put
at the end of that queue, with the time of arrival being the only attribute needed.

Event function depart, with the flowchart and code given in Figs. 2.31 and
2.32, is invoked from the main program when a customer completes service; the int
argument “teller” is the number of the teller who is completing a service. If the
queue for this teller is empty (list_size[teller] is 0), the teller is made idle by re-
moving the dummy record from the corresponding list, and function jockey is in-
voked to determine whether a customer from another queue can jockey into service
at teller number “teller”, who just became idle. On the other hand, if the queue for
this teller is not empty, the first customer is removed, his or her delay in queue
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void arrive(void) /* Event function for arrival of a customer to the bank. */

{
int teller;
/* Schedule next arrival. */
event_schedule(sim_time + expon(mean_interarrival, STREAM INTERARRIVAL),
EVENT_ARRIVAL) ;
/* If a teller is idle, start service on the arriving customer. */
for (teller = 1; teller <= num_tellers; ++teller) {
if (list_size[num tellers + teller] == 0) {
/* This teller is idle, so customer has delay of zero. */
sampst (0.0, SAMPST DELAYS);
/* Make this teller busy (attributes are irrelevant). */
list_file(FIRST, num tellers + teller);
/* Schedule a service completion. */
transfer[3] = teller; /* Define third attribute of type-two event-
list record before event_schedule. */
event_schedule(sim_time + expon(mean_service, STREAM SERVICE),
EVENT_DEPARTURE) ;
/* Return control to the main function. */
return;
}
}
/* All tellers are busy, so find the shortest queue (leftmost shortest in
case of ties). */
shortest_length = list_size[1l];
shortest_queue = 1;
for (teller = 2; teller <= num tellers; ++teller)
if (list_size[teller] < shortest_length) {
shortest_length = list_size[teller];
shortest_queue = teller;
}
/* Place the customer at the end of the leftmost shortest queue. */
transfer[l] = sim time;
list_file(LAST, shortest_queue);
}
FIGURE 2.30

C code for function arrive, bank model.

(sim_time — transfer[1]) is registered in sampst, and the service-completion event
is scheduled; for long simulations, sim_time and transfer might have to be made
type double to avoid loss of precision in the subtraction to calculate the delay in
queue. Note that it is our responsibility to define transfer[3] to be the teller number
before invoking event_schedule, since this function only copies the time and type of
event (attributes 1 and 2) into the transfer array before filing it into the event list. In
any case, we must invoke jockey to see if any customers from other queues want to
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FIGURE 2.31

Flowchart for departure function, bank model.

jockey into this queue. (No customers should jockey after an arrival occurs, since
this would not decrease their expected time to departure.)

The non-event function jockey is invoked with an int argument “teller” to see if
a customer can jockey to the queue for teller “teller” from another (longer) queue,
or possibly right into service at teller “teller” if he just became idle; its flowchart
and code are shown in Figs. 2.33 and 2.34. The int variable jumper will hold
the queue number of the jockeying customer, if any; it is set to zero initially and is
made positive only if such a customer is found. The int variable min_distance is the
(absolute) distance (in number of queues) of a potential jockeyer to the destination
queue, and it is set to a large number initially, since we want to scan for the
minimum such distance. The number of customers facing teller “teller” is the int
variable ni, that is, ni = n, for i = “teller”. The for loop examines the queues
(other_teller) to see if any of them satisfy the jockeying requirements, represented
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void depart(int teller) /* Departure event function. */
{
/* Check to see whether the queue for teller "teller" is empty. */

if (list_size[teller] == 0)
/* The queue is empty, so make the teller idle. */
list_remove (FIRST, num_tellers + teller);

else {
/* The queue is not empty, so start service on a customer. */

list_remove (FIRST, teller);
sampst (sim_time - transfer[l], SAMPST DELAYS);
transfer[3] = teller; /* Define before event_schedule. */
event_schedule(sim_time + expon(mean service, STREAM SERVICE),
EVENT_DEPARTURE) ;
}

/* Let a customer from the end of another queue jockey to the end of this
queue, if possible. */

jockey(teller);
}
FIGURE 2.32
C code for function depart, bank model.

here by the condition other_teller # teller (since a customer would not jockey to
his or her own queue) and nj > ni + 1, where nj is the number of customers fac-
ing teller other_teller, that is, nj = n; for j = other_teller. If both of these condi-
tions are satisfied, then the customer at the end of queue number other_teller would
like to jockey, and this customer will (temporarily, perhaps) be issued a jockeying
pass if she is strictly closer to the target queue than earlier customers who would
also like to jockey (i.e., if the variable “distance”, the number of queues this
would-be jockeyer is away, is strictly less than the distance of the earlier closest
would-be jockeyer). Note that in the case of two closest would-be jockeyers (one
on the left and one on the right), we would jockey the one from the left since the
one on the right would have to have been strictly closer. When this for loop ends,
jumper will be zero if the other queue lengths were such that nobody wants to
jockey, in which case control is passed back to the main function and no action is
taken. If, however, jumper is positive, then it is equal to the queue number from
which a customer will jockey, and that customer is removed from the end of his
queue. A check is then made to see whether the teller who just finished service is
busy (with the customer who was first in this teller’s queue), in which case the
jockeying customer just joins the end of his new queue. If this teller is idle, how-
ever, the jockeying customer jockeys right into service, so his delay is computed
and registered, the server is made busy again, and the jockeying customer’s service
completion is scheduled.

The code for the report generator is in Fig. 2.35, and starts with a loop to add up
the average numbers in the separate queues to get the average total number in
queue, as explained earlier; this is then written out together with the number of
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FIGURE 2.33
Flowchart for function jockey, bank model.

tellers in this model variant. Finally, the standard-format output function is invoked
for the sole sampst variable to write out the average and maximum of the customer
delays in queue(s).

2.6.3 Simulation Output and Discussion

Figure 2.36 contains the results (in the file mtbank.out) of the simulations. Com-
pared to the current policy of five tellers, a reduction to four tellers would seem to
penalize customer service quality heavily in terms of both delays in queue and the
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void jockey(int teller) /* Jockey a customer to the end of queue "teller" from
the end of another queue, if possible. */

{
int jumper, min distance, ni, nj, other_teller, distance;

/* Find the number, jumper, of the queue whose last customer will jockey to
queue or teller "teller", if there is such a customer. */

jumper = 0;
min_distance = 1000;
ni = list_size[teller] + list_size[num tellers + teller];

/* Scan all the queues from left to right. */
for (other_teller = 1; other_teller <= num tellers; ++other_teller) {

nj = list_size[other teller] + list_size[num tellers + other teller];
distance = abs(teller - other_teller);

/* Check whether the customer at the end of queue other_teller qualifies
for being the jockeying choice so far. */

if (other_teller != teller && nj > ni + 1 && distance < min distance) {
/* The customer at the end of queue other teller is our choice so
far for the jockeying customer, so remember his queue number and

its distance from the destination queue. */

other_teller;
distance;

jumper
min distance

}

/* Check to see whether a jockeying customer was found. */

if (jumper > 0) {
/* A jockeying customer was found, so remove him from his queue. */
list_remove (LAST, jumper);
/* Check to see whether the teller of his new queue is busy. */

if (list_size[num tellers + teller] > 0)

/* The teller of his new queue is busy, so place the customer at the
end of this queue. */

list_file(LAST, teller);
else {

/* The teller of his new queue is idle, so tally the jockeying
customer's delay, make the teller busy, and start service. */

sampst (sim_time - transfer[l], SAMPST DELAYS);

list_file(FIRST, num tellers + teller);

transfer[3] = teller; /* Define before event_schedule. */

event_schedule(sim_time + expon(mean_service, STREAM SERVICE),
EVENT_DEPARTURE) ;

}

FIGURE 2.34
C code for function jockey, bank model.



void report(void) /* Report generator function. */

{
int teller;
float avg_num in_queue;
/* Compute and write out estimates of desired measures of performance. */
avg_num_in queue = 0.0;
for (teller = 1; teller <= num tellers; ++teller)
avg_num_in queue += filest(teller);
fprintf (outfile, "\n\nWith%2d tellers, average number in queue = %10.3f",
num_tellers, avg_num_in_gqueue);
fprintf(outfile, "\n\nDelays in queue, in minutes:\n");
out_sampst (outfile, SAMPST DELAYS, SAMPST_DELAYS);
}
FIGURE 2.35

C code for function report, bank model.

Multiteller bank with separate queues & jockeying

Number of tellers 4 to 7

Mean interarrival time 1.000 minutes

Mean service time 4.500 minutes

Bank closes after 8.000 hours

With 4 tellers, average number in queue = 51.319

Delays in queue, in minutes:

sampst Number
variable of
number Average values Maximum Minimum
1 63.2229 501.000 156.363 0.000000
With 5 tellers, average number in queue = 2.441

Delays in queue, in minutes:

sampst Number
variable of
number Average values Maximum Minimum
1 2.48149 483.000 21.8873 0.000000
With 6 tellers, average number in queue = 0.718

Delays in queue, in minutes:

sampst Number
variable of
number Average values Maximum Minimum
1 0.763755 467.000 16.5103 0.000000
FIGURE 2.36

Output report, bank model.

133
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With 7 tellers, average number in queue = 0.179

Delays in queue, in minutes:

sampst Number
variable of
number Average values Maximum Minimum
1 0.176180 493.000 6.97122 0.000000
FIGURE 2.36
(continued)

queue lengths. In the other direction, adding a sixth teller would bring a substantial
improvement in customer service and average queue lengths; whether this is eco-
nomically advisable would depend on how management values this improvement
in customer service with respect to the cost of the extra teller. It seems unlikely in
this example that adding a seventh teller could be justified, since the service im-
provement does not appear great relative to the six-teller system. Note also that we
know how many customers were served during the day in each system variant,
being the number of delays observed. There is little variation in this quantity across
the system variants, since the arrival rate is the same and the lobby has unlimited
space.

Problem 2.4(b) and (c) embellishes this model by adding new output measures
(a measure of server utilization and the maximum total number of customers in the
queues), and Prob. 2.4(d) further enhances the model by considering the realistic
possibility of a limit on the size of the bank’s lobby to hold the customers in the
queues.

2.7
JOB-SHOP MODEL

In this section, we use simlib to simulate a model of a manufacturing system. This
example, the most complex one we have considered, illustrates how simulation can
be used to identify bottlenecks in a production process.

2.7.1 Problem Statement

A manufacturing system consists of five workstations, and at present stations 1,
2,...,5consistof 3,2, 4, 3, and 1 identical machine(s), respectively, as shown
in Fig. 2.37. In effect, the system is a network of five multiserver queues. Assume
that jobs arrive at the system with interarrival times that are IID exponential
random variables with mean 0.25 hour. There are three types of jobs, and arriving
jobs are of type 1, 2, and 3 with respective probabilities 0.3, 0.5, and 0.2. Job types 1,
2, and 3 require 4, 3, and 5 tasks to be done, respectively, and each task must be
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done at a specified station and in a prescribed order. The routings for the different
job types are:

Job type Workstations in routing
1 3,1,2,5
2 4,1,3
3 2,5,1,4,3

Thus, type 2 jobs first have a task done at station 4, then have a task done at station 1,
and finally have a task done at station 3.

If a job arrives at a particular station and finds all machines in that station al-
ready busy, the job joins a single FIFO queue at that station. The time to perform a
task at a particular machine is an independent 2-Erlang random variable whose
mean depends on the job type and the station to which the machine belongs. (If X is
a 2-Erlang random variable with mean r, then X = Y, + Y,, where Y, and Y, are
independent exponential random variables each with mean r/2. Alternatively X is
known as a gamma random variable with shape parameter 2 and scale parameter
r/2. See Sec. 6.2.2 for further details.) We chose the 2-Erlang distribution to repre-
sent service times because experience has shown that if one collects data on the time
to perform some task, the histogram of these data will often have a shape similar to
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that of the density function for an Erlang distribution. The mean service times for
each job type and each task are:

Job type Mean service times for successive tasks, hours
1 0.50, 0.60, 0.85, 0.50
1.10, 0.80, 0.75
3 1.20, 0.25, 0.70, 0.90, 1.00

Thus, a type 2 job requires a mean service time of 1.10 hours at station 4 (where its
first task will be done).

Assuming no loss of continuity between successive days’ operations of the
system, we simulate the system for 365 eight-hour days and estimate the expected
average total delay in queue (exclusive of service times) for each job type and
the expected overall average job total delay. We use the true job-type probabilities
0.3, 0.5, and 0.2 as weights in computing the latter quantity. In addition, we estimate
the expected average number in queue, the expected utilization (using simlib func-
tion timest), and the expected average delay in queue for each station.

Suppose that all machines cost approximately the same and that the system
has the opportunity to purchase one new machine with an eye toward efficiency
improvement. We will use the results of the above simulation to decide what addi-
tional simulation runs should be made. (Each of these new runs will involve a total of
14 machines, being 1 more than the original number.) From these additional runs,
we will use the overall average job total delay to help decide what type of machine
the system should purchase.

2.7.2 simlib Program

The events for this model are quite straightforward:

Event description Event type
Arrival of a job to the system 1
Departure of a job from a particular station

End of the simulation 3

Note that for this model, the departure event refers to a job’s departing from any
station on its route, so does not represent the job’s leaving the system unless the
departure is from the final station on its route. An event graph for this model is given
in Fig. 2.38.

We will use the following list structure:

List Attribute 1 Attribute 2 Attribute 3 Attribute 4
1 through 5, Time of arrival to Job type Task number —
queues station

25, event list Event time Event type Job type Task number
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FIGURE 2.38
Event graph, job-shop model.

The “time of arrival” in attribute 1 of a queue list refers to the arrival time of the job
to the station for that list, rather than the original arrival time to the system. The
“task number” of a job represents how far along it is on its route, and will be equal
to 1 for the first task, 2 for the second task, and so on; for example, task number 2
for a job of type 3 refers to its processing at station 5. Thus, the station for a job can
be determined by knowing the job type and task number.

The delays of the jobs in the queues are used in different ways in this model, so
the sampst variable structure is richer than in our previous models. We want the
average delay in queue for each station (regardless of job type), and sampst
variables 1 through 5 will be used for this. Also, we want to find the average delay
in all the queues visited by each job type (regardless of station), for which sampst
variables 6 through 8 will be used:

sampst variable number Meaning

Delay in queue at station 1
Delay in queue at station 2
Delay in queue at station 3
Delay in queue at station 4
Delay in queue at station 5
Delay in queues for job type 1
Delay in queues for job type 2
Delay in queues for job type 3

0NN R W=

Thus, each delay in each queue will be registered into two different sampst vari-
ables, one for the station and another for the job type.

For the continuous-time statistics, we will use filest as before and will now use
timest as well. Since we have a list for each queue, we can easily get the time-
average number in each of the queues by using filest. We also want to observe the
utilization of each station; since there may be more than one machine in a station,
this is defined as the time-average number of machines that are busy in the station,
divided by the total number of machines in the station. To find the average number
of busy machines in a station, we will keep our own (i.e., non-simlib) array
num_machines_busy[j], which we will maintain as the number of machines
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currently busy in station j, and timest will be invoked whenever this changes value
for any station. Thus, we have the following timest variables:

timest variable number Meaning
1 Number of machines busy in station 1
2 Number of machines busy in station 2
3 Number of machines busy in station 3
4 Number of machines busy in station 4
5 Number of machines busy in station 5

For this model, there are three types of random variables needed, to which we
assign the following streams:

Stream Purpose
1 Interarrival times
Job types
3 Service times

Stream 3 is used to generate the service times of all jobs, regardless of type; in some
simulations we might want to dedicate a separate stream to generate the service time
of each job type or at each station in order to control the exact characteristics of each
job type or each station.

The external definitions for the program are in Fig. 2.39. After the required
#include of simlib.h, we define symbolic constants for the event types, random-
number stream numbers, as well as maximum values for the number of stations and
job types; these maxima will be used to allocate space in arrays, and using them in-
stead of putting the numbers directly in the array declarations makes the program
more general. We next declare several ints and int arrays with names that are mostly
self-explanatory; we will use i as a job-type index and j as a station or task-number
index. The number of machines that exist in station j is num_machines[]j], the total
number of tasks (i.e., station visits) for a job of type i is num_tasks[i], and route[i][j]
is the station for task j for a type i job. Several floats and float arrays are declared:
mean_interarrival is in units of hours (being the time unit for the model), but
length_simulation is the length of the simulation in 8-hour days (= 365) so a time-
unit adjustment will have to be made; prob_distrib_job_type[i] is the probability
that a job will be of type less than or equal to i; and mean_service[i][j] is the mean
service time (in hours) of task j for a job of type i. The functions are then declared;
note that an int argument new_job is passed into arrive, with a value of 1 if this is a
new arrival to the system (in which case arrive will serve as an event function) and
with a value of 2 if this is the non-event of a job’s leaving one station and “arriving”
at the next station along its route (in which case arrive will serve as a non-event
“utility” function).

The main function, which is somewhat lengthy but of the usual form, is in
Fig. 2.40. Note the correction done in the invocation of event_schedule for the end-
simulation event to maintain consistency of time units.
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/* External definitions for job-shop model. */

#include "simlib.h" /* Required for use of simlib.c. */

#define EVENT ARRIVAL 1 /* Event type for arrival of a job to the
system. */

#define EVENT_DEPARTURE 2 /* Event type for departure of a job from a

particular station. */
#define EVENT_END SIMULATION 3 /* Event type for end of the simulation. */
#define STREAM_ INTERARRIVAL 1 /* Random-number stream for interarrivals. */
#define STREAM_ JOB_TYPE 2 /* Random-number stream for job types. */
#define STREAM_ SERVICE 3 /* Random-number stream for service times. */
#define MAX NUM_STATIONS 5 /* Maximum number of stations. */
#define MAX NUM_JOB_TYPES 3 /* Maximum number of job types. */

/* Declare non-simlib global variables. */

int num_stations, num_job_types, i, j, num machines[MAX NUM STATIONS + 1],
num_tasks[MAX_ NUM JOB_TYPES +1],
route [MAX_NUM_JOB_TYPES +1] [MAX NUM_STATIONS + 1],
num_machines_busy[MAX NUM_STATIONS + 1], job_type, task;

float mean_interarrival, length_simulation, prob_distrib_job_type[26],
mean_service [MAX NUM_JOB_TYPES +1][ MAX_ NUM_STATIONS + 1];

FILE *infile, *outfile;

/* Declare non-simlib functions. */

void arrive(int new_job);
void depart(void);
void report(void);

FIGURE 2.39
C code for the external definitions, job-shop model.

The function arrive, flowcharted in Fig. 2.41 and listed in Fig. 2.42, begins
by checking new_ job to determine whether it is being used as an event function
to process a new arrival to the system (new_ job = 1), or whether it is being used
as the last part of a station-departure event to process an existing job’s arrival at
the next station along its route (new_job = 2). If this is a new arrival, the next
arrival is scheduled and the job type of this new arrival is generated as a random
integer between 1 and 3, using simlib function random_integer and the cumula-
tive probabilities in prob_distrib_ job_type; finally, the task number for this new
job is initialized to 1. As we will see in the discussion of depart below, if this is
not a new arrival, its job type and task number will already have the correct val-
ues in the global variables job_type and task. Regardless of whether the job is
new, the function continues by determining the station of the arrival from its job
type and task number, by a lookup in the route array. Then a check is made to see
whether all the machines in the station are busy. If so, the job is just put at the
end of the station’s queue. If not, the job has a zero delay here (registered in
sampst for both the station and the job type), a machine in this station is made
busy, and this is noted in the appropriate timest variable. Note the use of the
float cast on the int array num_machines_busy to transform its value into a float,
as required by timest. Finally, this job’s exit from the station is scheduled, being
careful to define event-record attributes beyond the first two before invoking
event_schedule.
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main() /* Main function. */
/* Open input and output files. */

infile = fopen("jobshop.in", "r");
outfile = fopen("jobshop.out", "w");

/* Read input parameters. */

fscanf (infile, "%d %d %f %f", &num stations, &num_ job_types,
&mean_interarrival, &length simulation);
for (j = 1; j <= num_stations; ++j)
fscanf (infile, "%d", &num _machines[j]);
for (i = 1; i <= num _job_types; ++i)
fscanf (infile, "%d", &num tasks[i]);
for (i = 1; i <= num_job_types; ++1i) {
for (j = 1; j <= num_tasks[i]; ++3j)
fscanf (infile, "%d", &routel[i][3j]);
for (j = 1; j <= num_tasks[i]; ++3)
fscanf(infile, "%f", &mean_service[i][j]):;
}
for (i = 1; i <= num_job_types; ++1i)
fscanf (infile, "%f", &prob_distrib_job_typel[i]);

/* Write report heading and input parameters. */

fprintf (outfile, "Job-shop model\n\n");
fprintf (outfile, "Number of workstations%21d\n\n", num stations);
fprintf (outfile, "Number of machines in each station ");
for (j = 1; j <= num_stations; ++j)
fprintf (outfile, "%5d", num_machines[j]);
fprintf(outfile, "\n\nNumber of job types%25d\n\n", num job_types):
fprintf(outfile, "Number of tasks for each job type ");
for (i = 1; i <= num_job_types; ++1i)
fprintf(outfile, "%5d", num_tasks[i]);
fprintf(outfile, "\n\nDistribution function of job types ");
for (i = 1; i <= num_job_types; ++1i)
fprintf (outfile, "%8.3f", prob_distrib_job_typel[il):;
fprintf(outfile, "\n\nMean interarrival time of jobs%14.2f hours\n\n",
mean_interarrival);
fprintf(outfile, "Length of the simulation%20.l1f eight-hour days\n\n\n",
length_simulation);

fprintf (outfile, "Job type Workstations on route");
for (i = 1; i <= num_job_types; ++i) {
fprintf (outfile, "\n\n%4d ",oi);

for (j = 1; j <= num_tasks[i]; ++3)
fprintf (outfile, "%5d", route[i][jl):
}
fprintf (outfile, "\n\n\nJdob type ");
fprintf(outfile, "Mean service time (in hours) for successive tasks");
for (i = 1; i <= num_job_types; ++i) {
fprintf (outfile, "\n\n%4d v, i);
for (j = 1; j <= num_tasks[i]; ++3)
fprintf (outfile, "%9.2f", mean service[i][j]);
}

/* Initialize all machines in all stations to the idle state. */

for (j = 1; j <= num_stations; ++j)
num_machines_busy[j] = 0;

/* Initialize simlib */
init_simlib();

FIGURE 2.40
C code for the main function, job-shop model.
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/* Set maxatr = max(maximum number of attributes per record, 4) */
maxatr = 4; /* NEVER SET maxatr TO BE SMALLER THAN 4. */
/* Schedule the arrival of the first job. */

event_schedule (expon(mean_interarrival, STREAM_INTERARRIVAL),
EVENT_ARRIVAL) ;

/* Schedule the end of the simulation. (This is needed for consistency of
units.) */

event_schedule(8 * length simulation, EVENT_END_ SIMULATION) ;

/* Run the simulation until it terminates after an end-simulation event
(type EVENT_ END_ SIMULATION) occurs. */

do {
/* Determine the next event. */
timing();
/* Invoke the appropriate event function. */

switch (next_event_type) {

case EVENT_ARRIVAL:
arrive(l);
break;

case EVENT_DEPARTURE:
depart();
break;

case EVENT_ END_SIMULATION:
report();
break;

}

/* If the event just executed was not the end-simulation event (type
EVENT_END_SIMULATION), continue simulating. Otherwise, end the
simulation. */

} while (next_event_type != EVENT END_SIMULATION) ;

fclose(infile);
fclose(outfile);

return 0;
}
FIGURE 2.40
(continued)

A flowchart and listing for event function depart are given in Figs. 2.43 and
2.44. The values of job_type and task for the departing job are obtained from the
departure event record, which was just placed in the transfer array by timing, and
the station “station” from which this job is leaving is then looked up in the route
array. If the queue for this station is empty, a machine in this station is made idle,
and timest is notified of this. If there is a queue, the first job is removed from it
(having job type job_type_queue and task number task_queue, to maintain its
distinction from the earlier job that is leaving this station), its delay is registered in
the two appropriate sampst variables, and its departure from this station is sched-
uled; again, for long simulations both sim_time and transfer might have to be of
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Function
arrive

Is
this a new
arrival?

Yes

Schedule the next
(new) arrival event

l

Generate the job type
and set task = 1 for
this job

[

Determine the
station for this job

;

Are
all machines
in this station
busy?

Place the job
Tally a delay of 0
at the end of the queue 4 f)(l)rath?se}gt?

for this station

Make a machine in
this station busy and
gather statistics

:

Schedule a departure
event for this job

FIGURE 2.41

Flowchart for arrival function, job-shop model.
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void arrive(int new_job) /* Function to serve as both an arrival event of a job
to the system, as well as the non-event of a job's
arriving to a subsequent station along its

route. */
{
int station;
/* If this is a new arrival to the system, generate the time of the next
arrival and determine the job type and task number of the arriving
job. */
if (new_job == 1) {
event_schedule(sim_time + expon(mean_interarrival, STREAM INTERARRIVAL),
EVENT_ARRIVAL) ;
job_type = random integer (prob_distrib_job_type, STREAM JOB_TYPE) ;
task =1;
}
/* Determine the station from the route matrix. */
station = route[job_typel [task];
/* Check to see whether all machines in this station are busy. */
if (num_machines_busy[station] == num machines[station]) {

/* All machines in this station are busy, so place the arriving job at
the end of the appropriate queue. Note that the following data are
stored in the record for each job:

1. Time of arrival to this station.
2. Job type.
3. Current task number. */

transfer[l] = sim time;

transfer[2] = job_type;

transfer[3] = task;

list_file(LAST, station);

}
else {

/* A machine in this station is idle, so start service on the arriving
job (which has a delay of zero). */

sampst (0.0, station); /* For station. */

sampst (0.0, num stations + job_type); /* For job type. */

++num_machines_busy[station];

timest ((float) num machines_busy[station], station);

/* Schedule a service completion. Note defining attributes beyond the
first two for the event record before invoking event_schedule. */

transfer[3] = job_type;

transfer[4] = task;

event_schedule(sim_time

+ erlang(2, mean_service[job_typel [task],
STREAM_SERVICE),
EVENT_DEPARTURE) ;
}
}
FIGURE 2.42

C code for the function arrive, job-shop model.
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Function
depart

Determine the station
from which the
job is departing

!

Is
the queue for this
station empty?

Make a machine in this
station idle and gather
statistics

Remove the first job
from the queue

l

Compute the delay for
this job and gather
statistics

:

Schedule a departure
event for this job

Does
departing job have
more tasks to be
done?

Add 1 to task for
the departing job No

!

Invoke arrive with
new_job =2

FIGURE 2.43

Flowchart for departure function, job-shop model.
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void depart(void) /* Event function for departure of a job from a particular
station. */

{
int station, job_type_queue, task_queue;
/* Determine the station from which the job is departing. */
job_type = transfer[3];
task = transfer[4];
station = route[job_type] [task];
/* Check to see whether the queue for this station is empty. */
if (list_size[station] == 0) {

/* The queue for this station is empty, so make a machine in this
station idle. */

--num_machines_busy[station];

timest ((float) num machines_busy[station], station);

}
else {

/* The queue is nonempty, so start service on first job in queue. */

list_remove (FIRST, station);

/* Tally this delay for this station. */

sampst (sim_time - transfer[l], station);

/* Tally this same delay for this job type. */

job_type_queue = transfer[2];

task_queue = transfer[3];

sampst (sim_time - transfer[l], num stations + job_type_queue);

/* Schedule end of service for this job at this station. Note defining
attributes beyond the first two for the event record before invoking
event_schedule. */

transfer[3] = job_type_queue;

transfer[4] = task_queue;

event_schedule(sim_time

+ erlang(2, mean_service[job_type_queue] [task_queue],
STREAM_SERVICE),
EVENT_DEPARTURE) ;
}
/* If the current departing job has one or more tasks yet to be done, send
the job to the next station on its route. */
if (task < num_tasks[job_typel) {
++task;
arrive(2);
}
}
FIGURE 2.44

C code for the function depart, job-shop model.



146 MODELING COMPLEX SYSTEMS

void report(void) /* Report generator function. */
{
int i;
float overall_avg job_tot_delay, avg_job_tot_delay, sum_probs;

/* Compute the average total delay in queue for each job type and the
overall average job total delay. */

fprintf(outfile, "\n\n\n\nJdob type Average total delay in queue");
overall_ avg_job_tot_delay = 0.0;
sum_probs = 0.0;
for (i = 1; i <= num_job_types; ++i) {
avg_job_tot_delay = sampst(0.0, -(num_stations + i)) * num tasks[i];

fprintf(outfile, "\n\n%4d%27.3f", i, avg_job_tot_delay):
overall avg_job_tot_delay += (prob_distrib_job_type[i] - sum_probs)
* avg_job_tot_delay;
sum_probs = prob_distrib_job_typel[il];:
}
fprintf (outfile, "\n\nOverall average job total delay =%10.3f\n",
overall_avg_job_tot_delay);

/* Compute the average number in queue, the average utilization, and the
average delay in queue for each station. */

fprintf (outfile,

"\n\n\n Work Average number Average Average delay");
fprintf (outfile,
"\nstation in queue utilization in queue");

for (j = 1; j <= num_stations; ++3j)
fprintf(outfile, "\n\n%4d%17.3£%17.3£f%17.3f", j, filest(j),
timest (0.0, -j) / num_machines[j], sampst(0.0, -3));
}
FIGURE 2.45

C code for the function report, job-shop model.

type double to avoid excessive roundoff error in the subtraction for the delay calcu-
lation. Finally, if the job leaving this station still has more tasks to be done, its task
number is incremented and it is sent on its way to the next station on its route by
invoking arrive, now with new_job set to 2 to indicate that this is not a newly arriv-
ing job.

The code for the report-generator function is in Fig. 2.45. The first for loop
computes the average total delay in all the queues for each job type i; the word
“total” is used here to indicate that this is to be the average delay summed for all the
queues along the route for each job type. We must multiply the average returned
in sampst by the number of tasks for this job type, num_tasks[i], since sampst
was invoked for each job of this type that left the system num_tasks[i] times rather
than once, so that the denominator used by sampst to compute the average is
num_tasks[i] times too large. We then weight these average total delays by the prob-
abilities for the job types and add them up to get the overall average job total delay;
we use these true (exact) probabilities of job types to obtain a more precise (less
variable) estimate than if we simply averaged all the job total delays regardless of
job type. Also, we must take successive differences in the prob_distrib_ job_type
array to recover the probabilities of the job types’ occurring, since this array
contains the cumulative probabilities. (A technicality: The above multiplication of
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the sampst average by num_tasks[i] is slightly incorrect. Since there will generally
be some jobs left in the system at the end of the simulation that have not experi-
enced their delays in all the queues, they should not have had any of their delays
registered in sampst. However, since this simulation is 365 X 8 = 2920 hours long
and since there are 4 job arrivals expected each hour, there will be an expected
11,680 job arrivals, so this error is likely to be minor. See Prob. 2.5 for an alternative
way of collecting the total delays in queue by job type, which avoids this difficulty.)
The function closes with a for loop to write out, for each station j, the time-average
number in queue, the utilization (computed as the time-average number of ma-
chines busy divided by the number of machines in the station), and the average
delay in queue.

The function to generate an m-Erlang random variable is in Fig. 2.66 in
App. 2A (it is part of simlib, not this model), and follows the physical model for the
Erlang distribution described earlier. Note that we must divide the desired expec-
tation of the final Erlang random variable by m to determine the expectation of
the component exponential random variables. Also, the user-specified stream num-
ber, “stream”, is taken as input here and simply passed through to the exponential
generator (Fig. 2.63 in App. 2A) and then on to the random-number generator
Icgrand.

2.7.3 Simulation Output and Discussion

Figure 2.46 shows the output file (jobshop.out) for this simulation. Weighted by job
type, the average time spent by jobs waiting in the queues was almost 11 hours; this

Job-shop model

Number of workstations 5
Number of machines in each station 3 2 4 3 1
Number of job types 3
Number of tasks for each job type 4 3 5
Distribution function of job types 0.300 0.800 1.000
Mean interarrival time of jobs 0.25 hours
Length of the simulation 365.0 eight-hour days
Job type Workstations on route

1 3 1 2 5

2 4 1 3

3 2 5 1 4 3
FIGURE 2.46

Output report, job-shop model.
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Job type Mean service time (in hours) for successive tasks
1 0.50 0.60 0.85 0.50
2 1.10 0.80 0.75
3 1.20 0.25 0.70 0.90 1.00
Job type Average total delay in queue
1 10.022
2 9.403
3 15.808
Overall average job total delay = 10.870
Work Average number Average Average delay
station in queue utilization in queue
1 12.310 0.969 3.055
2 11.404 0.978 5.677
3 0.711 0.719 0.177
4 17.098 0.961 6.110
5 2.095 0.797 1.043
FIGURE 2.46
(continued)

is not the average time in the system, since it does not include processing times
at the stations (see Prob. 2.6). We might add that this model produced different
numerical results on different computer systems due to its length and complexity,
affording greater opportunity for roundoff error and change in order of use of the
random-number stream.

Looking at the statistics by station, it appears that the bottlenecks are at sta-
tions 1, 2, and 4, although the order of their apparent severity depends on whether
we look at average number in queue, utilization, or average delay in queue. Thus,
we made three additional runs, adding a machine to each of these stations (stations
3 and 5 appear to be comparatively uncongested, so we did not consider them for
a new machine) to see which type of new machine would have the greatest impact
on the system’s efficiency. Using the overall average job total delay as a single mea-
sure of performance, the results from these additional simulations are given in
Table 2.1. From simply looking at these numbers, we see that a machine should
apparently be added to station 4 to achieve the greatest reduction in overall aver-
age job total delay. As usual, however, this conclusion is rather tentative, since we
have only a single simulation run of each model variant; this is especially true in
this case, since the results for the three new machine configurations are really
much too close to call.
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TABLE 2.1
Estimated expected overall average job total delays for
current and proposed machine configurations

Overall average job

Number of machines in stations total delay, in hours
3,2,4,3, 1 (current configuration) 10.9
4,2,4, 3,1 (add a machine to station 1) 8.1
3, 3,4, 3, 1 (add a machine to station 2) 7.6
3,2,4,4, 1 (add a machine to station 4) 7.5

2.8
EFFICIENT EVENT-LIST MANAGEMENT

Common to all dynamic simulations we have considered in this and the preceding
chapter is the need to schedule events in some way, as well as to determine which of
the events scheduled should occur next. We have looked at two different ways to
handle the event list. In Chap. 1 it was stored sequentially, with the storage index
number being the event type, and the next-event determination was made by search-
ing the event list from top to bottom for the smallest event time. Then in this chapter,
armed with simlib’s ability to handle linked lists, we stored the event list as a doubly
linked list ranked in increasing order on the event-time attribute while using another
attribute for the event type; it was easy to determine the next event since it was al-
ways on top of the event list. Placing an event record on the list, however, was more
work, since it involved searching for the correct location. In either case, a search of
the event list is required, either when taking the event off the list or when putting it on.

The need for some sort of event-list processing in dynamic simulations has led
a number of researchers to investigate whether other methods might be faster, at
least for some types of simulations. For complex simulations involving a large num-
ber of events, much of the computer time required to perform the simulation can be
expended on even-list processing. Comfort (1981) reported that for one example
class of models, the number of instructions required to process the event list can
comprise as much as 40 percent of the total number of instructions for the whole
simulation. McCormack and Sargent (1981) provide additional evidence that the
choice of event-processing algorithm can have a great impact on the simulation
execution time. Henriksen (1983) used the term “spectacular failure” to describe the
performance (in the case of one example model) of the simple top-to-bottom search
to insert event records into the event list.

One way to improve the simlib method of determining the correct location of a
new event record would be to use a more efficient data structure and search technique.
One well-known approach uses a median-pointer linked list, which introduces a
pointer to the median record in the event list (with respect to the number of records),
in addition to the head and tail pointers. When a new record is to be placed on the list,
the record corresponding to the median pointer is first examined to determine whether
the new record should be placed in the first half or the second half of the event list. The
appropriate half of the event list is then searched sequentially to determine the new
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record’s location, with McCormack and Sargent’s empirical results suggesting that
the first (second) half of the event list should be searched from the front (back). For
simulations in which the event list can become very long (such as the time-shared
computer model of Sec. 2.5 with a very large number of terminals), such a method
could make a real difference in overall computation time (see Prob. 2.34).

Many other algorithms have been proposed for event-list management, includ-
ing various types of heaps and trees [see Knuth (1998b)], calendar queues [Brown
(1988)], ladder queues [Tang et al. (2005)], and Henriksen’s algorithm (1977). Papers
that give empirical evaluations of various event-list algorithms include Chung et al.
(1993), Jones (1986), and Ronngren and Ayani (1997).

The choice of the best event-list-processing algorithm may depend on the type of
simulation, the parameters and probability distributions used, and other factors that
influence how the events are distributed in the event list. For example, in a simulation
for which the time elapsing between when an event is scheduled (i.e., put on the event
list) and when it occurs (i.e., taken off the event list) is more or less the same for all
events, the events will tend to be inserted toward the end of the list in a linked-list data
structure; in this case, it could be advantageous to search the event list from bottom
to top, since in most cases the search would end quickly. Most modern simulation-
software packages (see Chaps. 3 and 14) use efficient event-list-processing algorithms.

APPENDIX 2A
C CODE FOR simlib

The C code for the simlib functions is given in Figs. 2.47 through 2.66. The header
file simlib.h, which the user must #include, is in Fig. 2.47; this file in turn #includes
simlibdefs.h in Fig. 2.48. Figures 2.49 through 2.66, along with the random-number
generator Icgrand in Fig. 7.5 in App. 7A, compose the file simlib.c. All this code can
be downloaded from www.mhhe.com/law.

In timest in Fig. 2.57, a subtraction occurs at two points involving the simula-
tion clock sim_time and the time of the last event involving this variable, tlvc[ ]. For
long simulations, both could become very large relative to their difference, so might
have to be made of type double to avoid loss of precision in this subtraction.

/* This is simlib.h. */
/* Include files. */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "simlibdefs.h"

/* Declare simlib global variables. */

extern int *1ist_rank, *list_size, next_event_type, maxatr, maxlist;
extern float *transfer, sim time, prob_distrib[26];
FIGURE 2.47

Header file simlib.h.
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extern struct master {
float *value;
struct master *pr;
struct master *sr;
} **head, **tail;

/* Declare simlib functions. */

extern void init_simlib(void);

extern void 1list_file(int option, int list);

extern void 1list_remove(int option, int list);

extern void timing(void);

extern void event_schedule(float time_of_event, int type_of_event);
extern int event_cancel (int event_type);

extern float sampst(float value, int wvaribl);

extern float timest(float value, int varibl);

extern float filest(int list);

extern void out_sampst(FILE *unit, int lowvar, int highvar);
extern void out_timest(FILE *unit, int lowvar, int highvar);
extern void out_filest(FILE *unit, int lowlist, int highlist);
extern float expon(float mean, int stream);

extern int random_integer (float prob_distrib[], int stream);
extern float uniform(float a, float b, int stream);

extern float erlang(int m, float mean, int stream);

extern float lcgrand(int stream);

extern void lcgrandst(long zset, int stream);

extern long lcgrandgt(int stream);

FIGURE 2.47
(continued)

/* This is simlibdefs.h. */

/* Define limits. */

#define MAX LIST 25 /* Max number of lists. */

#define MAX_ATTR 10 /* Max number of attributes. */

#define MAX SVAR 25 /* Max number of sampst variables. */

#define TIM VAR 25 /* Max number of timest variables. */

#define MAX TVAR 50 /* Max number of timest variables + lists. */
#define EPSILON 0.001 /* Used in event_cancel. */

/* Define array sizes. */

#define LIST_SIZE 26 /* MAX LIST + 1. */
#define ATTR_SIZE 11 /* MAX ATTR + 1. */
#define SVAR_SIZE 26 /* MAX SVAR + 1. */
#define TVAR_SIZE 51 /* MAX_TVAR + 1. */

/* Define options for list_file and list_remove. */

#define FIRST 1 /* Insert at (remove from) head of list. */
#define LAST 2 /* Insert at (remove from) end of list. */
#define INCREASING 3 /* Insert in increasing order. */

#define DECREASING 4 /* Insert in decreasing order. */

/* Define some other values. */

#define LIST EVENT 25 /* Event list number. */

151

#define INFINITY 1.E30 /* Not really infinity, but a very large number. */

/* Pre-define attribute numbers of transfer for event list. */

#define EVENT TIME 1 /* Attribute 1 in event list is event time. */
#define EVENT_TYPE 2 /* Attribute 2 in event list is event type. */
FIGURE 2.48

Included file simlibdefs.h.



152 MODELING COMPLEX SYSTEMS

/* This is simlib.c (adapted from SUPERSIMLIB, written by Gregory Glockner). */
/* Include files. */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "simlibdefs.h"

/* Declare simlib global variables. */

int *1ist_rank, *list_size, next_event_type, maxatr = 0, maxlist = 0;
float *transfer, sim_time, prob_distrib[26];
struct master {
float *value;
struct master *pr;
struct master *sr;
} **head, **tail;

/* Declare simlib functions. */

void init_simlib(void);

void 1list_file(int option, int list);

void 1list_remove(int option, int list);

void timing(void);

void event_schedule(float time_ of_event, int type_of_event);
int event_cancel (int event_type);

float sampst(float value, int variable);

float timest(float value, int variable);

float filest(int list);

void out_sampst(FILE *unit, int lowvar, int highvar);
void out_timest(FILE *unit, int lowvar, int highvar);
void out_filest(FILE *unit, int lowlist, int highlist);
void pprint_out(FILE *unit, int i);

float expon(float mean, int stream);

int random_integer(float prob_distrib[], int stream);
float uniform(float a, float b, int stream);

float erlang(int m, float mean, int stream);

float lcgrand(int stream);

void 1lcgrandst(long zset, int stream);

long lcgrandgt(int stream);

FIGURE 2.49
External simlib definitions.

void init_simlib()

{

/* Initialize simlib.c. List LIST EVENT is reserved for event list, ordered by
event time. init_simlib must be called from main by user. */

int list, listsize;

if (maxlist < 1) maxlist = MAX LIST;
listsize = maxlist + 1;

/* Initialize system attributes. */

sim_time = 0.0;
if (maxatr < 4) maxatr = MAX ATTR;

/* Allocate space for the lists. */

FIGURE 2.50
simlib function init_simlb.
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list_rank = (int *) calloc(listsize, sizeof (int));

list_size = (int *) calloc(listsize, sizeof (int));

head = (struct master **) calloc(listsize, sizeof (struct master *));
tail = (struct master **) calloc(listsize, sizeof (struct master *));
transfer = (float *) calloc(maxatr + 1, sizeof(float));

/* Initialize list attributes. */

for(list = 1; list <= maxlist; ++list) {

head [list] = NULL;
tail [list] = NULL;
list_size[list] = 0;
list_rank[list] = 0;

}

/* Set event list to be ordered by event time. */
list_rank[LIST EVENT] = EVENT_TIME;

/* Initialize statistical routines. */

sampst (0.0, 0);
timest (0.0, 0);
}

FIGURE 2.50
(continued)

void list_file(int option, int list)

{

/* Place transfr into list "list".
Update timest statistics for the list.
option = FIRST place at start of list
LAST place at end of list
INCREASING place in increasing order on attribute list_rank(list)
DECREASING place in decreasing order on attribute list_rank(list)
(ties resolved by FIFQ) */

struct master *row, *ahead, *behind, *ihead, *itail;
int item, postest;

/* If the list value is improper, stop the simulation. */

if(!((list >= 0) && (list <= MAX_LIST))) {
printf("\nInvalid list %d for list_file at time %f\n", list, sim_time);
exit(1);

}

/* Increment the list size. */
list_size[list]++;
/* If the option value is improper, stop the simulation. */

if(!((option >= 1) && (option <= DECREASING))) {
printf(
"\n%d is an invalid option for list_file on list %d at time %f\n",
option, list, sim_time);
exit(1);
}

FIGURE 2.51
simlib function list_file.
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/* If this is the first record in this list, just make space for it. */

if(list_size[list] == 1) {
row = (struct master *) malloc(sizeof (struct master));
head[list] = row ;
tail[list] = row ;
(*row) .pr = NULL;
(*row) .sr = NULL;

}
else { /* There are other records in the list. */
/* Check the value of option. */

if ((option == INCREASING) || (option == DECREASING)) {
item = list_rank[list];
if(!((item >= 1) && (item <= maxatr))) {
printf(
“%d is an improper value for rank of list %d at time %£f\n”,
item, list, sim time) ;

exit(1);
}
row = head[list];
behind = NULL; /* Dummy value for the first iteration. */

/* Search for the correct location. */

if (option == INCREASING) {
postest = (transfer[item] >= (*row).value[item]);
while (postest) {
behind row;
row (*row) .sr;
postest = (behind != tail[list]);
if (postest)
postest = (transfer[item] >= (*row).valuel[item]);

}
}
else {
postest = (transfer[item] <= (*row).valuel[item]);
while (postest) {
behind = row;
row = (*row).sr;
postest = (behind != tail[list]);
if (postest)
postest = (transfer[item] <= (*row).value[item]);
}
}

/* Check to see if position is first or last. If so, take care of
it below. */

if (row == head[list])
option = FIRST;
else
if (behind == tail[list])
option = LAST;

FIGURE 2.51
(continued)
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else { /* Insert between preceding and succeeding records. */

ahead = (*behind).sr;
row = (struct master *)
malloc(sizeof (struct master));
(*row) .pr = behind;
(*behind) .sr = row;
(*ahead) .pr = row;
(*row) .sr = ahead;

} /* End if inserting in increasing or decreasing order. */

if (option == FIRST) {

row = (struct master *) malloc(sizeof(struct master));
ihead = head[list];
(*ihead) .pr = row;
(*row) .sr = ihead;
(*row) .pr = NULL;
head[list] = row;
}
if (option == LAST) {
row = (struct master *) malloc(sizeof(struct master));
itail = tail[list];
(*row) .pr = itail;
(*itail).sr = row;
(*row) .sr = NULL;
tail[list] = row;
}

}
/* Copy the row values from the transfer array. */

(*row) .value = (float *) calloc(maxatr + 1, sizeof(float));
for (item = 0; item <= maxatr; ++item)
(*row) .value[item] = transfer[item];

/* Update the area under the number-in-list curve. */

timest ((float)list_size[list], TIM VAR + list);
}

FIGURE 2.51
(continued)

void list_remove(int option, int list)

{

/* Remove a record from list "list" and copy attributes into transfer.
Update timest statistics for the list.
option = FIRST remove first record in the list
LAST remove last record in the list */

struct master *row, *ihead, *itail;
/* If the list value is improper, stop the simulation. */

if(!((list >= 0) && (list <= MAX_LIST))) {
printf("\nInvalid list %d for list_remove at time %f\n",
list, sim time);
exit(1);
}

FIGURE 2.52
simlib function list_remove.
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/* If the list is empty, stop the simulation. */

if(list_size[list] <= 0) {
printf("\nUnderflow of list %d at time %f\n", list, sim_time);
exit(1);

}

/* Decrement the list size. */
list_size[list]--;
/* If the option value is improper, stop the simulation. */
if(!(option == FIRST || option == LAST)) {
printf(

"\n%d is an invalid option for list_remove on list %d at time %£f\n",
option, list, sim_time);

exit(1);
}
if(list_size[list] == 0) {
/* There is only 1 record, so remove it. */
row = head[list];
head[list] = NULL;
tail[list] = NULL;
}
else {
/* There is more than 1 record, so remove according to the desired
option. */
switch(option) {
/* Remove the first record in the list. */
case FIRST:
row = head[list];
ihead = (*row).sr;
(*ihead) .pr = NULL;
head[list] = ihead;
break;
/* Remove the last record in the list. */
case LAST:
row = tail[list];
itail = (*row) .pr;
(*itail).sr = NULL;
tail[list] = itail;
break;
}
}

/* Copy the data and free memory. */
free((char *)transfer);

transfer = (*row).value;

free((char *)row);

/* Update the area under the number-in-list curve. */

timest ((float)list_size[list], TIM VAR + list);
}

FIGURE 2.52
(continued)
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void timing()

{

/* Remove next event from event list, placing its attributes in transfer.
Set sim time (simulation time) to event time, transfer[l].
Set next_event_type to this event type, transfer[2]. */

/* Remove the first event from the event list and put it in transfer[]. */
list_remove (FIRST, LIST EVENT);
/* Check for a time reversal. */
if (transfer [EVENT TIME] < sim time) {
printf (
"\nAttempt to schedule event type %f for time %f at time %f\n",
transfer [EVENT TYPE], transfer[EVENT TIME], sim time);
exit(1);
}

/* Advance the simulation clock and set the next event type. */

sim_time = transfer[EVENT_TIME];
next_event_type = transfer[EVENT_ TYPE];
}
FIGURE 2.53

simlib function timing.

void event_schedule(float time_of_event, int type_of_event)
{

/* Schedule an event at time event_time of type event_type. If attributes
beyond the first two (reserved for the event time and the event type) are
being used in the event list, it is the user’s responsibility to place their
values into the transfer array before invoking event_schedule. */

transfer [EVENT_TIME] time_of_event;
transfer [EVENT TYPE] type_of_event;
list_file(INCREASING, LIST EVENT);

}

FIGURE 2.54
simlib function event_schedule.

int event_cancel(int event_type)
{

/* Remove the first event of type event_type from the event list, leaving its
attributes in transfer. If something is cancelled, event_cancel returns 1;
if no match is found, event_cancel returns 0. */

struct master *row, *ahead, *behind;
static float high, low, value;

/* If the event list is empty, do nothing and return 0. */
if(list_size[LIST_EVENT] == 0) return O0;

FIGURE 2.55
simlib function event_cancel.
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/* Search the event list. */

row = head[LIST_ EVENT];

low = event_type - EPSILON;

high = event_type + EPSILON;

value = (*row).value[EVENT TYPE] ;

while (((value <= low) || (value >= high)) && (row != tail[LIST_EVENT])) {
row = (*row).sr;
value = (*row).value[EVENT TYPE];

}

/* Check to see if this is the end of the event list. */
if (row == tail[LIST EVENT]) {
/* Double check to see that this is a match. */

if ((value > low) && (value < high)) {
list_remove (LAST, LIST_EVENT);
return 1;

}

else /* no match */
return 0;
}

/* Check to see if this is the head of the list. If it is at the head, then
it MUST be a match. */

if (row == head[LIST EVENT]) {
list_remove (FIRST, LIST EVENT);
return 1;

}
/* Else remove this event somewhere in the middle of the event list. */

/* Update pointers. */

ahead = (*row).sr;
behind = (*row) .pr;
(*behind) .sr = ahead;
(*ahead) .pr = behind;

/* Decrement the size of the event list. */
list_size[LIST EVENT]--;

/* Copy and free memory. */

free((char *)transfer); /* Free the old transfer. */
transfer = (*row).value; /* Transfer the data. */
free((char *)row); /* Free the space vacated by row. */

/* Update the area under the number-in-event-list curve. */

timest ((float)list_size[LIST EVENT], TIM VAR + LIST EVENT);
return 1;

}

FIGURE 2.55

(continued)
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float sampst(float value, int variable)

{

/* Initialize, update, or report statistics on discrete-time processes:
sum/average, max (default -1E30), min (default 1E30), number of observations
for sampst variable "variable", where "variable":

0 initializes accumulators

0 updates sum, count, min, and max accumulators with new observation

0 reports stats on variable "variable" and returns them in transfer:

AV

[1] = average of observations
[2] = number of observations
[3] = maximum of observations
[4] = minimum of observations */

static int ivar, num observations[SVAR_SIZE];
static float max[SVAR _SIZE], min[SVAR_SIZE], sum[SVAR_SIZE];

/* If the variable value is improper, stop the simulation. */

if (! (variable >= -MAX SVAR) && (variable <= MAX_ SVAR)) {
printf("\n%d is an improper value for a sampst variable at time %£f\n",
variable, sim_time);
exit(1);
}

/* Execute the desired option. */

if (variable > 0) { /* Update. */
sum[variable] += value;
if(value > max[variable]) max[variable]
if(value < min[variable]) min[variable]
num_observations[variable]++;
return 0.0;

value;
value;

}

if (variable < 0) { /* Report summary statistics in transfer. */
ivar -variable;
transfer[2] (float) num_observations[ivar];
transfer[3] max[ivar];
transfer[4] = min[ivar];
if (num_observations[ivar] == 0)
transfer[1l] = 0.0;
else
transfer[1l] = sum[ivar] / transfer[2];
return transfer[1];

}
/* Initialize the accumulators. */

for(ivar=1; ivar <= MAX SVAR; ++ivar) {

sum[ivar] = 0.0;
max[ivar] = -INFINITY;
min[ivar] = INFINITY;
num_observations[ivar] = 0;
}
}
FIGURE 2.56

simlib function sampst.
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float timest(float value, int variable)

{

/* Initialize, update, or report statistics on continuous-time processes:

integral/average, max (default -1E30), min (default 1E30)
for timest variable "variable", where "variable":
= 0 initializes counters
> 0 updates area, min, and max accumulators with new level of variable
< 0 reports stats on variable “variable” and returns them in transfer:
[1] = time-average of variable updated to the time of this call
[2] maximum value variable has attained
[3] = minimum value variable has attained
Note that variables TIM_VAR + 1 through TVAR_SIZE are used for automatic
record keeping on the length of lists 1 through MAX LIST. */

int ivar;
static float area[TVAR_SIZE], max[TVAR SIZE], min[TVAR_SIZE],
preval [TVAR_SIZE], tlvc[TVAR_SIZE], treset;

/* If the variable value is improper, stop the simulation. */

if (! (variable >= -MAX TVAR) && (variable <= MAX TVAR)) {
printf(”\n%d is an improper value for a timest variable at time %£f\n”,
variable, sim_time);
exit(1);
}

/* Execute the desired option. */

if(variable > 0) { /* Update. */
area[variable] += (sim_time - tlvc[variable]) * preval[variable];
if(value > max[variable]) max[variable] = value;
if(value < min[variable]) min[variable] = value;
preval [variable] = value;
tlvec[variable] = sim_time;
return 0.0;

}

if (variable < 0) { /* Report summary statistics in transfer. */
ivar -variable;
areal[ivar] = (sim_time - tlvc[ivar]) * preval[ivar];
tlvc[ivar] sim_time;

transfer[1]
transfer[2] max[ivar];
transfer([3] min[ivar];
return transfer[1];

areal[ivar] / (sim_time - treset);

unonn o+

}
/* Initialize the accumulators. */

for(ivar = 1; ivar <= MAX_ TVAR; ++ivar) {

areal[ivar] = 0.0;
max[ivar] = -INFINITY;
min[ivar] = INFINITY;
preval[ivar] = 0.0;
tlvec[ivar] = sim_time;
}
treset = sim _time;
}
FIGURE 2.57

simlib function timest.



float filest(int list)
{

/* Report statistics on the length of list "list" in transfer:
[1] time-average of list length updated to the time of this call
[2] maximum length list has attained
[3] = minimum length list has attained
This uses timest variable TIM_VAR + list.

*/

return timest (0.0, -(TIM VAR + list));

}

FIGURE 2.58
simlib function filest.
void out_sampst (FILE *unit,

int lowvar, int highvar)

{
/* Write sampst statistics for variables lowvar through highvar on file
"unit". */
int ivar, iatrr;
if (lowvar>highvar || lowvar > MAX_SVAR || highvar > MAX SVAR) return;
fprintf (unit, "\n sampst Number") ;
fprintf (unit, "\nvariable of");
fprintf (unit, "\n number Average values Maximum") ;
fprintf (unit, " Minimum");
fprintf (unit, "\n ");
fprintf (unit, " ");
for(ivar = lowvar; ivar <= highvar; ++ivar) {
fprintf (unit, "\n\n%5d4", ivar);
sampst (0.00, -ivar);
for(iatrr = 1; iatrr <= 4; ++iatrr) pprint_out(unit, iatrr);
}
fprintf (unit, "\n ");
fprintf (unit, " \n\n\n");
}
FIGURE 2.59

simlib function out_sampst.

void out_timest (FILE *unit, int lowvar, int highvar)

{

/* Write timest statistics for variables lowvar through highvar on file
"unit". */
int ivar, iatrr;

if (lowvar > highvar || lowvar > TIM VAR || highvar > TIM VAR ) return;

fprintf (unit, "\n timest");
fprintf(unit, "\n variable Time");
fprintf (unit, "\n number average Maximum Minimum") ;
fprintf (unit, "\n ");
for(ivar = lowvar; ivar <= highvar; ++ivar) {
fprintf (unit, "\n\n%54", ivar);
timest (0.00, -ivar);
for(iatrr = 1; iatrr <= 3; ++iatrr) pprint_out(unit, iatrr);
}
fprintf (unit, "\n ");
fprintf (unit, "\n\n\n");
}
FIGURE 2.60

simlib function out_timest.

161
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void out_filest(FILE *unit, int lowlist, int highlist)
{

/* Write timest list-length statistics for lists lowlist through highlist on
file "unit". */

int list, iatrr;

if (lowlist > highlist || lowlist > MAX_LIST || highlist > MAX_LIST) return;
fprintf (unit, "\n File Time");

fprintf (unit, "\n number average Maximum Minimum") ;
fprintf (unit, "\n ");

for(list = lowlist; list <= highlist; ++1list) {
fprintf (unit, "\n\n%5d4", list);
filest(list);
for(iatrr = 1; iatrr <= 3; ++iatrr) pprint_out(unit, iatrr);

}
fprintf (unit, "\n ")
fprintf (unit, "\n\n\n");

}

FIGURE 2.61

simlib function out_filest.

void pprint_out (FILE *unit, int i) /* Write ith entry in transfer to file

"unit". */
{
if (transfer[i] == -1e30 || transfer[i] == 1le30)
fprintf (unit," %#15.6G ", 0.00);
else
fprintf (unit," %#15.6G ", transfer[i]);
}
FIGURE 2.62

simlib function pprint_out.

float expon(float mean, int stream) /* Exponential variate generation
function. */

{

return -mean * log(lcgrand(stream));
}
FIGURE 2.63

simlib function expon.

int random_integer(float prob_distrib[], int stream) /* Discrete-variate
generation function. */

{
int i;
float u;
u = lcgrand(stream);
for (i = 1; u >= prob_distrib[i]; ++i)
return i;
}
FIGURE 2.64

simlib function random_integer.
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float uniform(float a, float b, int stream) /* Uniform variate generation

{

function. */

return a + lcgrand(stream) * (b - a);

}

FIGURE 2.65
simlib function uniform.

float erlang(int m, float mean, int stream) /* Erlang variate generation

{

function. */

int i;
float mean_exponential, sum;

mean_exponential = mean / m;
sum = 0.0;
for (1 = 1; i <= m; ++1)

sum += expon(mean_exponential, stream);

return sum;

}

FIGURE 2.66
simlib function erlang.

PROBLEMS

The following problems are to be done using simlib wherever possible.

2.1.

2.2.

2.3.

24.

For the single-server queue with simlib in Sec. 2.4, replace the dummy list for the
server with a variable of your own representing the server status (busy or idle), and
use timest instead of filest to get the server utilization.

For the time-shared computer model of Sec. 2.5, combine the end-simulation event
with the end-run event. Redraw the event diagram, and alter and run the program with
this simplified event structure.

For the time-shared computer model of Sec. 2.5, suppose that we want to collect the
average response time for each terminal individually, as well as overall. Alter the
simulation to do this, and run for the case of n = 10 terminals only. (Hint: You will
have to add another attribute to represent a job’s terminal of origin, and you will need
to define additional sampst variables as well.)

For the multiteller bank model of Sec. 2.6, suppose that we want to know the maxi-

mum number of customers who are ever waiting in the queues. Do the following parts

in order, i.e., with each part building on the previous ones.

(a) Explain why this cannot be obtained by adding up the maxima of the individual
queues.

(b) Modify the program to collect this statistic, and write it out. Run for each of the
cases of n = 4, 5, 6, and 7 tellers.

(¢) Add to this an additional output measure, being the utilization of the servers.
Since there are multiple servers, the utilization is defined here as the time-average
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2.5.

2.6.

2.7.

2.8.

2.9

2.10.

2.11.

2.12.

2.13.

number of servers busy, divided by the number of servers. Note that this will be a
number between 0 and 1.

(d) Now suppose that the bank’s lobby is large enough to hold only 25 customers in
the queues (total). If a customer arrives to find that there are already a total of
25 customers in the queues, he or she just goes away and the business is lost; this
is called balking and is clearly unfortunate. Change the program to reflect balking,
where the capacity of 25 should be read in as an input parameter. In addition to all
the other output measures, observe the number of customers who balk during the
course of the simulation.

In the manufacturing-system model of Sec. 2.7, correct the minor error described in
the report generator regarding the collection of the total job delay in queue by job type.
To do this, add an attribute to each job representing the cumulative delay in queue so
far. When the job leaves the system, tally this value in sampst. Rerun the simulation
for this alternative approach using the “current configuration” of the number of ma-
chines at each station.

For the manufacturing-system model of Sec. 2.7, estimate the expected overall average
job time in system, being the weighted average of the expected times in system (delays
in queue plus processing times) for the three job types, using the probabilities of oc-
currence of the job types as the weights. (Hint: You won’t need a computer to do this.)

For the original configuration of the manufacturing system of Sec. 2.7, run the model
for 100 eight-hour days, but use only the data from the last 90 days to estimate the
quantities of interest. In effect, the state of the system at time 10 days represents the
initial conditions for the simulation. The idea of “warming up” the model before be-
ginning data collection is a common simulation practice, discussed in Sec. 9.5.1. (You
may want to look at the code for simlib routine timest in Fig. 2.57, paying special at-
tention to the variable treset, to understand how the continuous-time statistics will be
computed.)

For the manufacturing-system model of Sec. 2.7, suggest a different definition of the
attributes that would simplify the model’s coding.

Do Prob. 1.15, except use simlib. Use stream 1 for interarrival times, stream 2 for ser-
vice times at server 1, stream 3 for service times at server 2, and stream 4 for the travel
times.

Do Prob. 1.22, except use simlib. Use stream 1 for the machine-up times and stream 2
for the repair times.

Do Prob. 1.24, except use simlib. Use stream 1 for interarrival times and stream 2 for
service times. Note how much easier this model is to simulate with the list-processing
tools.

Do Prob. 1.26, except use simlib. Use stream 1 for interarrival times, stream 2 for
determining the customer type, stream 3 for service times of type 1 customers, and
stream 4 for service times of type 2 customers.

Do Prob. 1.27, except use simlib. Use streams 1 and 2 for interarrival times and service
times, respectively, for regular customers, and streams 3 and 4 for interarrival times
and service times, respectively, of express customers.
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2.15.

2.16.

2.17.

2.18.

2.19.

2.20.
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Do Prob. 1.28, except use simlib. Use stream 1 for interarrival times for regular cars
and stream 2 for service times for all cars.

Do Prob. 1.30, except use simlib. Use stream 1 for interarrival times, stream 2 for in-
spection times, stream 3 to decide whether a bus needs repair, and stream 4 for repair
times.

For the inventory example of Sec. 1.5, suppose that the delivery lag is distributed uni-
formly between 1 and 3 months, so there could be between 0 and 3 outstanding orders
at a time. Thus, the company bases its ordering decision at the beginning of each
month on the sum of the (net) inventory level [denoted by I(¢) in Sec. 1.5] and the
inventory on order; this sum could be positive, zero, or negative. For each of the nine
inventory policies, run the model for 120 months and estimate the expected average
total cost per month and the expected proportion of time there is a backlog. Note that
holding and shortage costs are still based on the net inventory level. Use stream 1 for
interdemand times, stream 2 for demand sizes, and stream 3 for delivery lags.

Problem 1.18 described a modification of the inventory system of Sec. 1.5 in which
the items were perishable. Do this problem, using simlib, and in addition consider the
case of LIFO (as well as FIFO) processing of the items in inventory. Use the same
stream assignments as in Prob. 2.16, and in addition use stream 4 for the shelf lives.

For the time-shared computer model of Sec. 2.5, suppose that instead of processing
jobs in the queue in a round-robin manner, the CPU chooses the job from the queue
that has made the fewest number of previous passes through the CPU. In case of ties,
the rule is FIFO. (This is equivalent to using the time of arrival to the queue to break ties.)
Run the model with n = 60 terminals for 1000 job completions.

Ships arrive at a harbor with interarrival times that are IID exponential random vari-
ables with a mean of 1.25 days. The harbor has a dock with two berths and two cranes
for unloading the ships; ships arriving when both berths are occupied join a FIFO
queue. The time for one crane to unload a ship is distributed uniformly between 0.5
and 1.5 days. If only one ship is in the harbor, both cranes unload the ship and the
(remaining) unloading time is cut in half. When two ships are in the harbor, one crane
works on each ship. If both cranes are unloading one ship when a second ship arrives,
one of the cranes immediately begins serving the second ship and the remaining
service time of the first ship is doubled. Assuming that no ships are in the harbor at
time 0, run the simulation for 90 days and compute the minimum, maximum, and
average time that ships are in the harbor (which includes their time in berth). Also
estimate the expected utilization of each berth and of the cranes. Use stream 1 for the
interarrival times and stream 2 for the unloading times. [This problem is a paraphras-
ing of an example in Russell (1976, p. 134).]

Jobs arrive at a single-CPU computer facility with interarrival times that are I1ID
exponential random variables with mean 1 minute. Each job specifies upon its arrival
the maximum amount of processing time it requires, and the maximum times for suc-
cessive jobs are IID exponential random variables with mean 1.1 minutes. However,
if m is the specified maximum processing time for a particular job, the actual process-
ing time is distributed uniformly between 0.55m and 1.05m. The CPU will never
process a job for more than its specified maximum; a job whose required processing
time exceeds its specified maximum leaves the facility without completing service.
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2.21.

2.22.

Simulate the computer facility until 1000 jobs have left the CPU if (a) jobs in the
queue are processed in a FIFO manner, and (b) jobs in the queue are ranked in
increasing order of their specified maximum processing time. For each case, compute
the average and maximum delay in queue of jobs, the proportion of jobs that are
delayed in queue more than 5 minutes, and the maximum number of jobs ever in
queue. Use stream 1 for the interarrival times, stream 2 for the maximum processing
times, and stream 3 for the actual processing times. Which operating policy would you
recommend?

In a quarry, trucks deliver ore from three shovels to a single crusher. Trucks are
assigned to specific shovels, so that a truck will always return to its assigned shovel
after dumping a load at the crusher. Two different truck sizes are in use, 20 and
50 tons. The size of the truck affects its loading time at the shovel, travel time to the
crusher, dumping time at the crusher, and return-trip time from the crusher back to its
shovel, as follows (all times are in minutes):

20-ton truck 50-ton truck
Load Exponentially distributed Exponentially distributed
with mean 5 with mean 10
Travel Constant 2.5 Constant 3
Dump Exponentially distributed Exponentially distributed
with mean 2 with mean 4
Return Constant 1.5 Constant 2

To each shovel are assigned two 20-ton trucks and one 50-ton truck. The shovel
queues are all FIFO, and the crusher queue is ranked in decreasing order of truck size,
the rule’s being FIFO in case of ties. Assume that at time 0 all trucks are at their re-
spective shovels, with the 50-ton trucks just beginning to be loaded. Run the simula-
tion model for 8 hours and estimate the expected time-average number in queue for
each shovel and for the crusher. Also estimate the expected utilizations of all four
pieces of equipment. Use streams 1 and 2 for the loading times of the 20-ton and 50-ton
trucks, respectively, and streams 3 and 4 for the dumping times of the 20-ton and
50-ton trucks, respectively. [This problem is taken from Pritsker (1995, pp. 153-158).]

A batch-job computer facility with a single CPU opens its doors at 7 A.m. and closes its

doors at midnight, but operates until all jobs present at midnight have been processed.

Assume that jobs arrive at the facility with interarrival times that are exponentially dis-

tributed with mean 1.91 minutes. Jobs request either express (class 4), normal (class 3),

deferred (class 2), or convenience (class 1) service; and the classes occur with respec-

tive probabilities 0.05, 0.50, 0.30, and 0.15. When the CPU is idle, it will process the
highest-class (priority) job present, the rule’s being FIFO within a class. The times re-
quired for the CPU to process class 4, 3, 2, and 1 jobs are 3-Erlang random variables

(see Sec. 2.7) with respective means 0.25, 1.00, 1.50, and 3.00 minutes. Simulate the

computer facility for each of the following cases:

(a) A job being processed by the CPU is not preempted by an arriving job of a higher
class.

(b) If a job of class i is being processed and a job of class j (where j > i) arrives, the
arriving job preempts the job being processed. The preempted job joins the queue
and takes the highest priority in its class, and only its remaining service time
needs to be completed at some future time.
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Estimate for each class the expected time-average number of jobs in queue and the
expected average delay in queue. Also estimate the expected proportion of time that
the CPU is busy and the expected proportion of CPU busy time spent on each class.
Note that it is convenient to have one list for each class’s queue and also an input pa-
rameter that is set to O for case (a) and 1 for case (b). Use stream 1 for the interarrival
times, stream 2 for the job-class determination, and streams 3, 4, 5, and 6 for the pro-
cessing times for classes 4, 3, 2, and 1, respectively.

A port in Africa loads tankers with crude oil for overwater shipment, and the port has
facilities for loading as many as three tankers simultaneously. The tankers, which ar-
rive at the port every 11 = 7 hours, are of three different types. (All times given as a
“+” range in this problem are distributed uniformly over the range.) The relative fre-
quency of the various types and their loading-time requirements are:

Relative Loading time,
Type frequency hours
1 0.25 182
0.25 24 = 4
3 0.50 36 £ 4

There is one tug at the port. Tankers of all types require the services of a tug to move
from the harbor into a berth and later to move out of a berth into the harbor. When the
tug is available, any berthing or deberthing activity takes about an hour. It takes the tug
0.25 hour to travel from the harbor to the berths, or vice versa, when not pulling a tanker.
When the tug finishes a berthing activity, it will deberth the first tanker in the deberthing
queue if this queue is not empty. If the deberthing queue is empty but the harbor queue
is not, the tug will travel to the harbor and begin berthing the first tanker in the harbor
queue. (If both queues are empty, the tug will remain idle at the berths.) When the tug
finishes a deberthing activity, it will berth the first tanker in the harbor queue if this
queue is not empty and a berth is available. Otherwise, the tug will travel to the berths,
and if the deberthing queue is not empty, will begin deberthing the first tanker in the
queue. If the deberthing queue is empty, the tug will remain idle at the berths.

The situation is further complicated by the fact that the area experiences frequent
storms that last 4 = 2 hours. The time between the end of one storm and the onset of the
next is an exponential random variable with mean 48 hours. The tug will not start a new
activity when a storm is in progress but will always finish an activity already in progress.
(The berths will operate during a storm.) If the tug is traveling from the berths to the
harbor without a tanker when a storm begins, it will turn around and head for the berths.

Run the simulation model for a 1-year period (8760 hours) and estimate:

(a) The expected proportion of time the tug is idle, is traveling without a tanker, and
is engaged in either a berthing or deberthing activity

(b) The expected proportion of time each berth is unoccupied, is occupied but not
loading, and is loading

(c) The expected time-average number of tankers in the deberthing queue and in the
harbor queue

(d) The expected average in-port residence time of each type of tanker

Use stream 1 for interarrivals, stream 2 to determine the type of a tanker, stream 3 for
loading times, stream 4 for the duration of a storm, and stream 5 for the time between
the end of one storm and the start of the next.
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A shipper considering bidding on a contract to transport oil from the port to the
United Kingdom has determined that five tankers of a particular type would have to
be committed to this task to meet contract specifications. These tankers would require
21 = 3 hours to load oil at the port. After loading and deberthing, they would travel to
the United Kingdom, offload the oil, return to the port for reloading, etc. The round-
trip travel time, including offloading, is estimated to be 240 £ 24 hours. Rerun the
simulation and estimate, in addition, the expected average in-port residence time of
the proposed additional tankers. Assume that at time O the five additional tankers are
in the harbor queue. Use the same stream assignments as before, and in addition use
stream 6 for the oil-loading times at the port and stream 7 for the round-trip travel
times for these new tankers. [This problem is an embellishment of one in Schriber
(1974, p. 329).]

In Prob. 2.23, suppose that the tug has a two-way radio giving it the position and sta-
tus of each tanker in the port. As a result, the tug changes its operating policies, as fol-
lows. If the tug is traveling from the harbor to the berths without a tanker and is less
than halfway there when a new tanker arrives, it will turn around and go pick up the
new tanker. If the tug is traveling from the berths to the harbor without a tanker and is
less than halfway there when a tanker completes its loading, it will turn around and go
pick up the loaded tanker. Run the simulation with the same parameters and stream as-
signments as before, under this new operating policy.

In Prob. 2.24, suppose in addition that if the tug is traveling from the harbor to the
berths without a tanker and the deberthing queue is empty when a new tanker arrives,
it will turn around and go pick up the new tanker, regardless of its position. Run the
simulation with the same parameters and stream assignments as before, under this
operating policy.

Two-piece suits are processed by a dry cleaner as follows. Suits arrive with exponen-
tial interarrival times having mean 10 minutes, and are all initially served by server 1,
perhaps after a wait in a FIFO queue; see Fig. 2.67. Upon completion of service at
server 1, one piece of the suit (the jacket) goes to server 2, and the other part (the
pants) to server 3. During service at server 2, the jacket has a probability of 0.05 of
being damaged, and while at server 3 the probability of a pair of pants being damaged
is 0.10. Upon leaving server 2, the jackets go into a queue for server 4; upon leaving
server 3, the pants go into a different queue for server 4. Server 4 matches and re-
assembles suit parts, initiating this when he is idle and two parts from the same suit are
available. If both parts of the reassembled suit are undamaged, the suit is returned to
the customer. If either (or both) of the parts is (are) damaged, the suit goes to customer
relations (server 5). Assume that all service times are exponential, with the following
means (in minutes) and use the indicated stream assignments:

Server number Mean service time, in minutes Stream

6

4

5

5 (undamaged)

8 (damaged)
12
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FIGURE 2.67
A dry-cleaning operation.

-

In addition, use stream 7 for interarrival times, and streams 8 and 9 for determining
whether the pieces are damaged at servers 2 and 3, respectively. The system is initially
empty and idle, and runs for exactly 12 hours. Observe the average and maximum
time in the system for each type of outcome (damaged or not), separately, the average
and maximum length of each queue, and the utilization of each server. What would
happen if the arrival rate were to double (i.e., the interarrival-time mean were 5 minutes
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instead of 10 minutes)? In this case, if you could place another person anywhere in the
system to help out with one of the 5 tasks, where should it be?

A queueing system has two servers (A and B) in series, and two types of customers
(1 and 2). Customers arriving to the system have their types determined immediately
upon their arrival. An arriving customer is classified as type 1 with probability 0.6.
However, an arriving customer may balk, i.e., may not actually join the system, if the
queue for server A is too long. Specifically, assume that if an arriving customer finds
m (m = 0) other customers already in the queue for A, he will join the system with
probability 1/(m + 1), regardless of the type (1 or 2) of customer he may be. Thus,
for example, an arrival finding nobody else in the queue for A (i.e., m = 0) will join
the system for sure [probability = 1/(0 + 1) = 1], whereas an arrival finding 5 others
in the queue for A will join the system with probability £. All customers are served
by A. (If A is busy when a customer arrives, the customer joins a FIFO queue.) Upon
completing service at A, type 1 customers leave the system, while type 2 customers are
served by B. (If B is busy, type 2 customers wait in a FIFO queue.) Compute the av-
erage total time each type of customer spends in the system, as well as the number of
balks. Also compute the time-average and maximum length of each queue, and both
server utilizations. Assume that all interarrival and service times are exponentially
distributed, with the following parameters:

e Mean interarrival time (for any customer type) = 1 minute
* Mean service time at server A (regardless of customer type) = 0.8 minute
* Mean service time at server B = 1.2 minutes

Initially the system is empty and idle, and is to run until 1000 customers (of either
type) have left the system. Use stream 1 for determining the customer type, stream 2
for deciding whether a customer balks, stream 3 for interarrivals, stream 4 for service
times at A (of both customer types), and stream 5 for service times at B.

An antiquated computer operates in a batch multiprocessing mode, meaning that it
starts many (up to a fixed maximum of k = 4) jobs at a time, runs them simultane-
ously, but cannot start any new jobs until all the jobs in a batch are done. Within a
batch, each job has its own completion time, and leaves the CPU when it finishes.
There are three priority classes, with jobs of class 1 being the highest priority and class
3 jobs being the lowest priority. When the CPU finishes the last job in a batch, it first
looks for jobs in the class 1 queue and takes as many as possible from it, up to a max-
imum of k. If there were fewer than k jobs in the class 1 queue, as many jobs as possi-
ble from the class 2 queue are taken to bring the total of class 1 and class 2 jobs to no
more than the maximum batch size, k. If still more room is left in the batch, the CPU
moves on to the class 3 queue. If the total number of jobs waiting in all the queues is
less than k, the CPU takes them all and begins running this partially full batch; it
cannot begin any jobs that subsequently arrive until it finishes all of its current batch.
If no jobs at all are waiting in the queues, the CPU becomes idle, and the next arriving
job will start the CPU running with a batch of size 1. Note that when a batch begins
running, there may be jobs of several different classes running together in the same
batch.

Within a class queue, the order of jobs taken is to be either FIFO or shortest job
first (SJF); the simulation is to be written to handle either queue discipline by chang-
ing only an input parameter. (Thus, a job’s service requirement should be generated
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when it arrives, and stored alongside its time of arrival in the queue. For FIFO, this
would not really be necessary, but it simplifies the general programming.) The service
requirement of a class i job is distributed uniformly between constants a(i) and b(i)
minutes. Each class has its own separate arrival process, i.e., the interarrival time be-
tween two successive class 7 jobs is exponentially distributed with mean r(i) minutes.
Thus, at any given point in the simulation, there should be three separate arrivals
scheduled, one for each class. If a job arrives to find the CPU busy, it joins the queue
for its class in the appropriate place, depending on whether the FIFO or SJF option is
in force. A job arriving to find the CPU idle begins service immediately; this would be
a batch of size 1. The parameters are as follows:

i r() a(i) b(i)
1 0.2 0.05 0.11
2 1.6 0.94 1.83
3 5.4 4.00 8.00

Initially the system is empty and idle, and the simulation is to run for exactly 720 min-
utes. For each queue, compute the average, minimum, and maximum delay, as well as
the time-average and maximum length. Also, compute the utilization of the CPU, de-
fined here as the proportion of time it is busy regardless of the number of jobs running.
Finally, compute the time-average number of jobs running in the CPU (where O jobs
are considered running when the CPU is idle). Use streams 1, 2, and 3 for the interar-
rival times of jobs of class 1, 2, and 3, respectively, and streams 4, 5, and 6 for their re-
spective service requirements. Suppose that a hardware upgrade could increase k to 6.
Would this be worth it?

Consider a queueing system with a fixed number n = 5 of parallel servers fed by a
single queue. Customers arrive with interarrival times that are exponentially distrib-
uted with mean 5 (all times are in minutes). An arriving customer finding an idle
server will go directly into service, choosing the leftmost idle server if there are sev-
eral, while an arrival finding all servers busy joins the end of the queue. When a
customer (initially) enters service, her service requirement is distributed uniformly
between @ = 2 and b = 2.8, but upon completion of her initial service, she may be
“dissatisfied” with her service, which occurs with probability p = 0.2. If the service
was satisfactory, the customer simply leaves the system, but if her service was not sat-
isfactory, she will require further service. The determination as to whether a service
was satisfactory is to be made when the service is completed. If an unsatisfactory ser-
vice is completed and there are no other customers waiting in the queue, the dissatis-
fied customer immediately begins another service time at her same server. On the
other hand, if there is a queue when an unsatisfactory service is completed, the dissat-
isfied customer must join the queue (according to one of two options, described
below), and the server takes the first person from the queue to serve next. Each time a
customer reenters service, her service time and probability of being dissatisfied are
lower; specifically, a customer who has already had i (unsatisfactory) services has a
next service time that is distributed uniformly between a/(i + 1) and b/(i + 1), and
her probability of being dissatisfied with this next service is p/(i + 1). Theoretically,
there is no upper limit on the number of times a given customer will have to be served
to be finally satisfied.
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There are two possible rules concerning what to do with a dissatisfied customer
when other people are waiting in queue; the program is to be written so that respecifying
a single input parameter will change the rule from (i) to (ii):

(1) A customer who has just finished an unsatisfactory service joins the end of the
queue.

(i1) A customer who has just finished an unsatisfactory service rejoins the queue so
that the next person taken from the (front of the) queue will be the customer who
has already had the largest number of services; the rule is FIFO in case of ties.
This rule is in the interest of both equity and efficiency, since customers with a
long history of unsatisfactory service tend to require shorter service and also tend
to be more likely to be satisfied with their next service.

Initially the system is empty and idle, and the simulation is to run for exactly 480 min-
utes. Compute the average and maximum total time in system [including all the
delay(s) in queue and service time(s) of a customer], and the number of satisfied cus-
tomers who leave the system during the simulation. Also compute the average and
maximum length of the queue, and the time-average and maximum number of servers
that were busy. Use stream 1 for interarrivals, stream 2 for all service times, and
stream 3 to determine whether each service was satisfactory.

The student-center cafeteria at Big State University is trying to improve its service
during the lunch rush from 11:30 A.M. to 1:00 p.m. Customers arrive together in groups
of size 1, 2, 3, and 4, with respective probabilities 0.5, 0.3, 0.1, and 0.1. Interarrival times
between groups are exponentially distributed with mean 30 seconds. Initially, the sys-
tem is empty and idle, and is to run for the 90-minute period. Each arriving customer,
whether alone or part of a group, takes one of three routes through the cafeteria
(groups in general split up after they arrive):

¢ Hot-food service, then drinks, then cashier
» Specialty-sandwich bar, then drinks, then cashier
¢ Drinks (only), then cashier

The probabilities of these routes are respectively 0.80, 0.15, and 0.05; see Fig 2.68. At
the hot-food counter and the specialty-sandwich bar, customers are served one at a
time (although there might actually be one or two workers present, as discussed
below). The drinks stand is self-service, and assume that nobody ever has to queue up
here; this is equivalent to thinking of the drinks stand as having infinitely many
servers. There are either two or three cashiers (see below), each having his own queue,
and there is no jockeying; customers arriving to the cashiers simply choose the short-
est queue. All queues in the model are FIFO.

In Fig. 2.68, ST stands for service time at a station, and ACT stands for the
accumulated (future) cashier time due to having visited a station; the notation
~U(a, b) means that the corresponding quantity is distributed uniformly between a
and b seconds. For example, a route 1 customer goes first to the hot-food station,
joins the queue there if necessary, receives service there that is uniformly distrib-
uted between 50 and 120 seconds, “stores away” part of a (future) cashier time that
is uniformly distributed between 20 and 40 seconds, then spends an amount of time
uniformly distributed between 5 seconds and 20 seconds getting a drink, and
accumulates an additional amount of (future) cashier time distributed uniformly
between 5 seconds and 10 seconds. Thus, his service requirement at a cashier will
be the sum of the U(20, 40) and U(5, 10) random variates he “picked up” at the
hot-food and drinks stations.
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Cashiers

FIGURE 2.68
The BSU cafeteria.

Report the following measures of system performance:

* The average and maximum delays in queue for hot food, specialty sandwiches, and
cashiers (regardless of which cashier)

* The time-average and maximum number in queue for hot food and specialty sandwiches
(separately), and the time-average and maximum total number in all cashier queues

* The average and maximum total delay in all the queues for each of the three types
of customers (separately)

* The overall average total delay for all customers, found by weighting their individ-
ual average total delays by their respective probabilities of occurrence

* The time-average and maximum total number of customers in the entire system (for
reporting to the fire marshall)

There are several questions about the system’s operation. For security reasons, there
must be at least 2 cashiers, and the maximum number of cashiers is 3. Also, there must
be at least one person working at each of the hot-food and specialty-sandwich stations.
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Thus, the minimum number of employees is 4; run this as the “base-case” model.
Then, consider adding employees, in several ways:
(a) Five employees, with the additional person used in one of the following ways:
(i) As a third cashier
(ii) To help at the hot-food station. In this case, customers are still served one at
a time, but their service time is cut in half, being distributed uniformly be-
tween 25 seconds and 60 seconds.
(iii) To help at the specialty-sandwich bar, meaning that service is still one at a
time, but distributed uniformly between 30 seconds and 90 seconds
(b) Six employees, in one of the following configurations:
(i) Two cashiers, and two each at the hot-food and specialty-sandwich stations
(ii) Three cashiers, two at hot food, and one at specialty sandwiches
(iii) Three cashiers, one at hot food, and two at specialty sandwiches
(c¢) Seven employees, with three cashiers, and two each at the hot-food and specialty-
sandwich stations

Run the simulation for all seven expansion possibilities, and make a recommendation
as to the best employee deployment at each level of the number of employees. In all
cases, use stream 1 for the interarrival times between groups, stream 2 for the group
sizes, stream 3 for an individual’s route choice, streams 4, 5, and 6 for the STs at the
hot-food, specialty-sandwich, and drinks stations, respectively, and streams 7, 8, and
9 for the ACTs at these respective stations.

Consolidated Corkscrews (CC) is a multinational manufacturer of precision carbon-
steel corkscrews for heavy-duty, high-speed use. Each corkscrew is made on a metal
lathe, and in order to meet rising consumer demand for their product, CC is planning
a new plant with six lathes. They are not sure, however, how this new plant should be
constructed, or how the maintenance department should be equipped. Each lathe has
its own operator, who is also in charge of repairing the lathe when it breaks down.
Reliability data on lathe operation indicate that the “up” time of a lathe is exponen-
tially distributed with mean 75 minutes. When a lathe goes down, its operator imme-
diately calls the tool crib to request a tool kit for repairs. The plant has a fixed number,
m, of tool kits, so there may or may not be a kit in the crib when an operator calls for
one. If a tool kit is not available, the operator requesting one is placed in a FIFO
queue and must wait his or her turn for a kit; when one later becomes available, it is
then placed on a conveyor belt and arrives ¢, minutes later to lathe i, where ¢, might
depend on the lathe number, i, requesting the kit. If a kit is available, it is immedi-
ately placed on a conveyor belt and arrives at the broken lathe ¢, minutes later; in this
case the operator’s queue delay is counted as 0. When an operator of a broken lathe
receives a tool kit, he or she begins repair, which takes an amount of time distributed
as a 3-Erlang random variable with mean 15 minutes. When the repair is complete,
the lathe is brought back up and the tool kit is sent back to the tool crib, where it ar-
rives ¢, minutes later, if it is sent back from lathe i. Initially, assume that all lathes are
up and have just been “freshly repaired,” and that all m tool kits are in the crib. CC
wants to know about the projected operation of the plant over a continuous 24-hour
day by looking at:

* The proportion of time that each of the six lathes is down

» The time-average number of lathes that are down

» The time-average number of tool kits sitting idle in the crib
* The average delay in queue of operators requesting a tool kit
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FIGURE 2.69
The linear design.

FIGURE 2.70
The circular design.

There are two major questions to be addressed:
(a) How should the plant be laid out? Two layouts are under consideration:

(1) In the linear design (see Fig. 2.69), the lathes are placed in a straight line with
the tool crib at the left end, and a single conveyor belt for the tool kits can
reach all lathes. In this case, #; = 2i minutes, fori = 1,2, ..., 6.

(ii) In the circular design, the lathes are placed around the tool crib (see Fig. 2.70),
and each lathe has its own conveyor belt to the crib; here, ¢, = 3 for all lathe
numbers i. This is a more expensive design, but results in shorter travel times
for the kits.

(b) How many tool kits should there be? As tool kits are quite expensive, CC does not
want to purchase more than necessary.

Carry out the necessary simulations and advise CC on questions (a) and (b). In all
cases, use stream 1 for the lathe-up times, and stream 2 for repair times.

The engines on jet aircraft must be periodically inspected and, if necessary, repaired.
An inspection/repair facility at a large airport handles seven different types of jets, as
described in the table below. The times between successive arrivals of planes of type i
(where i = 1, 2, ..., 7) are exponentially distributed with mean a(i), as given in the
table; all times are in days. There are n parallel service stations, each of which se-
quentially handles the inspection and repair of all the engines on a plane, but can deal
with only one engine at a time. For example, a type 2 plane has three engines, so when
it enters service, each engine must undergo a complete inspection and repair process
(as described below) before the next engine on this plane can begin service, and all
three engines must be inspected and (if necessary) repaired before the plane leaves the
service station. Each service station is capable of dealing with any type of plane. As
usual, a plane arriving to find an idle service station goes directly into service, while
an arriving plane finding all service stations occupied must join a single queue.
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Plane Number of

type (i) engines a(i) A(@) B(i) p@) r(@) c(i)
1 4 8.1 0.7 2.1 0.30 2.1 2.1
2 3 2.9 0.9 1.8 0.26 1.8 1.7
3 2 3.6 0.8 1.6 0.18 1.6 1.0
4% 4 8.4 1.9 2.8 0.12 3.1 39
5 4 10.9 0.7 2.2 0.36 2.2 1.4
6 2 6.7 0.9 1.7 0.14 1.7 1.1
7* 3 3.0 1.6 2.0 0.21 2.8 3.7

Two of the seven types of planes are classified as widebody (denoted by an asterisk *

in the above table), while the other five are classified as regular. Two disciplines for

the queue are of interest:

(i) Simple FIFO with all plane types mixed together in the same queue

(i) Nonpreemptive priority given to widebody jets, with the rule being FIFO within
the widebody and regular classifications

For each engine on a plane (independently), the following process takes place

(i denotes the plane type):

» The engine is initially inspected, taking an amount of time distributed uniformly
between A(i) and B(i).

* A decision is made as to whether repair is needed; the probability that repair is
needed is p(7). If no repair is needed, inspection of the jet’s next engine begins; or if
this was the last engine, the jet leaves the facility.

* Ifrepairis needed, it is carried out, taking an amount of time distributed as a 2-Erlang
random variable with mean r(i).

* After repair, another inspection is done, taking an amount of time distributed
uniformly between A(i)/2 and B(i)/2 (i.e., half as long as the initial inspection,
since tear-down is already done). The probability that the engine needs further
repair is p(i)/2.

o If the initial repair was successful, the engine is done. If the engine still fails in-
spection, it requires further repair, taking an amount of time distributed as 2-Erlang
with mean r(i)/2, after which it is inspected again, taking an amount of time dis-
tributed uniformly between A(i)/2 and B(i)/2; it fails this inspection with probabil-
ity p(i)/2, and would need yet more repair, which would take a 2-Erlang amount of
time with mean 7(i)/2. This procedure continues until the engine finally passes in-
spection. The mean repair time stays at 7(i)/2, the probability of failure stays at
p(i)/2, and the inspection times stay between A(i)/2 and B(i)/2.

A cost of ¢(i) (measured in tens of thousands of dollars) is incurred for every (full) day
a type i plane is down, i.e., is in queue or in service. The general idea is to study how
the total (summed across all plane types) average daily downtime cost depends on the
number of service stations, n. Initially the system is empty and idle, and the simulation
is to run for 365 round-the-clock days. Observe the average delay in queue for each
plane type and the overall average delay in queue for all plane types, the time-average
number of planes in queue, the time-average number of planes down for each plane
type separately, and the total average daily downtime cost for all planes added
together. Try various values of n to get a feel for the system’s behavior. Recommend
a choice for n, as well as which of the queue disciplines (i) or (ii) above appears to
lead to the most cost-effective operation. Use streams 1 through 7 for the interarrival
times of plane types i = 1 through i = 7, respectively, streams 8 through 14 for their
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Regular only Widebody only

FIGURE 2.71
Alternative layout for the aircraft-repair facility.

respective inspection times (first or subsequent), streams 15 through 21 to determine
whether they need (additional) repair, and streams 22 through 28 for their repair times
(first or subsequent).

As an alternative to the above layout, consider separating entirely the service of the
widebody and regular jets. That is, take n, of the n stations and send all the widebody
jets there (with a single queue of widebodies feeding all n, stations), and the remaining
n, = n — n, stations are for regular jets only; see Fig. 2.71. Do you think that this al-
ternative layout would be better? Why? Use the same parameters and stream assign-
ments as above.

2.33

Write a C function “delete” to delete the (logically) first record from list “list” with a
value “value” (a float-valued representation of an integer, for example, 5.0 to represent
5) for attribute “attribute”. Place the attributes of the deleted record in the transfer
array. To delete a desired record, a statement of the form “delete(list, value, attribute)”
should be executed. If there is an error condition (e.g., there is no matching record in
the list), return a value of 0; otherwise return a value of 1. Also, update the statistics
for list “list” by invoking timest (see the code for function remove in App. 2A).

2.34. Write a C function “insert” to insert a new event record into the event list, using the
median-pointer algorithm discussed in Sec. 2.8. If two event records have the same
event time, give preference to the event with the lowest-numbered event type.

2.35. For the bank model in Sec. 2.6, suppose that after a customer has waited in queue a
certain amount of time, the customer may leave without being served; this is called
reneging. Assume that the amount of time a customer will wait in queue before con-

sidering reneging is distributed uniformly between 5 and 10 minutes; if this amount of
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time does elapse while the customer is in queue, the customer will actually leave with
the following probabilities:

Position in queue when time elapses | 1 | 2 | 3 | =4

Probability of reneging | 0.00 | 0.25 | 0.50 | 1.00

Using the function “delete” from Prob. 2.33, run the simulation model with five tellers
and estimate (in addition to what was estimated before) the expected proportion of
customers who renege and the expected average delay in queue of the reneging cus-
tomers. Use the same stream assignments as in Sec. 2.6, and in addition use stream 3
for the time a customer will wait in queue before considering reneging, and stream 4
for determining if he or she actually reneges if this time elapses.

A five-story office building is served by a single elevator. People arrive to the ground
floor (floor 1) with independent exponential interarrival times having mean 1 minute.
A person will go to each of the upper floors with probability 0.25. It takes the elevator
15 seconds to travel one floor. Assume, however, that there is no loading or unloading
time for the elevator at a particular floor. A person will stay on a particular floor for an
amount of time that is distributed uniformly between 15 and 120 minutes. When a per-
son leaves floor i (where i = 2, 3, 4, 5), he or she will go to floor 1 with probability
0.7, and will go to each of the other three floors with probability 0.1. The elevator can
carry six people, and starts on floor 1. If there is not room to get all people waiting at
a particular floor on the arriving elevator, the excess remain in queue. A person com-
ing down to floor 1 departs from the building immediately. The following control logic
also applies to the elevator:

* When the elevator is going up, it will continue in that direction if a current passen-
ger wants to go to a higher floor or if a person on a higher floor wants to get on the
elevator.

* When the elevator is going down, it will continue in that direction if it has at least
one passenger or if there is a waiting passenger at a lower floor.

* If the elevator is at floor i (where i = 2, 3, 4) and going up (down), then it will not
immediately pick up a person who wants to go down (up) at that floor.

¢ When the elevator is idle, its home base is floor 1.

* The elevator decides at each floor what floor it will go to next. It will not change
directions between floors.

Use the following random-number stream assignments:

1, interarrival times of people to the building
2, next-floor determination (generate upon arrival at origin floor)
3, length of stay on a particular floor (generate upon arrival at floor)

Run a simulation for 20 hours and gather statistics on:

(a) Average delay in queue in each direction (if appropriate), for each floor

(b) Average of individual delays in queue over all floors and all people

(c) Proportion of time that the elevator is moving with people, is moving empty, and
is idle (on floor 1)

(d) Average and maximum number in the elevator

(e) Proportion of people who cannot get on the elevator since it is full, for each floor

Rerun the simulation if the home base for the elevator is floor 3. Which home base
gives the smallest average delay [output statistic (b)]?



2.37.

2.38.

CHAPTER TWO 179

Coal trains arrive to an unloading facility with independent exponential interarrival
times with mean 10 hours. If a train arrives and finds the system idle, the train is
unloaded immediately. Unloading times for the train are independent and distributed
uniformly between 3.5 and 4.5 hours. If a train arrives to a busy system, it joins a
FIFO queue.

The situation is complicated by what the railroad calls “hogging out.” In particu-
lar, a train crew can work for only 12 hours, and a train cannot be unloaded without a
crew present. When a train arrives, the remaining crew time (out of 12 hours) is inde-
pendent and distributed uniformly between 6 and 11 hours. When a crew’s 12 hours
expire, it leaves immediately and a replacement crew is called. The amount of time
between when a replacement crew is called and when it actually arrives is independent
and distributed uniformly between 2.5 and 3.5 hours.

If a train is being unloaded when its crew hogs out, unloading is suspended until a
replacement crew arrives. If a train is in queue when its crew hogs out, the train cannot
leave the queue until its replacement crew arrives. Thus, the unloading equipment can
be idle with one or more trains in queue.

Run the simulation for 720 hours (30 days) and gather statistics on:

(a) Average and maximum time a train spends in the system

(b) Proportion of time unloading equipment is busy, idle, and hogged out
(¢) Average and maximum number of trains in queue

(d) Proportion of trains that hog out 0, 1, and 2 times

Note that if a train is in queue when its crew hogs out, the record for this train must be
accessed. (This train may be anywhere in the queue.) Use the C function “delete” from
Prob. 2.33.

Consider a car-rental system shown in Fig. 2.72, with all distances given in miles.
People arrive at location i (where i = 1, 2, 3) with independent exponential interar-
rival times at respective rates of 14, 10, and 24 per hour. Each location has a FIFO queue
with unlimited capacity. There is one bus with a capacity of 20 people and a speed of
30 miles per hour. The bus is initially at location 3 (car rental), and leaves immediately
in a counterclockwise direction. All people arriving at a terminal want to go to the
car rental. All people arriving at the car rental want to go to terminals 1 and 2 with

3
0.5
Air terminal 1) 1
1 <3 Car rental
Air terminal 2> 1
0.5 —
C —
3 Bus
FIGURE 2.72

A car rental system.
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respective probabilities 0.583 and 0.417. When a bus arrives at a location, the follow-

ing rules apply:

* People are first unloaded in a FIFO manner. The time to unload one person is dis-
tributed uniformly between 16 and 24 seconds.

* People are then loaded on the bus up to its capacity, with a loading time per person
that is distributed uniformly between 15 and 25 seconds.

* The bus always spends at least 5 minutes at each location. If no loading or unloading
is in process after 5 minutes, the bus will leave immediately.

Run a simulation for 80 hours and gather statistics on:

(a) Average and maximum number in each queue

(b) Average and maximum delay in each queue

(¢) Average and maximum number on the bus

(d) Average, maximum, and minimum time the bus is stopped at each location

(e) Average, maximum, and minimum time for the bus to make a loop (departure
from the car rental to the next such departure)

(f) Average, maximum, and minimum time a person is in the system by arrival
location

Use the following random-number stream assignments:
i, interarrival times at location i (where i = 1, 2, 3)

4, unloading times

5, loading times

6, determining destination of an arrival at the car rental



CHAPTER 3

Simulation Software

Recommended sections for a first reading: 3.1 through 3.4

3.1
INTRODUCTION

In studying the simulation examples in Chaps. 1 and 2, the reader probably noticed
several features needed in programming most discrete-event simulation models,
including:

* Generating random numbers, that is, observations from a U(0,1) probability
distribution

* Generating random variates from a specified probability distribution (e.g.,
exponential)

* Advancing simulated time

* Determining the next event from the event list and passing control to the appro-
priate block of code

* Adding records to, or deleting records from, a list

 Collecting output statistics and reporting the results

* Detecting error conditions

As a matter of fact, it is the commonality of these and other features to most simu-
lation programs that led to the development of special-purpose simulation pack-
ages. Furthermore, we believe that the improvement and greater ease of use of these
packages have been major factors in the increased popularity of simulation in recent
years.

We discuss in Sec. 3.2 the relative merits of using a simulation package rather
than a programming language such as C, C++, or Java for building simulation
models. In Sec. 3.3 we present a classification of simulation software, including
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a discussion of general-purpose and application-oriented simulation packages.
Desirable features for simulation packages, including animation, are described
in Sec. 3.4. Section 3.5 gives brief descriptions of Arena, ExtendSim, and Simio,
which are popular general-purpose simulation packages. A simulation model of a
small factory is also given for each package. In Sec. 3.6 we describe object-oriented
simulation software. Finally, in Sec. 3.7 we delineate a number of different
application-oriented simulation packages.

The publication OR/MS Today has a survey of simulation software on a fairly
regular basis.

3.2
COMPARISON OF SIMULATION PACKAGES
WITH PROGRAMMING LANGUAGES

One of the most important decisions a modeler or analyst must make in performing a
simulation study concerns the choice of software. If the selected software is not flexible
enough or is too difficult to use, then the simulation project may produce erroneous
results or may not even be completed. The following are some advantages of using a
simulation package rather than a general-purpose programming language:

* Simulation packages automatically provide most of the features needed to build a
simulation model (see Secs. 3.1 and 3.4), resulting in a significant decrease in
“programming” time and a reduction in overall project cost.

* They provide a natural framework for simulation modeling. Their basic modeling
constructs are more closely akin to simulation than are those in a general-purpose
programming language like C.

* Simulation models are generally easier to modify and maintain when written in a
simulation package.

* They provide better error detection because many potential types of errors are
checked for automatically. Since fewer modeling constructs need to be included
in a model, the chance of making an error will probably be smaller. (Conversely,
errors in a new version of a simulation package itself may be difficult for a user to
find, and the software may be used incorrectly because documentation is some-
times lacking.)

On the other hand, some simulation models (particularly for defense-related
applications) are still written in a general-purpose programming language. Some
advantages of such a choice are as follows:

* Most modelers already know a programming language, but this is often not the
case with a simulation package.

* A simulation model efficiently written in C, C++, or Java may require less exe-
cution time than a model developed in a simulation package. This is so because a
simulation package is designed to address a wide variety of systems with one set
of modeling constructs, whereas a C program can be more closely tailored to a
particular application. This consideration has, however, become less important
with the availability of inexpensive, high-speed PCs.
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* Programming languages may allow greater programming flexibility than certain
simulation packages.

* The programming languages C++ and Java are object-oriented (see Sec. 3.6),
which is of considerable importance to many analysts and programmers, such as
those in the defense industry. On the other hand, most simulation packages are not
truly object-oriented.

» Software cost is generally lower, but total project cost may not be.

Although there are advantages to using both types of software, we believe, in
general, that a modeler would be prudent to give serious consideration to using a
simulation package. If such a decision has indeed been made, we feel that the crite-
ria discussed in Sec. 3.4 will be useful in deciding which particular simulation pack-
age to choose.

3.3
CLASSIFICATION OF SIMULATION SOFTWARE

In this section we discuss various aspects of simulation packages.

3.3.1 General-Purpose vs. Application-Oriented Simulation Packages

There are two main types of simulation packages for discrete-event simulation,
namely, general-purpose simulation software and application-oriented simulation
software. A general-purpose simulation package can be used for any application,
but might have special features for certain ones (e.g., for manufacturing or process
reengineering). On the other hand, an application-oriented simulation package is
designed to be used for a certain class of applications such as manufacturing, health
care, or communications networks. A list of application-oriented simulation pack-
ages is given in Sec. 3.7.

3.3.2 Modeling Approaches

In the programs in Chaps. 1 and 2, we used the event-scheduling approach to
discrete-event simulation modeling. A system is modeled by identifying its charac-
teristic events and then writing a set of event routines that give a detailed descrip-
tion of the state changes taking place at the time of each event. The simulation
evolves over time by executing the events in increasing order of their time of
occurrence. Here a basic property of an event routine is that no simulated time
passes during its execution.

On the other hand, most contemporary simulation packages use the process ap-
proach to simulation modeling. A process is a time-ordered sequence of interrelated
events separated by intervals of time, which describes the entire experience of an
“entity” as it flows through a “system.” The process corresponding to an entity ar-
riving to and being served at a single server is shown in Fig. 3.1. A system or simu-
lation model may have several different types of processes. Corresponding to each
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Entity Entity begins Entity completes
arrives service service
f Time
0
Event “Event” Event
Possible Passage of time
passage of time for serving
in queue of entity
FIGURE 3.1

Process describing the flow of an entity through a system.

process in the model, there is a process “routine” that describes the entire history of
its “process entity” as it moves through the corresponding process. A process rou-
tine explicitly contains the passage of simulated time and generally has multiple
entry points.

To illustrate the nature of the process approach more succinctly, Fig. 3.2 gives
a flowchart for a prototype customer-process routine in the case of a single-
server queueing system. (This process routine describes the entire experience of a
customer progressing through the system.) Unlike an event routine, this process
routine has multiple entry points at blocks 1, 5, and 9. Entry into this routine at
block 1 corresponds to the arrival event for a customer entity that is the most
imminent event in the event list. At block 1 an arrival event record is placed in the
event list for the next customer entity to arrive. (This next customer entity will
arrive at a time equal to the time the current customer entity arrives plus an inter-
arrival time.) To determine whether the customer entity currently arriving can
begin service, a check is made (at block 2) to see whether the server is idle. If the
server is busy, this customer entity is placed at the end of the queue (block 3) and
is made to wait (at block 4) until selected for service at some undetermined time
in the future. (This is called a conditional wait.) Control is then returned to the
“timing routine” to determine what customer entity’s event is the most imminent
now. (If we think of a flowchart like the one in Fig. 3.2 as existing for each cus-
tomer entity in the system, control will next be passed to the appropriate entry
point for the flowchart corresponding to the most imminent event for some other
customer.) When this customer entity (the one made to wait at block 4) is acti-
vated at some point in the future (when it is first in queue and another customer
completes service and makes the server idle), it is removed from the queue at
block 5 and begins service immediately, thereby making the server busy (block 6).
A customer entity arriving to find the server idle also begins service immediately
(at block 6); in either case, we are now at block 7. There the departure time for the
customer beginning service is determined, and a corresponding event record is
placed in the event list. This customer entity is then made to wait (at block 8) until
its service has been completed. (This is an unconditional wait, since its activation
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Routine
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FIGURE 3.2
Prototype customer-process routine for a single-server queueing system.

time is known.) Control is returned to the timing routine to determine what cus-
tomer entity will be processed next. When the customer made to wait at block 8 is
activated at the end of its service, this makes the server idle at block 9 (allowing
the first customer in the queue to become active immediately), and then this cus-
tomer is removed from the system at block 10.
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TABLE 3.1
Entities, attributes, resources, and queues for some common simulation applications

Type of system Entities Attributes Resources Queues
Manufacturing Part Part number, due date Machines, Queues or
workers buffers

Communications Message Destination, message Nodes, links Buffers
length

Airport Airplane Flight number, weight Runways, gates Queues

Insurance agency Application, claim  Name, policy number, Agents, clerks Queues
amount

A simulation using the process approach also evolves over time by executing
the events in order of their time of occurrence. Internally, the process and event-
scheduling approaches to simulation are very similar (e.g., both approaches use a
simulation clock, an event list, a timing routine, etc.). However, the process ap-
proach is more natural in some sense, since one process routine describes the entire
experience of the corresponding process entity.

3.3.3 Common Modeling Elements

Simulation packages typically include entities, attributes, resources, and queues as
part of their modeling framework. An entity (see Table 3.1 for examples) is created,
travels through some part of the simulated system, and then is usually destroyed.
Entities are distinguished from each other by their attributes, which are pieces of
information stored with the entity. As an entity moves through the simulated system,
it requests the use of resources. If a requested resource is not available, then the
entity joins a queue. The entities in a particular queue may be served in a FIFO
(first-in, first-out) manner, served in a LIFO (last-in, first-out) manner, or ranked on
some attribute in increasing or decreasing order.

3.4
DESIRABLE SOFTWARE FEATURES

There are numerous features to consider when selecting simulation software. We
categorize these features as being in one of the following groups:

* General capabilities (including modeling flexibility and ease of use)
* Hardware and software requirements

e Animation and dynamic graphics

* Statistical capabilities

e Customer support and documentation

e Qutput reports and graphics

We now discuss each group of features in turn.
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3.4.1 General Capabilities

In our opinion, the most important feature for a simulation-software product to have
is modeling flexibility or, in other words, the ability to model a system whose operat-
ing procedures can have any amount of complexity. Note that no two systems are
exactly alike. Thus, a simulation package that relies on a fixed number of modeling
constructs with no capability to do some kind of programming in any manner is
bound to be inadequate for certain systems encountered in practice. Ideally, it
should be possible to model any system using only the constructs provided in the
software—it should not be necessary to use routines written in a programming lan-
guage such as C. The following are some specific capabilities that make a simula-
tion product flexible:

* Ability to define and change attributes for entities and also global variables, and
to use both in decision logic (e.g., if-then-else constructs)

* Ability to use mathematical expressions and mathematical functions (logarithms,
exponentiation, etc.)

 Ability to create new modeling constructs and to modify existing ones, and to
store them in libraries for use in current and future models

The second most important feature for a simulation product is ease of use
(and ease of learning), and many contemporary simulation packages have a
graphical user interface to facilitate this. The software product should have mod-
eling constructs (e.g., icons or blocks) that are neither too “primitive” nor too
“macro.” In the former case, a large number of constructs will be required to
model even a relatively simple situation; in the latter case, each construct’s dia-
log box will contain an excessive number of options if it is to allow for adequate
flexibility. In general, the use of tabs in dialog boxes can help manage a large
number of options.

Hierarchical modeling is useful in modeling complex systems. Hierarchy allows
a user to combine several basic modeling constructs into a new higher-level con-
struct. These new constructs might then be combined into an even higher-level
construct, etc. This latter construct can be added to the library of available constructs
and can then be reused in this model or future models (see Sec. 3.5.2 for an example).
This ability to reuse pieces of model logic increases one’s modeling efficiency.
Hierarchy is an important concept in a number of simulation packages. It is also a
useful way to manage “screen clutter” for a graphically oriented model that consists
of many icons or blocks.

The software should have good debugging aids such as an interactive debugger.
A powerful debugger allows the user to do things such as:

» Follow a single entity through the model to see if it is processed correctly

* See the state of the model every time a particular event occurs (e.g., a machine
breakdown)

* Set the value of certain attributes or variables to “force” an entity down a logical
path that occurs with small probability
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Fast model execution speed is important for certain applications such as large
military models and models in which a large number of entities must be processed
(e.g., for a high-speed communications network). We programmed a simple manu-
facturing system in six simulation products and found that, for this model, one prod-
uct was as much as 11 times faster than another.

It is desirable to be able to develop user-friendly model “front ends” when the
simulation model is to be used by someone other than the model developer. This
capability allows the developer to create an interface by which the nonexpert user
can easily enter model parameters such as the mean service time or how long to run
the simulation.

Most simulation software vendors offer a run-time version of their software,
which, roughly speaking, allows the user to change model data but not logic
by employing a user-friendly “front end.” Applications of a run-time version
include:

* Allowing a person in one division of an organization to run a model that was
developed by a person in another division who owns a developmental version of
the simulation software

* Sales tool for equipment suppliers or system integrators

* Training

Note that a run-time license generally has a considerably lower cost than a normal
developmental license or is free.

A feature that is of considerable interest is the ability to import data from (and
export data to) other applications (e.g., an Excel spreadsheet or a database).

Traditionally, simulation products have provided performance measures
(throughput, mean time in system, etc.) for the system of interest. Now some prod-
ucts also include a cost module, which allows costs to be assigned to such things as
equipment, labor, raw materials, work in process, finished goods, etc.

In some discrete-event simulations (e.g., steelmaking), it may be necessary to
have certain capabilities available from continuous simulation. We call such a simu-
lation a combined discrete-continuous simulation (see Sec. 13.4).

Occasionally, one might have a complex set of logic written in a programming
language that needs to be integrated into a simulation model. Thus, it is desirable for
a simulation package to be able to invoke external routines.

It is useful for the simulation package to be easily initialized in a nonempty and
idle state. For example, in a simulation of a manufacturing system, it might be desir-
able to initialize the model with all machines busy and all buffers half full, in order
to reduce the time required for the model to reach “steady state.”

Another useful feature is that the state of a simulation can be saved at the end
of a run and used to restart easily the simulation at a later time.

Finally, cost is usually an important consideration in the purchase of simulation
software. Currently, the cost of simulation software for a PC ranges from $1000 to
$100,000 or even more. However, there are other costs that must be considered,
such as maintenance fees, upgrade fees, and the cost for any additional hardware
and software that might be required (see Sec. 3.4.2).
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3.4.2 Hardware and Software Requirements

In selecting simulation software, one must consider what computer platforms the
software is available for. Almost all software is available for Windows-based PCs,
and some products are also available for Apple computers. If a software package is
available for several platforms, then it should be compatible across platforms. The
amount of RAM required to run the software should be considered as well as what
operating systems are supported. It is highly desirable if independent replications of
a simulation model can be made simultaneously on multiple processor cores or on
networked computers.

3.4.3 Animation and Dynamic Graphics

The availability of built-in animation is one of the reasons for the increased use of
simulation modeling. In an animation, key elements of the system are represented
on the screen by icons that dynamically change position, color, and shape as the
simulation model evolves through time. (See the Color Plates at the back of the
book.) For example, in a manufacturing system, an icon representing a forklift
truck will change position when there is a corresponding change in the model, and
an icon representing a machine might change color when the machine changes state
(e.g., idle to busy) in the model.
The following are some of the uses of animation:

* Communicating the essence of a simulation model (or simulation itself) to a man-
ager or to other people who may not be aware of (or care about) the technical
details of the model

* Debugging the simulation computer program

* Showing that a simulation model is not valid

* Suggesting improved operational procedures for a system (some things may not
be apparent from looking at just the simulation’s numerical results)

* Training operational personnel

* Promoting communication among the project team

There are two fundamental types of animation: concurrent and post-
processed (also called playback). In concurrent animation the animation is being
displayed at the same time that the simulation is running. Note, however, that the
animation is normally turned off when making production runs, because the ani-
mation slows down the execution of the simulation. In post-processed animation,
state changes in the simulation are saved to a disk file and used to drive the
graphics after the simulation is over. Some simulation software products have
both types of animation.

‘We now discuss desirable features for animation. First, the simulation soft-
ware should provide default animation as part of the model-building process.
Since animation is primarily a communications device, it should be possible to
create high-resolution icons and to save them for later reuse. The software should
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come with a library of standard icons, or it should be possible to import icons
from an external source (e.g., Google Warehouse). The software should provide
smooth movement of icons; icons should not “flash” or “jump.” There should be
a control to speed up or slow down the animation. It should be possible to zoom
in or out and to pan to see different parts of a system too large to fit on one
screen. Some software products have named animation views, so that one can
construct a menu of views corresponding to different parts of the simulated
system. It is desirable if the animation uses vector-based graphics (pictures are
drawn with lines, arcs, and fills) rather than pixel-based graphics (pictures are
drawn by turning individual pixels on or off). The former type of graphics allows
rotation of an object (e.g., a helicopter rotor) as well as a vehicle to maintain its
proper orientation as it goes around a corner.

Some simulation products with concurrent animation allow the user to stop the
simulation “on the fly” while observing the animation, make changes to certain
model parameters (e.g., the number of machines in a workstation), and then instantly
restart the simulation. However, this can be statistically dangerous if the state of the
system and the statistical counters are not reset.

Many simulation packages provide three-dimensional animation (the vantage
point from which to view the animation can be rotated around all three axes), which
might be important for management presentations and for situations in which verti-
cal clearances are important. In these products it may also be possible to provide the
viewer of the animation with a perspective of “riding through the system on the
back of an entity.”

It should be possible to import CAD drawings and clip art into an animation.

It is often desirable to display dynamic graphics and statistics on the screen as
the simulation executes. Examples of dynamic graphics are clocks, dials, level
meters (perhaps representing a queue), and dynamically updated histograms and
time plots (see Sec. 3.4.6). An example of the latter would be to update a plot of the
number in some queue as the simulation moves through time.

3.4.4 Statistical Capabilities

If a simulation product does not have good statistical-analysis features, then it is
impossible to obtain correct results from a simulation study. First, the software must
have a good random-number generator (see Chap. 7), that is, a mechanism for gen-
erating independent observations from a uniform distribution on the interval [0, 1].
Note that not all random-number generators found on computers or in software
products have acceptable statistical properties. The generator should have at least
100 different streams (preferably far more) that can be assigned to different sources
of randomness (e.g., interarrival times or service times) in a simulation model—this
will allow different system designs to be compared in a more statistically efficient
manner (see Sec. 11.2). The simulation software should produce the same results on
different executions if the default seeds are used for the various streams—the seeds
should not depend on the internal clock of the computer. On the other hand, the user
should be able to set the seed for each stream, if desired.



CHAPTER THREE 191

In general, each source of randomness in the system of interest should be rep-
resented in the simulation model by a probability distribution (see Chap. 6), not just
the perceived mean value. If it is possible to find a standard theoretical distribution
that is a good model for a particular source of randomness, then this distribution
should be used in the model. At a minimum, the following continuous distributions
should be available: exponential, gamma, Weibull, lognormal, normal, uniform,
beta, and triangular. The last distribution is typically used as a model for a source
of randomness when no system data are available. Note also that very few input
random variables in real simulations have a normal distribution. The following
discrete distributions should also be available: binomial, geometric, negative binomial,
Poisson, and discrete uniform.

If a theoretical distribution cannot be found that is a good representation for a
source of randomness, then an empirical (or user-defined) distribution based on the
data should be used (see Sec. 6.2.4). In this case, random numbers are used to
sample from a distribution function constructed from the observed system data.

There should be (a single) command available for making independent replica-
tions (or runs) of the simulation model. This means:

* Each run uses separate sets of different random numbers.
¢ Each run uses the same initial conditions.
¢ Each run resets the statistical counters.

Note that simulation results from different runs are independent and also proba-
bilistic copies of each other. This allows (simple) classical statistical procedures to
be applied to the results from different runs (see Chap. 9).

There should be a statistically sound method available for constructing a confi-
dence interval for a mean (e.g., the mean time in system for a part in a factory). The
method should be easy to understand and should provide good statistical results. In
this regard, we feel that the method of replication (see Secs. 9.4.1 and 9.5.2) is def-
initely the superior approach.

If one is trying to determine the long-run or “steady-state” behavior of a sys-
tem, then it is generally desirable to specify a warmup period for the simulation, that
is, a point in simulated time when the statistical counters (but not the state of the
system) are reset. Ideally, the simulation software should also be able to determine
a value for the warmup period based on making pilot runs. There is currently at
least one simulation product that uses Welch’s graphical approach (see Sec. 9.5.1)
to specify a warmup period.

It should be possible to construct a confidence interval for the difference be-
tween the means of two simulated systems (e.g., the current system and a proposed
system) by using the method of replication (see Sec. 10.2).

The simulation software should allow the user to specify what performance
measures to collect output data on, rather than produce reams of default output data
that are of no interest to the user.

At least one simulation product allows the user to perform statistical experi-
mental designs (see Chap. 12) with the software, such as full factorial designs or
fractional factorial designs. When we perform a simulation study, we would like to
know what input factors (decision variables) have the greatest impact on the
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performance measures of interest. Experimental designs tell us what simulation
experiments (runs) to make so that the effect of each factor can be determined.
Some designs also allow us to determine interactions among the factors.

A topic that is of interest to some people planning to buy simulation software is
“optimization” (see Sec. 12.5). Suppose that there are a number of decision vari-
ables (input factors) of interest, each with its own range of acceptable values. (There
may also be linear constraints on the decision variables.) In addition, there is an
objective function to be maximized (or minimized) that is a function of one or more
simulation output random variables (e.g., throughput in a manufacturing system)
and of certain decision variables. Then the goal of an “optimizer” is to make runs of
the simulation model (each run uses certain settings of the decision variables) in an
intelligent manner and to determine eventually a combination of the decision vari-
ables that produces an optimal or near-optimal solution. These optimization mod-
ules use heuristics such as genetic algorithms, simulated annealing, neural networks,
scatter search, and tabu search.

3.4.5 Customer Support and Documentation

The simulation software vendor should provide public training on the software on a
regular basis, and it should also be possible to have customized training presented
at the client’s site. Good technical support is extremely important for questions on
how to use the software and in case a bug in the software is discovered. Technical
support, which is usually in the form of telephone help, should be such that a re-
sponse is received in at most one day.

Good documentation is a crucial requirement for using any software product. /¢
should be possible, in our opinion, to learn a simulation package without taking a
formal training course. Generally, there will be a user’s guide or reference manual.
There should be numerous detailed examples available. Most products now have
context-dependent online help, which we consider very important. (It is not suffi-
cient merely to have a copy of the documentation available in the software.) Several
products have a library of “mini examples” to illustrate the various modeling
constructs.

There should be a detailed description of how each modeling construct works,
particularly if its operating procedures are complex. For example, if a simulation-
software product for communications networks offers a module for a particular type
of local-area network, then its logic should be carefully delineated and any simpli-
fying assumptions made relative to the standard stated.

It is highly desirable to have a university-quality textbook available for the sim-
ulation package.

Most simulation products offer a free demo and, in some cases, a working ver-
sion of the software can be downloaded from the vendor’s website, which will allow
small models to be developed and run.

It is useful if the vendor publishes an electronic newsletter and has a yearly
users’conference. The vendor should have regular updates of the software (perhaps,
once a year).
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3.4.6 Output Reports and Graphics

Standard reports should be provided for the estimated performance measures. It
should also be possible to customize reports, perhaps for management presenta-
tions. Since a simulation product should be flexible enough so that it can compute
estimates of user-defined performance measures, it should also be possible to write
these estimates into a custom report. For each performance measure (e.g., time in
system for a factory), the average observed value, the minimum observed value, and
the maximum observed value are usually given. If a standard deviation is also given
(based on one simulation run), then the user should be sure that it is based on a sta-
tistically acceptable method (such as batch means with appropriate batch sizes, as
discussed in Sec. 9.5.3), or else it should be viewed as highly suspect. [Variance and
standard-deviation estimates require independent data, which are rarely produced
by one run of a simulation model (see Sec. 4.4).] It should be possible to obtain re-
ports at intermediate points during a simulation run as well as at the end.

The simulation product should provide a variety of (static) graphics. First, it
should be possible to make a histogram (see Fig. 14.29) for a set of observed data.
For continuous (discrete) data, a histogram is a graphical estimate of the underlying
probability density (mass) function that produced the data. Time plots are also very im-
portant. In a time plot (see, for example, Fig. 14.27) one or more key system variables
(e.g., the numbers in certain queues) are plotted over the length of the simulation,
providing a long-term indication of the dynamic behavior of the simulated system.
(An animation provides a short-term indication of the dynamic behavior of a system.)
Some simulation products allow the simulation results to be presented in bar charts or
pie charts. Finally, a correlation plot (see Fig. 6.29) is a useful way to measure the
dependence in the output data produced from one simulation run.

It should be possible to export individual model output observations (e.g., times
in system) to other software packages such as spreadsheets, databases, statistics
packages, and graphical packages for further analysis and display.

3.5
GENERAL-PURPOSE SIMULATION PACKAGES

In Secs. 3.5.1 through 3.5.3 we give brief descriptions of Arena, ExtendSim, and
Simio, respectively, which are (at this writing) popular general-purpose simulation
packages. In each case we also show how to build a model of a small factory.
Section 3.5.4 lists some additional general-purpose simulation packages.

3.5.1 Arena

Arena [see Rockwell (2013) and Kelton et al. (2010)] is a general-purpose simula-
tion package marketed by Rockwell Automation (Wexford, Pennsylvania) that is
commonly used for applications such as manufacturing, supply chains, defense,
health care, and contact centers. There are two different versions of Arena, namely,
the Standard Edition and the Professional Edition.
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Modeling constructs, which are called “modules” in Arena, are functionally
arranged into a number of “templates.” (A module contains logic, a user interface,
and, in some cases, options for animation.) The “Basic Process” template contains
modules that are used in virtually every model for modeling arrivals, departures,
services, and decision logic of entities. The “Advanced Process” template contains
modules that are used to perform more advanced process logic and to access exter-
nal data files in Excel, Access, and SQL databases. The “Advanced Transfer”
template contains modules for modeling various types of conveyors, forklift trucks,
automated guided vehicles, and other material-handling equipment. The “Flow
Process” template is used for modeling tanks, pipes, valves, and batch-processing
operations. Also the lower-level “Blocks” and “Elements” templates are used in
modeling some complex real-world systems; these two templates constitute what
was previously called the SIMAN simulation language.

A model is constructed in Arena by dragging modules into the model window,
connecting them to indicate the flow of entities through the simulated system, and
then detailing the modules by using dialog boxes or Arena’s built-in spreadsheet. A
model can have an unlimited number of levels of hierarchy.

“Visual Designer” is used to create concurrent three-dimensional (3-D) anima-
tions and “live-data dashboards,” which display dynamic graphics (e.g., histograms,
pie charts, and time plots). (Two-dimensional animation is also available.) It also
allows one to “watch the logic execute” and to perform sophisticated graphical
model debugging. AVI files can be generated directly from Arena for sharing anima-
tions with other people, and each Arena license includes one additional runtime-
only license (see Sec. 3.4.1).

There are an unlimited number of random-number streams (see Chap. 7) avail-
able in Arena. Furthermore, the user has access to 12 standard theoretical probabil-
ity distributions and also to empirical distributions. Arena has a built-in capability
for modeling nonstationary Poisson processes (see Sec. 6.12.2), which is a model
for entity arrivals with a time-varying rate.

There is an easy mechanism for making independent replications of a particular
simulated system and for obtaining point estimates and confidence intervals for per-
formance measures of interest. It is also possible to construct a confidence interval for
the difference between the means of two systems. A number of plots are available,
such as histograms, time plots, bar charts, and correlation plots. The “OptQuest for
Arena” (see Sec. 12.5.2) optimization module is available as an option.

Activity-based costing is incorporated into Arena, providing value-added and
non-value-added cost and time reports. Simulation results are stored in a database
and are presented using Crystal Reports, which is embedded in Arena.

Microsoft Visual Basic for Applications (VBA) and a complete ActiveX object
model are available in Arena. This capability allows more sophisticated control and
logic including the creation of user-friendly “front ends” for entering model parame-
ters, the production of customized reports, etc. This technology is also used for Arena’s
interfaces with many external applications including the Visio drawing package.

Arena Professional Edition includes the ability to create customized modules
and to store them in a new template. Arena also has an option that permits a model
to run in real time (or any multiple thereof) and to dynamically interact with other
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FIGURE 3.3
Arena model for the manufacturing system.

processes; this supports applications such as the High Level Architecture (see
Sec. 1.6.2) and testing of hardware/software control systems.

We now develop an Arena model for the simple manufacturing system of
Example 9.25, which consists of a machine and an inspector. However, we assume
here that the machine never breaks down. Figure 3.3 shows the five required logic
modules and the necessary connections to define the entity flow.

The “Create” module, whose dialog box is shown in Fig. 3.4, is used to generate
arrivals of parts. We label the module “Generate Parts” and specify that interarrival
times are exponentially distributed [denoted “Random (Expo)”’] with a mean of 1 minute.
The Create module is connected to the “Process” module (see Fig. 3.5), which is

Create
MName: Entity Tope:
IGenerate Fartz ;‘ iF'art ;l
Tirme Between Armvals
Tupe: Walue: Uit
IFEanu:In:um [Expa) ;] |1 |Minutes _:_J
Entities per-Armival: tax Arrivals: FEirst Creation;
|1 [ Infinite {00
0k Caricel | Help
FIGURE 3.4

Dialog box for the Arena Create module “Generate Parts.”
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FIGURE 3.5
Dialog box for the Arena Process module “Machine Part.”

used to represent the processing of a part at the machine. This module is labeled
“Machine Part,” has a single resource named “Machine” with one unit, and has pro-
cessing times that are uniformly distributed between 0.65 and 0.70 minute.

The next Process module (see Fig. 3.6) is used to represent the inspector. We
specify that inspection times are uniformly distributed between 0.75 and 0.80 minute.
After inspection, a “Decide” module (see Fig. 3.7) specifies that a part can have
one of two outcomes: “True” (occurs 90 percent of the time) or “False.” If the part
is good (True), then it is sent to the “Depart” module (not shown) labeled “Good
Part Finished,” where it is destroyed. Otherwise (False), it is sent back to the
Machine Part module to be remachined.

Finally, we need to use Run > Setup (see Fig. 3.8) to specify the experimental
parameters. We state that one run of length 100,000 minutes is desired.

The results from running the simulation are given in Fig. 3.9, from which we
see that the average time in system of a part is 4.64 minutes. Additional output
statistics can be obtained from the options on the left-hand side of the screen.
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Dialog box for the Arena Process module “Inspect Part.”
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3.5.2 ExtendSim

ExtendSim [see Imagine (2013)] is the family name for four general-purpose
simulation packages marketed by Imagine That, Inc. (San Jose, California). Each
ExtendSim product has components aimed at specific market segments, but all
products share a core set of features. A model is constructed by selecting blocks
from libraries (Item, Value, Plotter, etc.), placing the blocks at appropriate locations
in the model window, connecting the blocks to indicate the flow of entities (or
values) through the system, and then detailing the blocks using dialog boxes.



& & F %= [0 <
Presview ]

=1~ Small Factory
=1 Enkiky
= Time
L WA Time
- MYA Time
=+ Wiait Time
# - Transfer Time
- Other Time
=+ Cosk
| Other
[+ Process
[+ Queus
[+ Resource

FIGURE 3.9

M 4 2 of13 b | ¢4 “Crystal =ge

Wait Time inimum M zzimum )
Porerage H alf Wfidth alle Walue
Part 3.0280 0247628038 0.00 94.4532
Transfer Time hdinirmum tz<imum
Forerage H alf ‘nridth Walue Walue
Part 0.0o 0.000000000 0.00 0.00
Other Tirme hdinimum tz<imum
Forerage H alf ‘Wifidth alue “alue
Part 0.0o 0.000000000 0.00 0.0o
[Total Time Minimum Pasimum
Farerage H alf Wfidth walue walue

Part 46397 0.248893749 1.4001 101.70 v

>

Simulation results for the Arena model of the manufacturing system.

HHd4HL Y4LdVHD

661



200 SIMULATION SOFTWARE

ExtendSim can model a wide variety of system configurations using the blocks
supplied with the product. If needed, the internal ModL language can be used to
customize existing blocks and to create entirely new blocks. These “new” blocks can
be placed in a new library for reuse in the current model or future models. The code
corresponding to a particular block can be viewed by right-clicking on the block and
selecting “Open Structure”; this feature is useful for understanding the actual opera-
tion of the block. ModL can also access applications and procedures created with
external programming languages such as Visual Basic and C++.

A model can have an unlimited number of levels of hierarchy (see below) and
also use inheritance (see Sec. 3.6). A “Navigator” allows one to move from one
hierarchical level to another. All ExtendSim products provide a basic 2-D anima-
tion, and the ExtendSim Suite product also provides 3-D animation.

Each simulation model in ExtendSim has an associated “Notebook,” which can
contain pictures, text, dialog items, and model results. Thus, a Notebook can be
used as a “front end” for a model or as a vehicle for displaying important model
results as the simulation is actually running. The parameters for each model can also
be stored in, and accessed from, the model’s internal relational database; this is use-
ful for data consolidation and management.

There are an essentially unlimited number of random-number streams available
in ExtendSim. Furthermore, the user has access to 34 standard theoretical probability
distributions and also to empirical distributions. ExtendSim has an easy mechanism
for making independent replications of a simulation model and for obtaining point
estimates and confidence intervals for performance measures of interest. A number of
plots are available such as histograms, time plots, bar charts, and Gantt charts.

There is an activity-based costing capability in ExtendSim that allows one to
assign fixed and variable costs to an entity as it moves through a simulated system.
For example, in a manufacturing system a part might be assigned a fixed cost for the
required raw materials and a variable cost that depends on how long the part spends
waiting in queue.

ExtendSim’s “Item” library contains blocks for performing discrete-event
simulation (entity arrival, service, departure, etc.), as well as for material handling
(see Sec. 14.3 for further discussion of material handling) and routing. (An entity is
called an “Item” in ExtendSim.) The optional “Rate” library provides blocks for
modeling high-speed, high-volume manufacturing systems (e.g., canning lines)
within a discrete-event environment. The blocks in the “Value” library are used to
perform continuous simulation (see Sec. 13.3) and to provide modeling support
(mathematical calculations, simulation-based optimization, data sharing with other
applications, etc.) for discrete-event simulation.

ExtendSim’s “Scenario Manager” allows the modeler to investigate how the
simulation model’s responses change from one scenario (a set of values for the
model’s input parameters or factors) to another. The scenarios of interest can either
be entered manually or are specified automatically by the Scenario Manager in the
case of a factorial design (see Sec. 12.2). Additionally, the modeler specifies the
number of independent replications (each using different random numbers) of each
scenario that is desired. The Scenario Manager runs the scenarios iteratively, re-
cords the responses for each replication, and the responses are then summarized
across the replications for each scenario. The model factors and their corresponding
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ExtendSim model for the manufacturing system.

responses can be exported to ExtendSim’s database, the JMP and Minitab statistical
packages, or Excel for further analysis. ExtendSim also has a built-in optimization
module (see Sec. 12.5.2).

We now show how to build an ExtendSim model for the manufacturing system
discussed in Sec. 3.5.1. In particular, Fig. 3.10 shows the required blocks and con-
nections for the model; the connections correspond to the flow of entities (parts for
this model). All the blocks in this model are from the ExtendSim Item library. We
have placed a descriptive label below each block, which we will refer to in the dis-
cussion of the model below.

The “Executive” block, which is not graphically connected to any other block,
manages the event list for an ExtendSim model. The first block actually in the model
is a “Create” block labeled “Generate Parts” (see its dialog box in Fig. 3.11), which
is used to generate parts having exponential interarrival times with a mean of
1 minute. This is followed by a “Queue” block labeled “Machine Queue” (Fig. 3.12),
which stores the parts while they are waiting for processing. This queue has infinite
capacity by default and merges the parts from the Create block with those parts that
need to be reworked after inspection.

Following the Machine Queue block is an “Activity” block labeled “Machine
Part.” In the dialog box for this latter block (Fig. 3.13), we specify that one part can
be processed at a time. We also select “Uniform, Real” as the processing-time dis-
tribution and then set its minimum and maximum values to 0.65 and 0.70 minute,
respectively. This Activity block is connected to a second Queue block labeled
“Inspect Queue,” where parts wait for the inspection process. The output of this
Queue block is connected to a second Activity block labeled “Inspect Part,” where
inspection times are uniformly distributed between 0.75 and 0.80 minute.

The Activity block corresponding to the inspector is connected to the “Select
Item Out” block labeled “Random Output,” which is used to determine whether a
part is good or bad. In its dialog box (Fig. 3.14), we specify that parts will leave
randomly through the block’s outputs. In the table we enter the probabilities
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0.9 and 0.1, indicating that 90 percent of the parts will be sent through the top out-
put as “Good” and 10 percent of the parts will be sent through the lower output as
“Bad.” We also choose to have the probabilities displayed on the output connec-
tions of this block.

The next block in the model is an “Information” block labeled “Part Statistics,”
which computes output statistics for completed parts. In its dialog box (Fig. 3.15),
we see that 100,078 (good) parts were completed and that the average time in system
(cycle time) was 4.46 minutes. The last block in the model is an “Exit” block la-
beled “Destroy Parts” (see Fig. 3.10), where the completed parts are removed from
the model.

The time units for the model (minutes), the simulation run length (100,000),
and the desired number of runs (1) are specified in the “Simulation Setup” option
that is accessed from the “Run” pull-down menu (not shown) at the top of the
screen. The Notebook for the model (Fig. 3.16), which is accessed from the
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ExtendSim Notebook for the manufacturing system.

“Window” pull-down menu, brings together important input parameters and re-
sults for the model.

In Fig. 3.17 we give a version of the ExtendSim model that uses hierarchy (see
Sec. 3.4.1). If we double-click on the hierarchical block named “Process” (at the
first level of hierarchy), then we go down to the second level of hierarchy where we
see the original Machine Queue and Machine Part blocks, as shown in Fig. 3.18.

Executive

Generate Parts v Destroy Parts

Part Statistics

Process Bad
Inspect

FIGURE 3.17
Hierarchical ExtendSim model for the manufacturing system.
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3.5.3 Simio

Simio [Simio (2013) and Kelton et al. (2011)] is an object-oriented (see Sec. 3.6)
suite of simulation and scheduling products marketed by Simio LLC (Sewickley,
Pennsylvania). Simio is a simulation-modeling framework based on intelligent
objects, which allows one to build models using either the default Standard Library
(for discrete-event simulation) or by graphically creating entirely new objects. (An
object in Simio has properties, states, and logic.) The Standard library, which contains
15 object definitions, can be modified and extended using process logic (see below),
and new objects can be stored in libraries for use in other simulation projects.

An object in a library might be a customer, machine, doctor, or anything else
that you might find in a system. A model is constructed in Simio by dragging objects
into the “Facility” window, connecting them by links to indicate the flow of entities
through the simulated system, and then detailing the objects by using a property
editor. The model logic and animation are built in a single step, typically in a
two-dimensional view for ease of modeling. However, one can switch to a three-
dimensional (3-D) perspective view with just a single keystroke.

Building an object in Simio is identical to building a model, since there is no dif-
ference between the two constructs. Whenever you build a model, it is by definition an
object that can be used in another model. For example, if you combine two machines
and a robot into a model of a workstation, then the workstation model is itself an object
that can then be used in other models. Every model that is built in Simio is automati-
cally a building block that can be used in constructing hierarchical models.

When you instantiate an object into a model, you may specify “properties” (static
input parameters) of the object that govern the behavior of this specific instance of the
object. For example, a property of a machine might be its processing time. The devel-
oper of an object decides on the number of properties and their meanings. Properties
in Simio can be numerical values, Boolean variables, text strings, etc.

In addition to properties, objects have “states” that change values as a result of
the execution of the object’s logic. A state for a machine might be its status (e.g.,
idle or busy). Properties and states together constitute the attributes of an object.

An object in Simio may be defined from one of five base classes, which pro-
vides the underlying behavior for the object. The first class is the “fixed object,”
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which has a fixed location in the model and is used to represent something in a sys-
tem that does not move from one location to another, such as a machine in a factory
or an operating room in a hospital.

An “entity” is an object that can move through 3-D space over a network of links
and nodes. Examples of entities are parts in a manufacturing system, and patients,
nurses, and doctors in a hospital. Note that in traditional simulation packages entities
are passive and are acted upon by the model processes (see Sec. 3.3.2). However, in
Simio the entities are intelligent objects that can control their own behavior.

“Link” and “node” objects are used to build networks over which entities may
flow. A link defines a pathway for entities to move from one object to another,
whereas a node defines the beginning or ending point of a link. Links and nodes can
be combined together into complex networks. A link could be an escalator with a
fixed travel time or it could represent a conveyor.

The final class of objects is a “transporter,” which is a subclass of the entity class. A
transporter is an entity that has the added capabilities to pick up, carry, and drop off one
or more other entities. A transporter could be used to model a bus, a forklift truck, or any
other object that has the ability to carry other entities from one location to another.

A key feature of Simio is the ability to create a wide range of object behaviors
from the base classes. The Simio modeling framework is application-domain
neutral, i.e., these base classes are not specific to a particular application area such
as manufacturing or health care. However, it is easy to build application-oriented
libraries composed of intelligent objects from the base classes. Simio’s design
philosophy dictates that domain-specific logic belongs in the objects built by users,
and it is not programmed into the core system.

The process approach (see Sec. 3.3.2) is commonly used for extending an object’s
logic or for building new objects. A process is defined in Simio using a flowchart,
where each step in the flowchart defines some action to perform. There are over 50 dif-
ferent process steps available in Simio to perform specific actions such as delay by
time, wait to seize a resource, etc. Process logic can be inserted into a specific instance
of an object to modify or extend its behaviors. For example, an object representing a
machine might use process logic to seize and hold a repairman during a breakdown.

There are an essentially unlimited number of random-number streams available
in Simio. Furthermore, the user has access to 19 standard theoretical probability
distributions and to empirical distributions. There is an easy mechanism for making
independent replications of a simulation model and for obtaining point estimates
and confidence intervals for performance measures of interest. A number of plots
are available such as time plots, histograms, bar charts, and pie charts.

Simio provides a 3-D interactive environment for building and running simula-
tion models, which is useful for accurately modeling spatial relationships and for
communicating model behavior to the simulation project’s stakeholders. However,
Simio also provides a set of sophisticated features for performing and analyzing
simulation experiments. In particular, a model may have an associated “‘experiment”
that specifies a set of scenarios to execute. Each scenario may have one or more input
controls and will have one or more output responses. The input controls are factors
that are changed from one scenario to the next (e.g., the number of machines in a
workstation), and the output responses are the measures of performance (e.g., average
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time in system of a part) that are used to evaluate the efficacy of the different scenar-
ios. Furthermore, each scenario can be replicated a specified number of times and
these replications can be simultaneously executed across multiple processor cores or
across different computers on a network, which will greatly reduce the time required
for experimentation. Simio’s built-in analysis tools include a procedure for automati-
cally selecting the best scenario from a set of candidate scenarios [see Sec. 10.4.3 and
Kim and Nelson (2001)] and SMORE plots [see Nelson (2008)]. A SMORE plot si-
multaneously displays a point estimate and confidence interval for the expected value
of a response, as well as a superimposed box plot (see Sec. 6.4.3). The “OptQuest for
Simio” (see Sec. 12.5.2) optimization module is available as an option.

Although Simio is primarily oriented toward performing discrete-event simula-
tion using an object-oriented approach, Simio also supports modeling continuous-
flow systems, performing agent-based simulation (because of its object orientation),
and performing discrete-event simulation using the process approach. Moreover,
Simio can also be used in an operational setting as a risk-based planning and sched-
uling tool to improve the day-to-day functioning of an organization.

We now develop a Simio model of the simple manufacturing system discussed
in Sec. 3.5.1. The Simio model for this system is shown in Figure 3.19 and is
composed of a “Source” object named “Part_Arrivals” that creates the jobs arriving
to the system, a “Server” object named “Machine_Part” that models the machining
operation, a Server object named “Inspect_Part” that models the inspection process,
and a “Sink” object named “Part_Departures,” where entities leave the system. In
this example, we use a zero-time link called a “Connector” to define the travel paths
between the Source, Servers, and Sink objects.
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FIGURE 3.19
Simio model for the manufacturing system.
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The small circular “selection handles” surrounding the Part_Arrivals object in-
dicate that the object was selected for editing (by clicking on it with the mouse). The
properties of a selected object are edited using the “Property Editor,” which is on the
lower-right side of the screen. The Part_Arrivals object is used to generate arrivals
to the system based on an “Arrival Mode.” The default “Interarrival Time” mode
used in this example specifies that the distribution of interarrival times is expo-
nential with a mean of 1 minute. [Alternatively, the “Time Varying Arrival Rate”
mode generates arrivals in accordance with a nonstationary Poisson process (see
Sec. 6.12.2) and the “Arrival Table” mode schedules arrivals using data stored in a
table or an external source such as a spreadsheet.]

Figure 3.20 displays the properties for the Machine_Part object. The properties are
organized into categories that can be expanded and collapsed with the +/— signs to the
left of the category name. These properties specify that “Processing Time” is uniformly
distributed on the interval [0.65, 0.70] minute. Note that this expression can be typed
in directly or specified using an “Expression Editor,” which can be accessed using a
pull-down arrow on the right side of the field (not shown). If failures of Machine_Part

Properties: Machine_Part (Server)

= {Process Logic

Capacity Type Fixed

Initial Capacity 1

Ranking Rule First In First Out
Dynamic Selection ... MNone

[# Transfer-In Time 0.0
[=l Processing Time Random.Uniform(0.65,0.70)
Units Minutes
[# Buffer Capacity
[+ Reliability Logic
[+ State Assignments
[+ Secondary Resources
[+ Finandials
[# Add-On Process Triggers
[+ Advanced Options
[+ General
[+ Animation

Process Logic
Process Logic

FIGURE 3.20
Properties of the Machine_Part object.
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FIGURE 3.21

Design view for specifying an experiment.

were desired, then they would be specified under the “Reliability Logic” category. The
“Financials” category can be used to specify usage rates for activity-based costing.

We do not show the Property Editor for the Inspect_Part object, where the in-
spection times are specified to be uniformly distributed on the interval [0.75, 0.80]
minute. The two connectors leaving Inspect_Part (see Fig. 3.19) have link weights
of 0.9 and 0.1, respectively, and use a routing rule on its exit node that is based on
“By Link Weight.”

Figure 3.21 shows the specification of and partial results from a simple experiment
for our model, which says to make 30 replications of the simulation and to observe the
average time in system of a part for a run length of 100,000 minutes. Note that the aver-
age time in system over the 30 replications was 4.55 minutes.

These same results are shown in Figure 3.22 in the form of a SMORE plot. This
plot shows a point estimate (“dot”) and a 95 percent confidence interval (“small”
shaded rectangle over the dot) for the expected average time in system. Super-
imposed over this is a box plot showing the minimum, 25th percentile, median, 75th
percentile, and maximum of the 30 observed values of average time in system.
Finally, the two outer shaded rectangles are 95 percent confidence intervals for the
25th and 75th percentiles.

A standard report that is automatically produced by a simulation model can
potentially contain a large amount of output statistics, which can make it difficult to
find the information that is really of interest. To help alleviate this problem, Simio
presents the simulation results in the form of a “Pivot Grid” (similar to a pivot table
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FIGURE 3.22
SMORE plot for average time in system.

in Excel), which can easily be customized to display the statistics of interest in an
appropriate format. A Pivot Grid for the simulation results produced by the 30 rep-
lications is shown in Figure 3.23. Note that the machine and inspector had a utiliza-
tion of 0.75 and 0.86, respectfully.

| Average L‘ Minimum ” Maximum M Half width ‘ ‘ Scenarlo ~
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| Object Type ~ || Object Hame - || Data Source ~ || Category ~ 7|[pata mem - 7| statistic - 7| average [mmmum [ maxmum | ralf widh |
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Maximum 33.5000 27.0000 43.0000 1.6370
FlowTime TimeInSystem Average (Minutes) 1.5197 1.3938 41.7710 0.0393
Maximum (Minutes) 60.2576 45.7114 90.1023 3.5776
Minimum (Minutes) 1.4005 14001 14012 0.0001
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Obsarvations 100,102 6333 00,482 0000 100,878.0000 1181014

FIGURE 3.23
Simulation results displayed in a Pivot Grid.
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3.5.4 Other General-Purpose Simulation Packages

There are several other well-known, general-purpose simulation packages, including
AnyLogic [AnyLogic (2013)], SIMULS8 [SIMULS (2013)], and SLX [Wolverine
(2013)].

3.6
OBJECT-ORIENTED SIMULATION

In the last 20 years there has been a lot of interest in object-oriented simulation
[see, e.g., Joines and Roberts (1998) and Levasseur (1996)]. This is probably an
outgrowth of the strong interest in object-oriented programming in general.
Actually, both object-oriented simulation and programming originated from
the object-oriented simulation language SIMULA, which was introduced in
the 1960s.

In object-oriented simulation a simulated system is considered to consist of
objects (e.g., an entity or a server) that interact with each other as the simulation
evolves through time. There may be several instances of certain object types (e.g.,
entities) present concurrently during the execution of a simulation. Objects contain
data and have methods (see Example 3.1). Data describe the state of an object at a
particular point in time, while methods describe the actions that the object is capa-
ble of performing. The data for a particular object instance can only be changed by
its own methods. Other object instances (of the same or of different types) can only
view its data. This is called encapsulation.

Examples of true object-oriented simulation packages are AnyLogic, FlexSim,
and Simio. Three major features of such a simulation package are inheritance,
polymorphism, and encapsulation (defined above). Inheritance means that if one
defines a new object type (sometimes called a child) in terms of an existing object
type (the parent), then the child type “inherits” all the characteristics of the parent
type. Optionally, certain characteristics of the child can be changed or new ones
added. Polymorphism is when different object types with the same ancestry can
have methods with the same name, but when invoked may cause different behavior
in the various objects. [See Levasseur (1996) for examples of inheritance and
polymorphism.]

EXAMPLE 3.1. In a manufacturing system, the fabrication area and the assembly
area might be considered as objects (first level of hierarchy). In turn, the fabrication
area might consist of machine, worker, and forklift-truck objects (second level of
hierarchy). Data for a forklift might include its speed and the maximum weight that
it can lift. A method for a forklift might be the dispatching rule that it uses to choose
the next job.

Some vendors claim that their simulation software is object-oriented, but in
some cases the software may not include inheritance, polymorphism, or encapsul-
ation. Furthermore, certain of the above three features are sometimes assigned
different meanings.
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The following are possible advantages of object-oriented simulation:

» It promotes code reusability because existing objects can be reused or easily
modified.

* It helps manage complexity by breaking the system into different objects.

* It makes model changes easier when a parent object can be modified and its chil-
dren objects realize the modifications.

* It facilitates large projects with several programmers.

Possible disadvantages of the object-oriented approach are:

* Some object-oriented simulation packages may have a steep learning curve.
* One must do many projects and reuse objects to achieve its full benefits.

3.7
EXAMPLES OF APPLICATION-ORIENTED
SIMULATION PACKAGES

In this section we list some of the application-oriented simulation packages that are
currently available.

Manufacturing. AutoMod [Applied Materials (2013)], Enterprise Dynamics
[INCONTROL (2013)], FlexSim [FlexSim (2013)], Plant Simulation [Siemens
(2013)], ProModel [ProModel (2013)], and WITNESS [Lanner (2013)] (see
Sec. 14.3 for further discussion).

Communications networks. OPNET Modeler [Riverbed (2013)] and QualNet
[SCALABLE (2013)].

Health care. FlexSim Healthcare [FlexSim (2013)] and MedModel [ProModel
(2013)].

Process reengineering and services. Process Simulator [ProModel (2013)],
ProcessModel [ProcessModel (2013)], and ServiceModel [ProModel (2013)].

Animation (stand-alone). Proof Animation [Wolverine (2013)].
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Review of
Basic Probability and Statistics

Recommended sections for a first reading: 4.1 through 4.7

4.1
INTRODUCTION

The completion of a successful simulation study involves much more than con-
structing a flowchart of the system under study, translating the flowchart into a com-
puter “program,’ and then making one or a few replications of each proposed
system configuration. The use of probability and statistics is such an integral part of
a simulation study that every simulation modeling team should include at least one
person who is thoroughly trained in such techniques. In particular, probability and
statistics are needed to understand how to model a probabilistic system (see
Sec. 4.7), validate the simulation model (Chap. 5), choose the input probability dis-
tributions (Chap. 6), generate random samples from these distributions (Chaps. 7
and 8), perform statistical analyses of the simulation output data (Chaps. 9 and 10),
and design the simulation experiments (Chaps. 11 and 12).

In this chapter we establish statistical notation used throughout the book and
review some basic probability and statistics particularly relevant to simulation. We
also point out the potential dangers of applying classical statistical techniques based
on independent observations to simulation output data, which are rarely, if ever,
independent.

4.2
RANDOM VARIABLES AND THEIR PROPERTIES

An experiment is a process whose outcome is not known with certainty. The set of

all possible outcomes of an experiment is called the sample space and is denoted by
S. The outcomes themselves are called the sample points in the sample space.
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EXAMPLE 4.1. If the experiment consists of flipping a coin, then
S ={H,T}

where the symbol { } means the “set consisting of,” and “H” and “T” mean that the out-
come is a head and a tail, respectively.

EXAMPLE 4.2. If the experiment consists of tossing a die, then
S={1,2,...,6}
where the outcome i means that i appeared on the die, i = 1,2, ..., 6.

A random variable is a function (or rule) that assigns a real number (any num-
ber greater than —2 and less than %) to each point in the sample space S.

EXAMPLE 4.3. Consider the experiment of rolling a pair of dice. Then
S={1,1,01,2),...,(6,6)}

where (i, j) means that i and j appeared on the first and second die, respectively. If X is
the random variable corresponding to the sum of the two dice, then X assigns the value
7 to the outcome (4, 3).

EXAMPLE 4.4. Consider the experiment of flipping two coins. If X is the random
variable corresponding to the number of heads that occur, then X assigns the value 1 to
either the outcome (H, T) or the outcome (T, H).

In general, we denote random variables by capital letters such as X, Y, Z and the
values that random variables take on by lowercase letters such as x, y, z.

The distribution function (sometimes called the cumulative distribution function)
F(x) of the random variable X is defined for each real number x as follows:

Fx) =PX=x) for —oo < x <

where P(X = x) means the probability associated with the event {X = x}. [See Ross
(2003, chap. 1) for a discussion of events and probabilities.] Thus, F(x) is the prob-
ability that, when the experiment is done, the random variable X will have taken on
a value no larger than the number x.

A distribution function F(x) has the following properties:

1. 0 = F(x) = 1 for all x.
2. F(x)is nondecreasing [i.e., if x; < x,, then F(x,) = F(x,)].
3. lim F(x) = 1and lim F(x) = 0 (since X takes on only finite values).
X—>00 X— — 00

A random variable X is said to be discrete if it can take on at most a countable
number of values, say, x,, x,, . . . . (“Countable” means that the set of possible
values can be put in a one-to-one correspondence with the set of positive integers.
An example of an uncountable set is all real numbers between 0 and 1.) Thus, a
random variable that takes on only a finite number of values x,, x,, . . . , x, is dis-
crete. The probability that the discrete random variable X takes on the value x; is
given by

p(x) = P(X = x)) fori=1,2,...
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and we must have

2. p() =1

i=1
where the summation means add together p(x,), p(x,), . . . . All probability state-
ments about X can be computed (at least in principle) from p(x), which is called the
probability mass function for the discrete random variable X. If I = [a, b], where a
and b are real numbers such that a =< b, then

PXED = > px)

a=x;=b

where the symbol € means “contained in” and the summation means add together
p(x,) for all x; such that a = x; = b. The distribution function F(x) for the discrete
random variable X is given by

F(x) = > p(x) forall —oo < x < ©

X=X

EXAMPLE 4.5. For the inventory example of Sec. 1.5, the size of the demand for the
product is a discrete random variable X that takes on the values 1, 2, 3, 4 with respective
probabilities £, 1, , £. The probability mass function and the distribution function for X
are given in Figs. 4.1 and 4.2. Furthermore,

PQ=X=3)=p2) +pB3) =i+i=}

EXAMPLE 4.6. A manufacturing system produces parts that then must be inspected
for quality. Suppose that 90 percent of the inspected parts are good (denoted by 1) and
10 percent are bad and must be scrapped (denoted by 0). If X denotes the outcome of
inspecting a part, then X is a discrete random variable with p(0) = 0.1 and p(1) = 0.9.
(See the discussion of the Bernoulli random variable in Sec. 6.2.3.)

We now consider random variables that can take on an uncountably infinite
number of different values (e.g., all nonnegative real numbers). A random variable
X is said to be continuous if there exists a nonnegative function f(x) such that for

px)
1 -
5L
6
2L
3
1
2
1
it
1
6| FIGURE 4.1
0 p(x) for the demand-size ran-

0 1 2 3 4 X dom variable X.
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FIGURE 4.2
F(x) for the demand-size random variable X.

any set of real numbers B (e.g., B could be all real numbers between 1 and 2),
P(X € B) = f fx)de  and j fode=1
‘B —o0

[Thus, the total area under f(x) is 1. Also, if X is a nonnegative random variable,
as is often the case in simulation applications, the second range of integration is
from O to %.] All probability statements about X can (in principle) be computed
from f(x), which is called the probability density function for the continuous random
variable X.

For a discrete random variable X, p(x) is the actual probability associated with
the value x. However, f(x) is not the probability that a continuous random variable
X equals x. For any real number x,

PX=x) = PXE [xa]) = [ fy)dy =0
Since the probability associated with each value x is zero, we now give an interpre-
tation to f(x). If x is any number and Ax > 0, then

X+ Ax
PXE vx+Ax) = [ f)dy
which is the area under f(x) between x and x + Ax, as shown in Fig. 4.3. It follows
that a continuous random variable X is more likely to fall in an interval above which
Jf(x) is “large” than in an interval of the same width above which f(x) is “small.”
The distribution function F(x) for a continuous random variable X is given by

F(x) = P(X € (—%,x]) = r f(y) dy forall —o0 < x < o

Thus (under some mild technical assumptions), flx) = F'(x) [the derivative
of F(x)]. Furthermore, if I = [a, b] for any real numbers a and b such that a < b,
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S
P(X € [x,x + Ax])

P(X € [x',x" + Ax])

“ Fe—_

|
|
|
"X+ Ax x

FIGURE 4.3
Interpretation of the probability density function f(x).

then
b
PXED = [ fiy)dy = F(b) = Fla

where the last equality is an application of the fundamental theorem of calculus,
since F'(x) = f(x).

EXAMPLE 4.7. A uniform random variable on the interval [0, 1] has the following
probability density function:

1 fo=x=1
fx) = {0 otherwise

Furthermore, if 0 = x = 1, then
Fo = | fody= [ 1dy=x

[What is F(x) if x < 0 or if x > 17?] Plots of f(x) and F(x) are given in Figs. 4.4 and 4.5,
respectively.

Sx)
1

FIGURE 4.4
f(x) for a uniform random variable on [0, 1].
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F(x)

FIGURE 4.5
! F(x) for a uniform random
0 1 X variable on [0, 1].

Finally, if 0 = x < x + Ax = 1, then

x+ Ax
P(X € [x.x + Ax]) = j f(y) dy

= F(x + Ax) — F(x)
= (x+ Ax) — x
= Ax

It follows that a uniform random variable on [0, 1] is equally likely to fall in any
interval of length Ax between 0 and 1, which justifies the name “uniform.” The uniform
random variable on [0, 1] is fundamental to simulation, since it is the basis for generat-
ing any random quantity on a computer (see Chaps. 7 and 8).

EXAMPLE 4.8. In Chap. 1 the exponential random variable was used for interarrival
and service times in the queueing example and for interdemand times in the inventory
example. The probability density function and distribution function for an exponential
random variable with mean 3 are given in Figs. 4.6 and 4.7.

So far in this chapter we have considered only one random variable at a time,
but in a simulation one must usually deal with n (a positive integer) random variables
X, X,, . . ., X, simultaneously. For example, in the queueing model of Sec. 1.4,
we were interested in the (input) service-time random variables S|, S,, . . ., S, and
the (output) delay random variables D, D,, . . ., D,. In the discussion that follows,

)

1

B

FIGURE 4.6
Jf(x) for an exponential ran-
0 X  dom variable with mean S3.
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F(x)
1 __________________

FIGURE 4.7
F(x) for an exponential ran-
0 A dom variable with mean f3.

we assume for expository convenience that n = 2 and that the two random vari-
ables in question are X and Y.
If X and Y are discrete random variables, then let

plx,y) =PX=xY=y) for all x, y

where p(x, y) is called the joint probability mass function of X and Y. In this case, X
and Y are independent if

p(x,y) = px(xX)py(y) for all x, y
where

px(x) = D p(x,y)

ally

Py = > p(x,y)

all x

are the (marginal) probability mass functions of X and Y.

EXAMPLE 4.9. Suppose that X and Y are jointly discrete random variables with

Xy
o forx =1,2andy = 2,3,4
plx,y) =427 Y
0 otherwise
Then

w=S XX o1
PAO= 29773 T 0

Sxy Yy

= = fory=223,4
Py(y) 23779 ory

Since p(x, y) = xy/27 = py(x)py(y) for all x, y, the random variables X and Y are
independent.

EXAMPLE 4.10. Suppose that 2 cards are dealt from a deck of 52 without replace-
ment. Let the random variables X and Y be the number of aces and kings that occur, both
of which have possible values of 0, 1, 2. It can be shown that

4 48
px(1) = py(1) = 2<§)<§)
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and

it follows that X and Y are not independent (see Prob. 4.5).

Since

The random variables X and Y are jointly continuous if there exists a nonnega-
tive function f(x, y), called the joint probability density function of X and Y, such
that for all sets of real numbers A and B,

P(XEA YEB) = J Jf(x,y)dxdy
B ‘A

In this case, X and Y are independent if

fxy) = fx(0fy(y)  forallx,y

where
Ko = | sy ay

Ko = | Sy de

are the (marginal) probability density functions of X and Y, respectively.
EXAMPLE 4.11. Suppose that X and Y are jointly continuous random variables with

_ J24xy forx=0,y=0,andx + y =1
f69) {O otherwise

Then

I—x

I—x
Ji(x) = L 24xy dy = 12xy* 12x(1 — x)? forO=x=1
0
1-y

=12y(1 —y)> for0=y=1

£, = L " dxy dx = 124

0

5o~ -4(e()

X and Y are not independent.

Since

Intuitively, the random variables X and Y (whether discrete or continuous) are
independent if knowing the value that one random variable takes on tells us nothing
about the distribution of the other. Also, if X and Y are not independent, we say that
they are dependent.
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We now consider once again the case of n random variables X,, X,, ..., X,, and
we discuss some characteristics of the single random variable X; and some measures
of the dependence that may exist between two random variables X; and X,

The mean or expected value of the random variable X, (wherei = 1,2, ..., n)
will be denoted by u, or E(X,) and is defined by

©

> X px(x) if X, is discrete
=

=9,
J Xfy (x) dx if X, is continuous

The mean is one measure of central tendency in the sense that it is the center of
gravity [see, for example, Billingsley et al. (1986, pp. 42-43)].

EXAMPLE 4.12. For the demand-size random variable in Example 4.5, the mean is

given by
8o+
= \e 3 3 6) 2

EXAMPLE 4.13. For the uniform random variable in Example 4.7, the mean is given
by

n= J:xf(x)dx= ledx=%

Let ¢ or ¢; denote a constant (real number). Then the following are important
properties of means:

1. E(cX) = cE(X).
2. ECS/_, ¢;X)) = 2/_, ¢;E(X;) even if the X, s are dependent.

The median x, ; of the random variable X,, which is an alternative measure of
central tendency, is defined to be the smallest value of x such that F', (x) = 0.5. If X,
is a continuous random variable, then Fy(x,5) = 0.5, as shown in Fig. 4.8. The
median may be a better measure of central tendency than the mean when X, can take
on very large or very small values, since extreme values can greatly affect the mean
even if they are very unlikely to occur; such is not the case with the median.

EXAMPLE 4.14. Consider a discrete random variable X that takes on each of the val-
ues, 1, 2, 3, 4, and 5 with probability 0.2. Clearly, the mean and median of X are 3. Con-
sider now a random variable Y that takes on each of the values 1, 2, 3, 4, and 100 with
probability 0.2. The mean and median of Y are 22 and 3, respectively. Note that the
median is insensitive to this change in the distribution.

The mode m of a continuous (discrete) random variable X;, which is another
alternative measure of central tendency, is defined to be that value of x that maxi-
mizes fy(x)[ py(x)] (see Fig. 4.8). Note that the mode may not be unique for some
distributions.

The variance of the random variable X, will be denoted by o7 or Var(X,) and is
defined by

o? = E[(X; — m)*] = EQX?) —
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FIGURE 4.8
The median x, ; and mode m for a continuous random variable.

The variance is a measure of the dispersion of a random variable about its mean, as
seen in Fig. 4.9. The larger the variance, the more likely the random variable is to
take on values far from its mean.

EXAMPLE 4.15. For the demand-size random variable in Example 4.5, the variance
is computed as follows:

i) 20) () (Y -2
E(X7) 1<6 +23+33+46 .
_B

v 2)222
Var(X) = EQC) = p? = - (2 B

a? a?
large small
I I
n w

FIGURE 4.9
Density functions for continuous random variables with large and small
variances.
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EXAMPLE 4.16. For the uniform random variable on [0, 1] in Example 4.7, the vari-
ance is computed as follows:
! 1

) = [ 2 de = | fa=t
0 0

o — 2:1_<l>2:L
Var(X) = EX%) = p = 2 = |5

The variance has the following properties:

1. Var(X) = 0.

2. Var(cX) = ¢* Var(X).

3. Var(Z;_, X,) = 3/, Var(X)) if the X.’s are independent (or uncorrelated, as dis-
cussed below).

The standard deviation of the random variable X; is defined to be o; = \/072.
The standard deviation can be given the most definitive interpretation when X, has a
normal distribution (see Sec. 6.2.2). In particular, suppose that X, has a normal dis-
tribution with mean w, and standard deviation o,. In this case, for example, the prob-
ability that X; is between w; — 1.960; and u; + 1.960; is 0.95.

We now consider measures of dependence between two random variables. The

covariance between the random variables X; and X; (wherei=1,2,...,nj =
1,2,...,n), which is a measure of their (linear) dependence, will be denoted by Cl-j
or Cov(X;, X)) and is defined by

C; = EIX, — p)(X; — )] = E(X.X) — pp, @1

Note that covariances are symmetric, that is, Ci, = Cﬁ, and that if i = j, then C,.j =
C, - U% . : .

EXAMPLE 4.17. For the jointly continuous random variables X and Y in Exam-
ple 4.11, the covariance is computed as

1 fl—x
E(XY) = Jo L xy f(x,y) dy dx

= Ll x2<£124y2dy)dx
- Ll 82(1 — x) dx

_2
5

EX) = | xfe(x) dx = L' 122(1 — )% dx =

1
L 1
|

LY

1
EY) = | yf(y) dy = L 12%(1 — y)2dy =


masud
Highlight

masud
Highlight

masud
Highlight

masud
Highlight

masud
Highlight


CHAPTER FOUR 225

Therefore,

Cov(X,Y)

E(XY) — E(X)E(Y)

Il
S
|
7N
| N
~
7N
| N
S~

If C; = 0, the random variables X; and X; are said to be uncorrelated. It is easy to
show that if X; and X] are independent random variables, then Cl-j = 0 (see
Prob. 4.8). In general, though, the converse is not true (see Prob. 4.9). However, if
X; and X; are jointly normally distributed random variables with C;; = 0, then they
are also independent (see Prob. 4.10).

We now give two definitions that will shed some light on the significance of
the covariance C. If C;; > 0, then X; and X; are said to be positively correlated. In
this case, X; > p,; and X; > p; tend to occur together, and X; < p; and X; < p;
also tend to occur together [see Eq. (4.1)]. Thus, for positively correlated random
variables, if one is large, the other is likely to be large also. If Cij < 0, then X; and
X are said to be negatively correlated. In this case, X; > w,; and X; < p; tend to
occur together, and X; < u; and X; > u,; also tend to occur together. Thus, for neg-
atively correlated random variables, if one is large, the other is likely to be small.
We give examples of positively and negatively correlated random variables in the
next section.

If X,, X,, . .., X, are simulation output data (for example, X; might be the
delay D, for the queueing example of Sec. 1.4), we shall often need to know not
only the mean u,; and variance af fori =1, 2,...,n,butalso a measure of the
dependence between X; and X; for i # j. However, the difficulty with using C; as
a measure of dependence between X; and X; is that it is not dimensionless, which
makes its interpretation troublesome. (If X; and X; are in units of minutes, say,
then Cij is in units of minutes squared.) As a result, we use the correlation Pip
defined by

C.

_ ij i=1,2,...,n
pif—\/o.;az j=12....n 42)

l

as our primary measure of the (linear) dependence (see Prob. 4.11) between X, and
X;. [We shall also denote the correlation between X; and X; by Cor(X;, X)).] Since the
denominator in Eq. (4.2) is positive, it is clear that p;; has the same sign as C;;. Fur-
thermore, it can be shown that —1 = p,; = 1 for all i and j (see Prob. 4.12). If p; is
close to +1, then X; and X; are highly positively correlated. On the other hand, if p;;
is close to — 1, then X; and X; are highly negatively correlated.

EXAMPLE 4.18. For the random variables in Example 4.11, it can be shown that
Var(X) = Var(Y) = % Therefore,

Cor(X. Y) = Cov(X, Y) _E__E
- V Var(X) Var(Y) B 2% 3
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4.3
SIMULATION OUTPUT DATA
AND STOCHASTIC PROCESSES

Since most simulation models use random variables as input, the simulation output
data are themselves random, and care must be taken in drawing conclusions about
the model’s true characteristics, e.g., the (expected) average delay in the queueing
example of Sec. 1.4. In this and the next three sections we lay the groundwork for a
careful treatment of output data analysis in Chaps. 9 and 10.

A stochastic process is a collection of “similar” random variables ordered over
time, which are all defined on a common sample space. The set of all possible val-
ues that these random variables can take on is called the state space. If the collec-
tionis X, X,, . . ., then we have a discrete-time stochastic process. If the collection
is {X(7), t = 0}, then we have a continuous-time stochastic process.

EXAMPLE 4.19. Consider a single-server queueing system, e.g., the M/M/1 queue,

with IID interarrival times A, A,, . .., IID service times S, S,, . . ., and customers served
in a FIFO manner. Relative to the experiment of generating the random variates A,
A, ...and S, S,, . .., one can define the discrete-time stochastic process of delays in
queue D, D,, . . . as follows (see Prob. 4.14):
D =0
D, =max{D; + S, — A,,,,0} fori =1,2,...

Thus, the simulation maps the input random variables (i.e., the A,’s and the S;’s) into the
output stochastic process D,, D,, . . . of interest. Here, the state space is the set of non-
negative real numbers. Note that D; and D,, , are positively correlated. (Why?)

EXAMPLE 4.20. For the queueing system of Example 4.19, let O(¢) be the number of
customers in the queue at time ¢. Then {Q(?), t = 0} is a continuous-time stochastic
process with state space {0, 1,2, ...}.

EXAMPLE 4.21. For the inventory system of Sec. 1.5, let C; be the total cost (i.e., the
sum of the ordering, holding, and shortage costs) in month i. Then C;, C,, . . . is a
discrete-time stochastic process with state space the nonnegative real numbers.

To draw inferences about an underlying stochastic process from a set of simula-
tion output data, one must sometimes make assumptions about the stochastic
process that may not be strictly true in practice. (Without such assumptions, how-
ever, statistical analysis of the output data may not be possible.) An example of this
is to assume that a stochastic process is covariance-stationary, a property that we
now define. A discrete-time stochastic process X;, X,, . . . is said to be covariance-
stationary if

M = W fori =1,2,...and —o < pu < ®©

o’ = o? fori=1,2,...and 0> <

1

and C,

i,i+j

= Cov(X,, XH]-) is independent of i forj = 1,2, .. ..
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Thus, for a covariance-stationary process, the mean and variance are stationary
over time (the common mean and variance are denoted by u and o, respectively),
and the covariance between two observations X; and X, ; depends only on the sepa-
ration j (sometimes called the /ag) and not on the actual time values i and i + j. (It
is also possible to define a covariance-stationary continuous-time stochastic process
{X(?), t = 0} in an analogous way.)

For a covariance-stationary process, we denote the covariance and correlation
between X; and X, ; by C; and p;, respectively, where

C C C

iit] J J .
== "5= forj =0,1,2,...
' Volo?, i 7 G
EXAMPLE 4.22. Consider the output process D,, D,, . . . for a covariance-stationary

(see App. 4A for a discussion of this technical detail) M/M/1 queue with p = A/w < 1
(recall that A is the arrival rate and w is the service rate). From results in Daley (1968),
one can compute p;, which we plot in Fig. 4.10 for p = 0.5 and 0.9. (Do not confuse p;
and p.) Note that the correlations p; are positive and monotonically decrease to zero as
Jj increases. In particular, p, = 0.99 for p = 0.9 and p, = 0.78 for p = 0.5. Furthermore,
the convergence of p; to zero is considerably slower for p = 0.9; in fact, ps, is (amaz-
ingly) 0.69. (In general, our experience indicates that output processes for queueing
systems are positively correlated.)

EXAMPLE 4.23. Consider an (s, S) inventory system with zero delivery lag and
backlogging. (For this inventory system, which is a simpler version of the one consid-
ered in Sec. 1.5, it is possible to compute the desired correlations analytically.) Let
I, J,, and Q, denote, respectively, the amount of inventory on hand before ordering, the

Pj
1.0

0.9 R
0.8
0.7
0.6
0.5
04
0.3
0.2
0.1

0 1 1 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 j

FIGURE 4.10
Correlation function p; of the process D,, D,, . . . for the M/M/1 queue.

{
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amount of inventory on hand after ordering, and the demand, each in month i. Assume
that Q, has a Poisson distribution (see Sec. 6.2.3 for further discussion) with mean 25;
that is,

6*25(25))(
px) =PQ;=x) = ——— forx=0,1,2,...
X

If I; < s, we order § — I, items (J; = §) and incur a cost K + i(S — I,), where K = 32 and
i =3.1If I, = 5, no order is placed (J; = I) and no ordering cost is incurred. After J; has
been determined, the demand Q, occurs. If J;, — Q; = 0, a holding cost h(J; — Q,) is
incurred, where h = 1. If J; — Q, < 0, a shortage cost w(Q; — J,) is incurred, where
o = 5. Ineither case, I, , = J; — Q,. Let C; be the total cost in month i, and assume that
s = 17,8 = 57,and I, = S. From results in Wagner (1969, p. A19), one can compute p,
for the output process C,, C,, . . ., which we plot in Fig. 4.11. (See App. 4A for discus-
sion of a technical detail.) Note that p, is positive, since for this particular system one
tends to order every other month, incurring a large cost each time. On the other hand, p,
is negative, because if one orders in a particular month (large cost), then it is likely that
no order will be placed the next month (small cost).

If X,, X,, . . . is a stochastic process beginning at time 0 in a simulation, then it
is quite likely not to be covariance-stationary (see App. 4A). However, for some
simulations X, ,, X, ,,, . . . will be approximately covariance-stationary if & is large
enough, where k is the length of the warmup period (see Sec. 9.5.1).

1.0
0.9
0.8
0.7
0.6

0.5+
04 |
03
02|
0.1+
0 T T A S e e e e I e
—oqk 1213 ]4l\5[6\7[/ 8 \9f10/
—02
—03
—04 +

—-05F

—0.6 -

—-0.7 -

—0.8 FIGURE 4.11

—09 L Correlation function p; of the
10+ process C,, C,, . . . for an (s, S)

inventory system.
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4.4
ESTIMATION OF MEANS,
VARIANCES, AND CORRELATIONS

Suppose that X, X,, . . ., X, are IID random variables (observations) with finite
population mean w and finite population variance o and that our primary objec-
tive is to estimate w; the estimation of o is of secondary interest. Then the sample
mean

n

2. X
i=1

X(n) =

4.3)

is an unbiased (point) estimator of w; that is, E[X(n)] = u (see Prob. 4.16). [Intui-
tively, X(n) being an unbiased estimator of u means that if we perform a very large
number of independent experiments, each resulting in an X(n), the average of the
X(n)’s will be w.] Similarly, the sample variance

O 1X, — X(m)]?

2(n) = = (4.4)
n—1

is an unbiased estimator of ¢, since E[S*(n)] = o (see Prob. 4.16). Note that the
estimators X(n) and S*(n) are sometimes denoted by i and 6, respectively.

The difficulty with using X(n) as an estimator of u without any additional in-
formation is that we have no way of assessing how close X(n) is to u. Because X(n)
is a random variable with variance Var[X(n)], on one experiment X(n) may be close
to w while on another X(n) may differ from u by a large amount. (See Fig. 4.12,
where the X;’s are assumed to be continuous random variables.) The usual way to
assess the precision of X(n) as an estimator of w is to construct a confidence interval

Density function for X(n)

1
First observation S N Second observation
of X(n) of X(n)

FIGURE 4.12
Two observations of the random variable X(n).
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for w, which we discuss in the next section. However, the first step in constructing a
confidence interval is to estimate Var[X(n)]. Since

Var[X(n)] = Var(%i Xl.>

i=1

()

i=1

1 n
= —ZZ Var(X;) (because the X;’s are independent)
ni=1

= —no’ = — 4.5)

it is clear that, in general, the bigger the sample size n, the closer X(n) should be to
M (see Fig. 4.13). Furthermore, an unbiased estimator of Var[X(n)] is obtained by
replacing o in Eq. (4.5) by S*(n), resulting in

n

74 2
o S Zl [X;, — X(n)]
Var[X(n)] = =

nn — 1)

Observe that the expression for @[X(n)] has both an n and an n — 1 in the de-
nominator when it is rewritten in terms of the X;’s and X(n).

Finally, note that if the X,’s are independent, they are uncorrelated, and thus
pj=0forj= 1,2,...,n— 1.

It has been our experience that simulation output data are almost always cor-
related. Thus, the above discussion about IID observations is not directly applicable
to analyzing simulation output data. To understand the dangers of treating simula-
tion output data as if they were independent, we shall use the covariance-stationary
model discussed in the last section. In particular, assume that the random variables

Density function Density function
for X(n) for X(n)

n small n large

| |
o o

FIGURE 4.13
Distributions of X(n) for small and large .
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X,, X,, ..., X, are from a covariance-stationary stochastic process. Then it is still
true that the sample mean X(n) is an unbiased estimator of u; however, the sample
variance S2(n) is no longer an unbiased estimator of o>. In fact, it can be shown [see
Anderson (1994, p. 448)] that

n—1
> (1= j/mp;
2 - 2 j=1
E[S“m)] =0°|1 - 2—— (4.6)
n—1
Thus, if p; > 0 (positive correlation), as is very often the case in practice, § 2(n) will
have a negative bias: E[S?(n)] < o>. This is important because several simulation-
software products use S*(n) to estimate the variance of a set of simulation output
data, which can lead to serious errors in analysis.

Let us now consider the problem of estimating the variance of the sample mean
Var[X(n)] (which will be used to construct a confidence interval for w in the next
section) when X, X,, . . ., X, are from a covariance-stationary process. It can be
shown (see Prob. 4.17) that

n—1

{1 +2> (1 —j/np,

j=1

Var[X(n)] = o? 4.7)

n
Thus, if one estimates Var[X(n)] from S*(n)/n (the correct expression in the IID
case), which has often been done historically, there are two sources of error: the bias
in $%(n) as an estimator of o* and the negligence of the correlation terms in Eq. (4.7).
As a matter of fact, if we combine Eq. (4.6) and Eq. (4.7), we get

E[Sz(n)} _ [n/a(n)] — 1
n—1

. Var[X(n)] (4.8)

where a(n) denotes the quantity in square brackets in Eq. (4.7). If p; > 0, then
a(n) > 1 and E[S*(n)/n] < Var[X(n)].

EXAMPLE 4.24. Suppose that we have the data D,, D,, . . ., D,, from the process of
delays D,, D,, . . . for a covariance-stationary M/M/1 queue with p = 0.9. Then, substi-
tuting the true correlations p; (wherej = 1,2,...,9)into Egs. (4.6) and (4.8), we get

E[S*(10)] = 0.03280°

S2(10)

0 } = 0.0034 Var[D(10)]

and E [
where

10 10
> D, > [D; — D(10)1?

":1‘0 . and  S%(10) = =

o* = Var(D)), D(10) = 5

Thus, on average S*(10)/10 is a gross underestimate of Var[D(10)], and we are likely
to be overly optimistic about the closeness of D(10) to u = E(D)).
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Sometimes one is interested in estimating the p;’s (or C;’s) from the data
Xy, Xy, . .., X,. {For example, estimates of the p;’s might be substituted into
Eq. (4.7) to obtain a better estimate of Var[X(n)]; see Sec. 9.5.3 for an application. }
If this is the case, p; (forj=1,2,...,n — 1) can be estimated as follows:

n—j - -
& Zl [X; — X()[X,,; — X(n)]
A j A i=

= , C = - 4.9
pj Sz(n) i n— ] ( )

(Other estimators of p; are also used. For example, one could replace the n — j
in the denominator of C; by n.) The difficulty with the estimator p; (or any other
estimator of p)) is that it is biased, it has a large variance unless 7 is very large, and
it is correlated with other correlation estimators, that is, Cov(f)j, p,) # 0. {In par-
ticular, p,_, will be a poor estimator of p, _, since it is based on the single product
[X, — X(m][X, — X(n)].} Thus, in general, “good” estimates of the p;’s will be
difficult to obtain unless 7 is very large and j is small relative to n.

EXAMPLE 4.25. Suppose we have the data D, D,, . . ., D,,, from the process consid-
ered in Example 4.24. In Fig. 4.14 we plot p; [as computed from Eq. (4.9)] and p; for
j=1,2,...,10. Note the poor quality of the correlation estimates.

Note that correlation estimates will not necessarily be zero when the X,’s are
independent, since the estimator p; is a random variable.

‘We have seen that simulation output data are correlated, and thus formulas from
classical statistics based on IID observations cannot be used directly for estimating
variances. However, we shall see in Chap. 9 that it is often possible to group simulation
output data into new “observations” to which the formulas based on IID observations
can be applied. Thus, the formulas in this and the next two sections based on IID
observations are indirectly applicable to analyzing simulation output data.

1.0 e

0.9 - ?
0.8

0.7
0.6
0.5
0.4
0.3 O
0.2
0.1

0 | | | | | | | | | |

0 1 2 3 4 5 6 7 8 9 10 Jj

FIGURE 4.14
p; and f)j of the process D,, D,, . . . for the M/M/1 queue with p = 0.9.
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4.5
CONFIDENCE INTERVALS AND HYPOTHESIS
TESTS FOR THE MEAN

Let X,, X,, . . ., X, be IID random variables with finite mean u and finite variance
o’ (Also assume that o > 0, so that the X;’s are not degenerate random variables.)
In this section we discuss how to construct a confidence interval for w and also the
complementary problem of testing the hypothesis that u = .

We begin with a statement of the most important result in probability theory, the

classical central limit theorem. Let Z, be the random variable [X(n) — u]/V a?/n,
and let F,(z) be the distribution function of Z, for a sample size of n; that is, F,(z) =
P(Z, = 7). [Note that u and o /n are the mean and variance of X(n), respectively.]
Then the central limit theorem is as follows [see Chung (1974, p. 169) for a proof].

THEOREM 4.1. F (z) > ®(z) as n — %, where ®(z), the distribution function of a
normal random variable with i = 0 and o> = 1 (henceforth called a standard normal
random variable; see Sec. 6.2.2), is given by

d(z) = % Le‘yz/z dy for —o0 < z <
The theorem says, in effect, that if n is “sufficiently large,” the random variable Z,
will be approximately distributed as a standard normal random variable, regardless
of the underlying distribution of the X,’s. It can also be shown for large n that the
sample mean X(n) is approximately distributed as a normal random variable with
mean w and variance o*/n.

The difficulty with using the above results in practice is that the variance o is
generally unknown. However, since the sample variance S*(n) converges to o as n
gets large, it can be shown that Theorem 4.1 remains true if we replace o by S(n)
in the expression for Z . With this change the theorem says that if n is sufficiently
large, the random variable t, = [X(n) — u]/V S*(n)/n is approximately distributed
as a standard normal random variable. It follows for large n that

o, X —p
Z—apn = \/m =23—an

P{X(n) T g\ SHS X(n) + 2 —a)2

1 (4.10)

where the symbol =~ means “approximately equal” and z,_,/, (for 0 < a < 1)is
the upper 1 — «/2 critical point for a standard normal random variable (see
Fig. 4.15 and the last line of Table T.1 of the Appendix at the back of the book).
Therefore, if n is sufficiently large, an approximate 100(1 — «) percent confidence
interval for w is given by

§%(n)

X(n) % 2,_yp e (4.11)
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fx)

Shaded area = 1 — «

—Zl-a/2 0 21-a/2 X

FIGURE 4.15
Density function for the standard normal distribution.

For a given set of data X, X,, . . . , X,, the lower confidence-interval endpoint
I(n,a) = X(n) — z,_, P \/S?(n)/n and the upper confidence-interval endpoint
u(n,a) = X(n) + z,_, /2 \/S*(n) /n are just numbers (actually, specific realizations
of random variables) and the confidence interval [/(n, o), u(n, )] either contains u
or does not contain w. Thus, there is nothing probabilistic about the single confi-
dence interval [l(n, o), u(n, )] after the data have been obtained and the interval’s
endpoints have been given numerical values. The correct interpretation to give to
the confidence interval (4.11) is as follows [see (4.10)]: If one constructs a very
large number of independent 100(1 — «) percent confidence intervals, each based
on n observations, where # is sufficiently large, the proportion of these confidence
intervals that contain (cover) u should be 1 — a. We call this proportion the cover-
age for the confidence interval.

EXAMPLE 4.26. To further amplify the correct interpretation to be given to a con-
fidence interval, we generated 15 independent samples of size n = 10 from a normal
distribution with mean 5 and variance 1. For each data set we constructed a 90 per-
cent confidence interval for w, which we know has a true value of 5. In Fig. 4.16 we
plot the 15 confidence intervals vertically (the dot at the center of the confidence
interval is the sample mean), and we see that all intervals other than 7 and 13 cover
the mean value at height 5. In general, if we were to construct a very large number of
such 90 percent confidence intervals, we would find that 90 percent of them will, in
fact, contain (cover) .

The difficulty in using (4.11) to construct a confidence interval for w is in know-
ing what “n sufficiently large” means. It turns out that the more skewed (i.e., non-
symmetric) the underlying distribution of the X,’s, the larger the value of n needed
for the distribution of 7, to be closely approximated by ®(z). (See the discussion
later in this section.) If n is chosen too small, the actual coverage of a desired
100(1 — «) percent confidence interval will generally be less than 1 — «. This is
why the confidence interval given by (4.11) is stated to be only approximate.

In light of the above discussion, we now develop an alternative confidence-
interval expression. If the X,’s are normal random variables, the random variable

t, = [X(n) — u]/V S*(n)/nhas at distribution with n — 1 degrees of freedom (df)
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54+
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FIGURE 4.16

Confidence intervals each based on a sample of n = 10 observations from a normal

distribution with mean 5 and variance 1.

[see, for example, Hogg and Craig (1995, pp. 181-182)], and an exact (for any
n =2) 100(1 — «) percent confidence interval for u is given by

_ S%(n)

X(n) 21, 1 1_ap — (4.12)
where t,_, ,_,/, is the upper 1 — a/2 critical point for the # distribution with n — 1 df.
These critical points are given in Table T.1 of the Appendix at the back of the book.
Plots of the density functions for the ¢ distribution with 4 df and for the standard nor-
mal distribution are given in Fig. 4.17. Note that the ¢ distribution is less peaked and

f@ / Standard normal distribution

t distribution with 4 df

FIGURE 4.17
Density functions for the ¢ distribution with 4 df and for the standard
normal distribution.
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has longer tails than the normal distribution, so, for any finite n, 7, _; ;_,/» > 2;_4/2-
We call (4.12) the ¢t confidence interval.

The quantity that we add to and subtract from X(n) in (4.12) to construct the
confidence interval is called the half-length of the confidence interval. It is a mea-
sure of how precisely we know u. It can be shown that if we increase the sample
size from n to 4n in (4.12), then the half-length is decreased by a factor of
approximately 2 (see Prob. 4.20).

In practice, the distribution of the X,’s will rarely be normal, and the confidence
interval given by (4.12) will also be approximate in terms of coverage. Since
la—ii-aj = Zi-qs» the confidence interval given by (4.12) will be larger than
the one given by (4.11) and will generally have coverage closer to the desired level
1 — «. For this reason, we recommend using (4.12) to construct a confidence inter-
val for u. Note that 7, ,_,/, — 2,_,/, a8 n — ; in particular, 7, 45 differs from
Zp9s DY less than 3 percent. However, in most of our applications of (4.12) in
Chaps. 9, 10, and 12, n will be small enough for the difference between (4.11) and
(4.12) to be appreciable.

EXAMPLE 4.27. Suppose that the 10 observations 1.20, 1.50, 1.68, 1.89, 0.95, 1.49,
1.58, 1.55, 0.50, and 1.09 are from a normal distribution with unknown mean w and that
our objective is to construct a 90 percent confidence interval for w. From these data we get

X(10) = 1.34 and S%(10) = 0.17

which results in the following confidence interval for u:

_ S2(10) 0.17
X(10) = 14005 T 1.34 = 1.83 o " 1.34 = 0.24

Note that (4.12) was used to construct the confidence interval and that ¢, , o5 was taken
from Table T.1. Therefore, subject to the interpretation stated above, we claim with
90 percent confidence that w is in the interval [1.10, 1.58].

We now discuss how the coverage of the confidence interval given by (4.12) is
affected by the distribution of the X;’s. In Table 4.1 we give estimated coverages for
90 percent confidence intervals based on 500 independent experiments for each of
the sample sizes n = 5, 10, 20, and 40 and each of the distributions normal, expo-
nential, chi square with 1 df (a standard normal random variable squared; see the
discussion of the gamma distribution in Sec. 6.2.2), lognormal (e, where Y is a

TABLE 4.1
Estimated coverages based on 500 experiments

Distribution Skewness v n=>5 n=10 n=20 n =40
Normal 0.00 0.910 0.902 0.898 0.900
Exponential 2.00 0.854 0.878 0.870 0.890
Chi square 2.83 0.810 0.830 0.848 0.890
Lognormal 6.18 0.758 0.768 0.842 0.852

Hyperexponential 6.43 0.584 0.586 0.682 0.774
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standard normal random variable; see Sec. 6.2.2), and hyperexponential whose dis-
tribution function is given by

F(x) = 0.9F,(x) + 0.1 F,(x)

where F,(x) and F,(x) are the distribution functions of exponential random variables
with means 0.5 and 5.5, respectively. For example, the table entry for the exponential
distribution and n = 10 was obtained as follows. Ten observations were generated from
an exponential distribution with a known mean u, a 90 percent confidence interval was
constructed using (4.12), and it was determined whether the interval contained . (This
constituted one experiment.) Then the whole procedure was repeated 500 times, and
0.878 is the proportion of the 500 confidence intervals that contained . Note that the
coverage for the normal distribution and » = 10 is 0.902 rather than the expected 0.900,
since the table is based on 500 rather than an infinite number of experiments.

Observe from the table that for a particular distribution, coverage generally gets
closer to 0.90 as n gets larger, which follows from the central limit theorem (see
Prob. 4.22). (The results for the exponential distribution would also probably follow
this behavior if the number of experiments were larger.) Notice also that for a particular
n, coverage decreases as the skewness of the distribution gets larger, where skewness
is defined by

Bl — )]

()2 e

The skewness, which is a measure of symmetry, is equal to O for a symmetric distri-
bution such as the normal. We conclude from the table that the larger the skewness
of the distribution in question, the larger the sample size needed to obtain satisfac-
tory (close to 0.90) coverage.

*We saw in Table 4.1 that there is still significant degradation in coverage prob-
ability for sample sizes as large as 40 if the data come from a highly skewed distribu-
tion such as the lognormal, which is not at all uncommon in practice. As a result we
now discuss an improved confidence developed by Willink (2005), which computes
an estimate of the skewness v and uses this to obtain a confidence interval with cov-
erage closer to the nominal value 1 — « than that for the standard ¢ confidence given
by (4.12). Let

n X, — X7’ X
Ao _i=] ° = M3
B = -2 6Vl S2(m12”

and
[1+ 6a(r—a)]? -1

2a

G(r) =

where [,/ [S%(n)]*/? is an estimator for the skewness ». Then an approximate
100(1 — «) percent confidence interval for u is given by

[X(n) = G(t,_ 1, o) VS 1) /1, X(0) = G(=t,_1,_ ) VS (1) /0] (4.13)

*The discussion of the Willink confidence interval may be skipped on a first reading.
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EXAMPLE 4.28. For the data of Example 4.27, we now construct a 90 percent confi-
dence interval for w using the Willink confidence interval given by (4.13). We get

[1 — 0.288(r + 0.048)]'° — 1
—0.096

s = —0.062, a=-0048, G(r) =

and the following 90 percent confidence interval for w:
[1.34 — 0.31, 1.34 + 0.20] or [1.04, 1.54]

In order to get an idea how much improvement in coverage probability might
be obtained by using the Willink confidence interval given by (4.13) instead of the ¢
confidence interval given by (4.12), we regenerated using different random numbers
the observations for the entry in Table 4.1 corresponding to the lognormal distribu-
tion and n = 10. Based again on 500 experiments, the estimated coverages for the
Willink and ¢ confidence intervals were 0.872 and 0.796, respectively. Thus, the
Willink confidence interval produces a coverage probability “close” to the nominal
level 0.90 even for the highly skewed lognormal distribution and a sample size of
only 10. On the other hand, the average half-length for the Willink confidence inter-
val was 76 percent larger than the average half-length for the 7 confidence interval
in this case. The decision whether to use the ¢ or Willink confidence interval should
depend on the relative importance one places on coverage close to the nominal level
1 — o and a small half-length.

Assume that X, X,, . . ., X, are normally distributed (or are approximately so)
and that we would like to test the null hypothesis H,: u = u, against the alternative
hypothesis H,: u # w,, where u, is a fixed, hypothesized value for . Intuitively, we
would expect that if |[X(n) — u,|is large [recall that X(n) is the point estimator for
wl, Hyis not likely to be true. However, to develop a test with known statistical prop-
erties, we need a statistic (a function of the X;’s) whose distribution is known when
H, is true. It follows from the above discussion that if H is true, the statistic

t, = [X(n) — wol/V S*(n)/n will have a t distribution with n — 1 df. Therefore,
consistent with our intuitive discussion above, the form of our (two-tailed) hypoth-
esis test for H is

If |¢,| > ty—11—a) TejECt Hy

If |t,[ = 1, 40 fail to reject H, .19

The portion of the real line that corresponds to rejection of H, namely, the set of all
xsuch that|x| >, ,_,, is called the rejection (or critical) region for the test, and
the probability that the statistic falls in the rejection region given that H,, is true,
which is clearly equal to «, is called the level (or size) of the test. Typically, an ex-
perimenter will choose the level equal to 0.05 or 0.10. We call the hypothesis test
given by (4.14) the ¢ test.

When one performs a hypothesis test, two types of errors can be made. If one
rejects Hy when in fact it is true, this is called a Type I error. The probability of Type I
error is equal to the level « and is thus under the experimenter’s control. If one fails
to reject H, when it is false, this is called a Type II error. For a fixed level « and
sample size n, the probability of a Type II error, which we denote by 3, depends on
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TABLE 4.2
Hypothesis-testing situations and their
corresponding probabilities of occurrence

H; | True False
Outcome
Reject a §=1-p8
Fail to reject 11—« B

what is actually true (other than Hy: u = ), and is usually unknown. We call
0 = 1 — B the power of the test, and it is equal to the probability of rejecting H,
when it is false. There are four different situations that can occur when one tests the
null hypothesis H; against the alternative hypothesis H,, and these are delineated in
Table 4.2 along with their probabilities of occurrence.

Clearly, a test with high power is desirable. If « is fixed, the power can only be
increased by increasing n. Since the power of a test may be low and unknown to us, this
is why we say “fail to reject H,” (instead of “accept H,”) when the statistic ¢, does not
lie in the rejection region. (When H,, is not rejected, we generally do not know with any
certainty whether H; is true or whether H,, is false, since our test may not be powerful
enough to detect any difference between H,, and what is actually true.)

EXAMPLE 4.29. For the data of Example 4.27, suppose that we would like to test the
null hypothesis H,: uw = 1 against the alternative hypothesis H,: u # 1 at level « = 0.1.
Since

P () Rl S - S g
YVsrao/100 Voarjio e

we reject H,.

EXAMPLE 4.30. For the null hypothesis Hy: u = 1 in Example 4.29, we can estimate
the power of the test when, in fact, the X;’s have a normal distribution with u = 1.5 and
standard deviation o = 1. (This is H,.) We randomly generated 1000 independent

observations of the statistic ¢, = [X(10) — 1]/V$*(10)/10 under the assumption
that H, is true. For 433 out of the 1000 observations, |#,0] > 1.83 and, therefore, the es-
timated power is 6 = 0.433. Thus, if H, is true, we will only reject the null hypothesis
H, approximately 43 percent of the time for a test at level & = 0.10. To see what effect
the sample size n has on the power of the test, we generated 1000 observations of #,5
(n = 25) when H, is true and also 1000 observations of #,o, (n = 100) when H, is true
(all X;’s were normal). The estimated powers were 6 = 0.796 and 6 = 0.999, respec-
tively. It is not surprising that the power is apparently an increasing function of n, since
we would expect to have a better estimate of the true value of u when 7 is large. [Note
that in the case of normal sampling and a known standard deviation, as in this example,
the power of the test can actually be computed numerically, obviating the need for simu-
lation as done here; see, for example, Devore (2008, pp. 302-303).]

It should be mentioned that there is an intimate relationship between the confi-
dence interval given by (4.12) and the hypothesis test given by (4.14). In particular,
rejection of the null hypothesis H,: u = u, is equivalent to w, not being contained
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in the confidence interval for w, assuming the same value of « for both the hypoth-
esis test and the confidence interval (see Prob. 4.28). However, the confidence in-
terval also gives you a range of possible values for wu, and in this sense it is the
preferred methodology.

4.6
THE STRONG LAW OF LARGE NUMBERS

The second most important result in probability theory (after the central limit theo-
rem) is arguably the strong law of large numbers. Let X, X, . . . , X, be IID random
variables with finite mean w. Then the strong law of large numbers is as follows [see
Chung (1974, p. 126) for a proof].

THEOREM 4.2. X(n) —u w.p. 1 asn — .

The theorem says, in effect, that if one performs an infinite number of experiments,
each resulting in an X(n), and n is sufficiently large, then X(n) will be arbitrarily
close to u for almost all the experiments.

EXAMPLE 4.31. Suppose that X}, X,, . .. are IID normal random variables with . = 1
and o> = 0.01. Figure 4.18 plots the values of X(n) for various n that resulted from
sampling from this distribution. Note that X(n) differed from w by less than 1 percent
for n = 28.

1.02 |
w=1.00
0.98
0.96
0.94
0.92

0.90

0.88

0.86 : : : : : : : :
0 10 20 30 40 n
FIGURE 4.18
X(n) for various values of n when the X;’s are normal random variables with . = 1
and o = 0.01.
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4.7
THE DANGER OF REPLACING A PROBABILITY
DISTRIBUTION BY ITS MEAN

Simulation analysts have sometimes replaced an input probability distribution by its
mean in their simulation models. This practice may be caused by a lack of under-
standing on the part of the analyst or by lack of information on the actual form of
the distribution (e.g., only an estimate of the mean of the distribution is available).
The following example illustrates the danger of this practice.

EXAMPLE 4.32. Consider a manufacturing system consisting of a single machine
tool. Suppose that “raw” parts arrive to the machine with exponential interarrival times
having a mean of 1 minute and that processing times at the machine are exponentially
distributed with a mean of 0.99 minute. Thus, this system is an M/M/1 queue with utili-
zation factor p = 0.99. Furthermore, it can be shown that the average delay in queue of
a part in the long run is 98.01 minutes [see App. 1B or Gross et al. (2009)]. On the other
hand, if we replace each distribution by its corresponding mean (i.e., if customers arrive
at times 1 minute, 2 minutes, . . . and if each part has a processing time of exactly
0.99 minute), then no part is ever delayed in the queue. In general, the variances as well
as the means of the input distributions affect the output measures for queueing-type
systems, as noted at the end of App. 1B.

APPENDIX 4A
COMMENTS ON COVARIANCE-STATIONARY PROCESSES

Consider the process {D,, i =1} for the M/M/1 queue when no customers are pres-
ent at time 0. Clearly, D, = 0, but P(D; > 0) > O fori = 2,3, . ... Therefore, E(D,) =

Oand E(D,) > Ofori = 2,3, ..., which implies that {D,, i = 1} is not covariance-
stationary. However, if p < 1, it can be shown for all x = 0 that
P(D;=x)— (1 —p)+ p(l —e @ asi— ® (4.15)

It follows from (4.15) and the equation for D, , in Example 4.19 that if we delete
the first k observations from D, D,, . . . and k is sufficiently large, then the process
D, .\, D;,,, ... will be (approximately) covariance-stationary. Therefore, when we
say “consider the process {D,, i = 1} for the covariance-stationary M/M/1 queue,”
we mean that we let the M/M/1 queue “warm up” for some amount of time before
observing the first delay.

Consider the process {C,;, i = 1} for the inventory system of Example 4.23
when I, = S. Since P(I, = S) # 1 fori = 2,3, ..., it follows that {C,,i = 1} is not
covariance-stationary. However, it can be shown that P(C; = x) converges to a lim-
iting distribution function as i — o [see Wagner (1969, p. A48)]. Thus, C, |, C, 1, - - .
will be (approximately) covariance-stationary for k large. Furthermore, the correla-
tions plotted in Fig. 4.11 are for an inventory system warmed up for some amount
of time before the first cost is observed.
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PROBLEMS

4.1.

4.2

4.3.

44.

4.5.

4.6.

4.7.

Suppose that X is a discrete random variable with probability mass function given by
p=w% p@ =% PO =% pPH=i ad p6) =1

(a) Plot p(x).
(b) Compute and plot F(x).
(¢) Compute P(1.4 = X = 4.2), E(X), and Var(X).

Suppose that X is a continuous random variable with probability density function
given by
fx) =x>+ 3 +} forO0=x=c

(@) What must be the value of ¢?

Assuming this value of ¢, do the following:

(b) Plot f(x).

(¢) Compute and plot F(x).

(d) Compute P(3 = X = %), E(X), and Var(X).

Suppose that X and Y are jointly discrete random variables with

2 forx =1,2,...,nand
p(x,y) ={nn + 1) y=12,...,x
0 otherwise

Compute p,(x) and p,(y) and determine whether X and Y are independent.
Suppose that X and Y are jointly discrete random variables with

x+y forx =0, 1,2and
plx,y) =4 30 y=0,1,2,3
0 otherwise

(a) Compute and plot py(x) and p,(y).

(b) Are X and Y independent?

(c) Compute and plot Fy(x) and Fy(y).

(d) Compute E(X), Var(X), E(Y), Var(Y), Cov(X, Y), and Cor(X, Y).

Are the random variables X and Y in Example 4.10 independent if the sampling of the
two cards is done with replacement?

Suppose that X and Y are jointly continuous random variables with

324 f0=x=land0=y=1
fony) = {0 otherwise

Compute fy(x) and f,(y) and determine whether X and Y are independent.
Suppose that X and Y are jointly continuous random variables with

- X fo<x<landl <y<2
otherwise

fley) = {g

(a) Compute and plot fy(x) and f, ().
(b) Are X and Y independent?



4.8.

4.9.

4.10.

4.11.

4.12.

4.13.

4.14.

4.15.

4.16.

4.17.
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(c) Compute Fy(x) and Fy(y).
(d) Compute E(X), Var(X), E(Y), Var(Y), Cov(X, Y), and Cor(X, Y).

If X and Y are jointly continuous random variables with joint probability density func-
tion f(x, y) and X and Y are independent, show that Cov(X, Y) = 0. Therefore, X and Y
being independent implies that E(XY) = E(X)E(Y).

Suppose that X is a discrete random variable with p,(x) = 0.25 forx = =2, —1, 1, 2.
Let Y also be a discrete random variable such that ¥ = X>. Clearly, X and Y are not
independent. However, show that Cov(X, Y) = 0. Therefore, uncorrelated random
variables are not necessarily independent.

Suppose that X, and X, are jointly normally distributed random variables with joint
probability density function

1 —gp  for—oe <x <o

Sy x, (X, %) = e _
1A 27\ /0.%0.3(1 _ pfz) and —© < X, < ©

where
g = 1 [(xl - /‘Ll)z 2 (= (= 1y n (x, — Mz)z
= - 2
1 - P%zL o} : Voial o3

If p,, = 0, show that X, and X, are independent.

Suppose that X and Y are random variables such that Y = aX + b and a and b are con-
stants. Show that

+1 ifa>0
Cor(X, 1) = {—1 ifa <0

This is why the correlation is said to be a measure of linear dependence.

If X, and X, are random variables, then E(XDE(X3) = [E(X,X,)]* by Schwarz’s
inequality. Use this fact to show that —1 = p;, = 1.

For any random variables X,, X, and any numbers a,, a,, show that
Var(a,X, + a,X,) = @ Var(X,) + 2a,a, Cov(X,, X,) + a3 Var(X,).

Justify the equation for D, ; in Example 4.19.

Using the equation for D,,, in Example 4.19, write a C program requiring approxi-
mately 15 lines of code to simulate the M/M/1 queue with a mean interarrival time of
1 and a mean service time of 0.5. Run the program until 1000 D,’s have been observed
and compute D(1000). The program should not require a simulation clock, an event
list, or a timing routine.

Using the fact that E(2]_, a,X;) = 2/_, a,E(X;) for any random variables X, X,, . . .,
X, and any numbers a,, a,, . . ., a,, show thatif X,, X, . . ., X, are IID random variables
with mean u and variance ¢, then E[X(n)] = w and E[S?(n)] = o*. Show that the
first result still holds if the X;’s are dependent.

Show that Eq. (4.7) is correct.
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4.18.

4.19.

4.20.

4.21.

4.22.

4.23.

4.24.

4.25.

4.26.

4.27.

4.28.

4.29.

IfX,, 3(2, ..., X, are IID random variables with mean u and variance o2, then compute
Cov[X(n), S?(n)]. When will this covariance be equal to 0?

Show that the equality of the two probability statements in Eq. (4.10) is correct.

For the confidence interval given by (4.12), show that if we increase the sample size
from n to 4n, then the half-length is decreased by a factor of approximately 2.

Explain why the 90 percent confidence interval in Example 4.27 contained only 5 of
the 10 observations.

For the confidence interval given by (4.12), show that the coverage approaches 1 — «
as n— .

Suppose that 7.3, 6.1, 3.8, 8.4,6.9,7.1, 5.3, 8.2,4.9, and 5.8 are 10 observations from
a distribution (not highly skewed) with unknown mean u. Compute X(10), S*(10),
and an approximate 95 percent confidence interval for .

For the data in Prob. 4.23, test the null hypothesis Hy: u = 6 at level « = 0.05.

In Example 4.30 explain why the power goes to 1 as n gets large. (Hint: Look at what
happens to the numerator and denominator in the statisticz, = [X(n) — 11/ V. S*(n)/n
as n gets large.)

In Example 4.30 the estimated power was 0.433 for n = 10 and the alternative hypoth-

esisH:u=15ando = 1.

(a) For n = 10 will the power increase or decrease if the alternative hypothesis is in-
stead H;: u = 1.25 and o = 1? Substantiate your answer by randomly sampling
(e.g., in Excel) from an appropriate normal distribution.

(b) For n = 10 will the power increase or decrease if the alternative hypothesis is in-
stead H;: w = 1.5 and o = 0.75? Substantiate your answer by randomly sampling
from an appropriate normal distribution.

A manufacturing process is supposed to produce ball bearings with a diameter of
0.5 inch. The company examines n = 50 ball bearings and finds that X(50) = 0.45 and
S%(n) = 0.06. Test the null hypothesis H,: i = 0.5 against the alternative hypothesis
H;: u # 0.5 atlevel @ = 0.05. Also, construct a 95 percent confidence interval for u.

Show algebraically that rejection of the null hypothesis H,: w = u, by the # test given
by (4.14) is equivalent to the 7 confidence interval given by (4.12) not containing p,.

Suppose that X and Y are random variables with unknown covariance Cov(X, Y). If the
pairs X, Y, (fori = 1, 2, .. ., n) are independent observations of X, Y, then show that

SUIX — XY, — Y(n)]
i=1

COV(X Y) =

n—1

is an unbiased estimator of Cov(X, Y).



4.30.

4.31.

4.32.

4.33.

4.34.
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A random variable X is said to have the memoryless property it
PX>t+s|X>1) =PX>s) forallz, s > 0

[The conditional probability P(X >t + s|X > t) is the probability of the event
{X >t + s} occurring given that the event {X > t} has occurred; see Ross (2003,
chap. 3).] Show that the exponential distribution has the memoryless property.

A geometric distribution with parameter p (0 < p < 1) has probability mass function
px) = p(l — p)* forx=0,1,2,...

Show that this distribution has the memoryless property.

Suppose that a man has k keys, one of which will open a door. Compute the expected

number of keys required to open the door for the following two cases:

(a) The keys are tried one at a time without replacement.

(b) The keys are tried one at a time with replacement. (Hint: Condition on the out-
come of the first try.)

Are the mean, median, and mode equal for every symmetric distribution?
In Example 4.32 is the long-run throughput (departure rate) larger when interarrival

times and processing times are each exponentially distributed or when they are each a
constant?



CHAPTER 5

Building Valid, Credible,
and Appropriately Detailed
Simulation Models

Recommended sections for a first reading: 5.1 through 5.5, 5.6.1

5.1
INTRODUCTION AND DEFINITIONS

One of the most difficult problems facing a simulation analyst is that of trying to
determine whether a simulation model is an accurate representation of the actual
system being studied, i.e., whether the model is valid. In this chapter we present a
practical discussion of how to build valid and credible models. We also provide
guidelines on how to determine the level of detail for a model of a complex system,
also a critical and challenging issue. Information for this chapter came from a re-
view of the existing literature, from consulting studies performed by Averill M. Law
& Associates, and from the experiences of the thousands of people who have at-
tended the author’s simulation short courses since 1977. We present more than
40 examples to illustrate the concepts presented.

Important works on validation and verification include those by Balci (1998),
Banks et al. (2010), Carson (1986, 2002), Feltner and Weiner (1985), Law (2009,
2011), Naylor and Finger (1967), Sargent (2012), Shannon (1975), and Van Horn
(1971). References on the assessment of an existing simulation model include
Fossett et al. (1991), Gass (1983), Gass and Thompson (1980), and Knepell and
Arangno (1993).

‘We begin by defining the important terms used in this chapter, including verifica-
tion, validation, and credibility. Verification is concerned with determining whether
the “assumptions document” (see Sec. 5.4.3) has been correctly translated into a
computer “program,” i.e., debugging the simulation computer program. Although
verification is simple in concept, debugging a large-scale simulation program is a
difficult and arduous task due to the potentially large number of logical paths. Tech-
niques for verifying a simulation computer program are discussed in Sec. 5.3.

246
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Validation is the process of determining whether a simulation model is an accu-
rate representation of the system, for the particular objectives of the study. [Fishman
and Kiviat (1968) appear to be the first ones to have given definitions similar to
these.] The following are some general perspectives on validation:

* Conceptually, if a simulation model is “valid,” then it can be used to make deci-
sions about the system similar to those that would be made if it were feasible and
cost-effective to experiment with the system itself.

* The ease or difficulty of the validation process depends on the complexity of the
system being modeled and on whether a version of the system currently exists (see
Sec. 5.4.5). For example, a model of a neighborhood bank would be relatively
easy to validate since it could be closely observed. However, a model of the ef-
fectiveness of a naval weapons system in the year 2025 would be impossible to
validate completely, since the location of the battle and the nature of the enemy
weapons would be unknown.

* A simulation model of a complex system can only be an approximation to the ac-
tual system, no matter how much effort is spent on model building. There is no
such thing as absolute model validity, nor is it even desired. The more time (and
hence money) that is spent on model development, the more valid the model
should be in general. However, the most valid model is not necessarily the most
cost-effective. For example, increasing the validity of a model beyond a certain
level might be quite expensive, since extensive data collection may be required,
but might not lead to significantly better insight or decisions. A famous quote by
Professor George E.P. Box says, “All models are wrong, but some are useful.”
This means that it is not possible to get every detail of the system into a model,
but some models are still useful for decision making.

* A simulation model should always be developed for a particular set of purposes.
Indeed, a model that is valid for one purpose may not be for another.

* The measures of performance used to validate a model should include those that
the decision maker will actually use for evaluating system designs.

e Validation is not something to be attempted after the simulation model has
already been developed, and only if there is time and money remaining. Unfortu-
nately, our experience indicates that this recommendation is often not followed.

EXAMPLE 5.1. An organization paid a consulting company $500,000 to perform a
“simulation study.” After the study was supposedly completed, a person from the client
organization called and asked, “Can you tell me in five minutes on the phone how to val-
idate our model?”

* Each time a simulation model is being considered for a new application, its va-
lidity should be reexamined. The current purpose may be substantially different
from the original purpose, or the passage of time may have invalidated certain
model parameters.

A simulation model and its results have credibility if the manager and other
key project personnel accept them as “correct.” (We will henceforth use the term
“manager” to mean manager, decision maker, or client, as is appropriate to the con-
text.) Note that a credible model is not necessarily valid, and vice versa. Also, a
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model can be credible and not actually used as an aid in making decisions. For
example, a model could be credible but not used because of political or economic
reasons. The following things help establish credibility for a model:

* The manager’s understanding of and agreement with the model’s assumptions
(see Sec. 5.4.2)

* Demonstration that the model has been validated and verified

* The manager’s ownership of and involvement with the project

* Reputation of the model developers

* A compelling animation

The U.S. Department of Defense (DoD) is a large user of simulation models, and
in recent years there has been considerable interest in verification, validation, and a
concept known as accreditation (VV&A). Accreditation [see Modeling & Simula-
tion Coordination Office (2011)] is the official certification (by the project sponsor)
that a simulation model is acceptable for a specific purpose. The main reason that
accreditation is mandated within DoD is that someone must take responsibility for the
decision to use a model for a particular application, since a large amount of money and
people’s lives may be at stake. Also, most military analyses are done with legacy mod-
els, which may have been developed for another application or by another organiza-
tion. Issues that are considered in an accreditation decision include:

* Verification and validation that have been done

* Credibility of the model

* Simulation model development and use history (e.g., model developer and
similar applications)

* Quality of the data that are available

* Quality of the documentation

* Known problems or limitations with the simulation model

The timing and relationships of validation, verification, and establishing credi-
bility are shown in Fig. 5.1. The rectangles represent states of the model or the sys-
tem of interest, the solid horizontal arrows correspond to the actions necessary to
move from one state to another, and the curved dashed arrows show where the three
major concepts are most prominently employed. The numbers below each solid
arrow correspond to the steps in a sound simulation study, as discussed in Sec. 1.7.
We have not attempted to illustrate feedback arcs in the figure.

Validation should be contrasted with output analysis (the subject of Chaps. 9
through 12), which is a statistical issue concerned with estimating a simulation model’s

Validation Verification Validation Establish credibility
//’—_A‘\\ //’—_‘\\ //’—_‘\\ //’—_‘\
7 Establish > 7 N 7 N 7 AN
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Assumptions Simulation in decision-
System results .
Analysis document  [programming| ~Program Make available Sell making
and data 4 model runs results to process
1,2,3 5,6,7,8,9 management
10
FIGURE 5.1

Timing and relationships of validation, verification, and establishing credibility.
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(not necessarily the system’s) true measures of performance. Topics of interest in out-
put analysis include simulation run length, length of the warmup period (if any), and
number of independent model runs (using different random numbers).

To get a better idea of the difference between validation and output analysis, sup-
pose that we want to estimate the mean u of some system. Suppose that we construct
a simulation model whose corresponding mean is w,,. We make a simulation run and
obtain an estimate {i,, of w,,. Then the error in f,, as an estimate of ug is given by

Error in fuy, = [y, — s
= [l — B T By — Bl
= Q= Ml T+l — 1l (by the triangle inequality)

Validation is concerned with making the second absolute value small (in the line
above), while output analysis is concerned with making the first absolute value
small. Thus, to have a good estimate of the mean of the system, we have to be con-
cerned with both validation and output analysis.

5.2
GUIDELINES FOR DETERMINING
THE LEVEL OF MODEL DETAIL

A simulation practitioner must determine what aspects of a complex real-world sys-
tem actually need to be incorporated into the simulation model and at what level of
detail, and what aspects can be safely ignored. It is rarely necessary to have a one-
to-one correspondence between each element of the system and each element of
the model. Modeling each aspect of the system will seldom be required to make
effective decisions, and might result in excessive model execution time, in missed
deadlines, or in obscuring important system factors.

EXAMPLE 5.2. A dog-food manufacturer had a consulting company build a simula-
tion model of its manufacturing line, which produced 1 million cans per day at a con-
stant rate. Because each can of food was represented by a separate entity in the model,
the model was very expensive to run and, thus, not very useful. A few years later the
model was rewritten, treating the manufacturing process as a “continuous flow” (see
Sec. 1.2). The new model produced accurate results and executed in a small fraction of
the time necessary for the original model.

EXAMPLE 5.3. A simulation model of a 1.5-mile-long factory was built in 1985 at a
cost of $250,000. However, the model was so detailed that no runs were ever made due
to excessive computer memory requirements.

We now present some general guidelines for determining the level of detail
required by a simulation model [see also Law (1991) and Robinson (2004,
pp- 87-92)].

* Carefully define the specific issues to be investigated by the study and the measures
of performance that will be used for evaluation. Models are not universally valid,
but are designed for specific purposes. If the issues of interest have not been delin-
eated, then it is impossible to determine the appropriate level of model detail. Since
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some models can accurately estimate one measure of performance but not another,
it is also important to specify the performance measures of interest. For example, a
simple model of a manufacturing system might accurately predict throughput (e.g.,
parts per day) but be inadequate for determining the required floor space for work-
in-process (see Example 14.3). Finally, it is important to understand the manager’s
needs. A great model for the wrong problem will never be used. Problem formula-
tion is usually done at an initial kickoff meeting with people representing all key
aspects of the system being present.

EXAMPLE 5.4. A U.S. military analyst worked on a simulation model for six months
without interacting with the general who requested it. At the Pentagon briefing for the
study, the general walked out after 5 minutes stating, “That’s not the problem I’m inter-
ested in.”

The entity moving through the simulation model does not always have to be the
same as the entity moving through the corresponding system (see Example 5.5).
Furthermore, it is not always necessary to model each component of the system
in complete detail (see Example 5.26).

EXAMPLE 5.5. A large food manufacturer built a simulation model of its manufactur-
ing line for snack crackers. Initially, they tried to model each cracker as a separate en-
tity, but the computational requirements of the model made this approach infeasible. As
a result, the company was forced to use a box of crackers as the entity moving through
the model. The validity of this modeling approach was determined by using sensitivity
analysis (see below and Example 5.25).

Use subject-matter experts (SMEs) and sensitivity analyses to help determine the
level of model detail. People who are familiar with systems similar to the one of
interest are asked what components of the proposed system are likely to be the
most important and, thus, need to be carefully modeled. Sensitivity analyses (see
Sec. 5.4.4) can be used to determine what system factors (e.g., parameters or dis-
tributions) have the greatest impact on the desired measures of performance.
Given a limited amount of time for model development, one should obviously
concentrate on the most important factors.

A mistake often made by beginning modelers is to include an excessive amount
of model detail. As a result, we recommend starting with a “moderately detailed”
model, which can later be embellished if needed. The adequacy of a particular
version of the model is determined in part by presenting the model to SMEs and
managers. Regular interaction with these people also maintains their interest in
the simulation study.

EXAMPLE 5.6. We developed a simulation model of a pet-food manufacturing system,
which consisted of a meat plant and a cannery. In the meat plant, meat was either ground
fine or into chunks and then placed into buckets and transported to the cannery by an
overhead conveyor system. In the cannery buckets are dumped into mixers that process the
meat and then dispense it to filler/seamers for canning. The empty buckets are conveyed
back to the meat plant for refilling. Originally, it was decided that the system producing
the chunky product was relatively unimportant and, thus, it was modeled in a simple man-
ner. However, at the structured walk-through of the model (see Sec. 5.4.3), machine opera-
tors stated that this subsystem was actually much more complex. To gain credibility with
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these members of the project team, we had to include machine breakdowns and contention
for resources. Furthermore, after the initial model runs were made, it was necessary to
make additional changes to the model suggested by a mixer operator.

* Do not have more detail in the model than is necessary to address the issues of
interest, subject to the proviso that the model must have enough detail to be cred-
ible. Thus, it may sometimes be necessary to include things in a model that are not
strictly required for model validity, due to credibility concerns.

e The level of model detail should be consistent with the type of data available. A
model used to design a new manufacturing system will generally be less detailed
than one used to fine-tune an existing system, since little or no data will be avail-
able for a proposed system.

e In virtually all simulation studies, time and money constraints are a major factor
in determining the amount of model detail.

 If the number of factors (aspects of interest) for the study is large, then use a
“coarse” simulation model or an analytic model to identify what factors have a
significant impact on system performance. A “detailed” simulation model is then
built, emphasizing these factors [see Haider, Noller, and Robey (1986) for an ex-
ample]. Note that there are commercial software packages available for performing
analytic analyses in application areas such as manufacturing systems and com-
munications networks. Statistical experimental design (see Chap. 12) might also
be useful for determining important factors.

5.3
VERIFICATION OF SIMULATION COMPUTER PROGRAMS

In this section we discuss eight techniques that can be used to debug the computer
program of a simulation model [see Balci (1998) for additional techniques from the
field of software engineering]. Some of these techniques may be used to debug any
computer program, while others we believe to be unique to simulation modeling.

Technique 1

In developing a simulation model, write and debug the computer program in
modules or subprograms. By way of example, for a 10,000-statement simulation
model it would be poor programming practice to write the entire program before
attempting any debugging. When this large, untested program is finally run, it almost
certainly will not execute, and determining the location of the errors in the program
will be extremely difficult. Instead, the simulation model’s main program and a few
of the key subprograms should be written and debugged first, perhaps representing
the other required subprograms as “dummies” or “stubs.” Next, additional subpro-
grams or levels of detail should be added and debugged successively, until a model
is developed that satisfactorily represents the system under study. In general, it is
always better to start with a “moderately detailed” model, which is gradually made
as complex as needed, than to develop “immediately” a complex model, which may
turn out to be more detailed than necessary and excessively expensive to run (see
Example 5.25 for further discussion).
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EXAMPLE 5.7. For the multiteller bank with jockeying considered in Sec. 2.6, a good
programming approach would be first to write and debug the computer program with-
out letting customers jockey from queue to queue.

Technique 2

It is advisable in developing large simulation models to have more than one
person review the computer program, since the writer of a particular subprogram
may get into a mental rut and, thus, may not be a good critic. In some organizations,
this idea is implemented formally and is called a structured walk-through of the
program. For example, all members of the modeling team, say, systems analysts,
programmers, etc., are assembled in a room, and each is given a copy of a particu-
lar set of subprograms to be debugged. Then the subprograms’ developer goes
through the programs but does not proceed from one statement to another until
everyone is convinced that a statement is correct.

Technique 3

Run the simulation under a variety of settings of the input parameters, and
check to see that the output is reasonable. In some cases, certain simple measures of
performance may be computed exactly and used for comparison. (See the case
study in Sec. 14.6.)

EXAMPLE 5.8. For many queueing systems with s servers in parallel, it can be shown
that the long-run average utilization of the servers is p = A/(sw) (see App. 1B for nota-
tion). Thus, if the average utilization from a simulation run is close to the utilization
factor p, there is some indication that the program may be working correctly.

Technique 4

One of the most powerful techniques that can be used to debug a discrete-event
simulation program is a “trace.” In a trace, the state of the simulated system, i.e., the
contents of the event list, the state variables, certain statistical counters, etc., are
displayed just after each event occurs and are compared with hand calculations to
see if the program is operating as intended. In performing a trace it is desirable to
evaluate each possible program path as well as the program’s ability to deal with
“extreme” conditions. Sometimes such a thorough evaluation may require that spe-
cial (perhaps deterministic) input data be prepared for the model. Most simulation
packages provide the capability to perform traces.

A batch-mode trace often produces a large volume of output, which must be
checked event by event for errors. Unfortunately, some key information may be
omitted from the trace (not having been requested by the analyst); or, worse yet, a
particular error may not occur in the “short” debugging simulation run. Either diffi-
culty will require that the simulation be rerun. As a result, it is usually preferable to
use an interactive debugger to find programming errors.

An interactive debugger allows an analyst to stop the simulation at a selected
point in time, and to examine and possibly change the values of certain variables.
This latter capability can be used to “force” the occurrence of certain types of errors.
Many modern simulation packages have an interactive debugger.

EXAMPLE 5.9. Table 5.1 shows a trace for the intuitive explanation of the single-
server queue in Sec. 1.4.2. The first row of the table is a snapshot of the system just after
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TABLE 5.1

Partial trace for the single-server queue considered in Sec. 1.4.2

Number of Area under
Server Number in Times of Event list customers Total number-in-queue  Area under

Event Clock status queue arrival Arrive Depart delayed delay function busy function
Initialization 0 0 0 0.4 0 0 0 0 0
Arrival 0.4 1 0 1.6 2.4 1 0 0 0
Arrival 1.6 1 1 1.6 2.1 2.4 1 0 0 1.2
Arrival 2.1 1 2 1.6, 2.1 38 2.4 1 0 0.5 1.7
Departure 2.4 1 1 2.1 3.8 3.1 2 0.8 1.1 2.0
Departure 3.1 1 0 3.8 33 3 1.8 1.8 2.7
Departure 33 0 0 3.8 0 3 1.8 1.8 2.9
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TABLE 5.2
Theoretical values (T) and simulation estimates (S) for a simplified
job-shop model (M/E,/1 queue)

Average number Average delay
in queue Average utilization in queue

T S T S T S
0.676 0.685 0.600 0.604 0.563 0.565

initialization at time 0, the second row is a snapshot of the system just after the first
event (an arrival) has occurred, etc.

Technique 5
The model should be run, when possible, under simplifying assumptions for

which its true characteristics are known or can easily be computed.

EXAMPLE 5.10. For the job-shop model presented in Sec. 2.7, it is not possible to
compute the desired system characteristics analytically. Therefore, one must use simu-
lation. To debug the simulation model, one could first run the general model of
Sec. 2.7.2 with one workstation, one machine in that station, and only type 1 jobs
(which have an arrival rate of 0.3/0.25 = 1.2 jobs per hour). The resulting model is
known as the M/E,/1 queue and has known transient and steady-state characteristics
[see Kelton (1985) and Gross et al. (2009)]. Table 5.2 gives the theoretical values of the
steady-state average number in queue, average utilization, and average delay in queue,
and also estimates of these quantities from a simulation run of length 2000 eight-hour
days. Since the estimates are very close to the true values, we have some degree of
confidence that the computer program is correct.

A more definitive test of the program can be achieved by running the general model
of Sec. 2.7.2 with the original number of workstations (5), the original number of ma-
chines in each station (3, 2, 4, 3, 1), only type 1 jobs, and with exponential service times
(with the same mean as the corresponding 2-Erlang service time) at each workstation.
The resulting model is, in effect, four multiserver queues in series, with the first queue
an M/M/4, the second an M/M /3, etc. [The interdeparture times from an M/M/s queue
(s is the number of servers) that has been in operation for a long time are IID exponential
random variables; see Gross et al. (2009).] Furthermore, steady-state characteristics are
known for the M/M/s queue [see Gross et al. (2009)]. Table 5.3 gives, for each workstation,

TABLE 5.3
Theoretical values (T) and simulation estimates (S) for a simplified job-shop model
(four multiserver queues in series)

Average number Average delay
Work in queue Average utilization in queue
station T S T S T S
3 0.001 0.001 0.150 0.149 0.001 0.001
1 0.012 0.012 0.240 0.238 0.010 0.010
2 0.359 0.350 0.510 0.508 0.299 0.292
5 0.900 0.902 0.600 0.601 0.750 0.752
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the theoretical values of the steady-state average number in queue, average utilization,
and average delay in queue, and also estimates of these quantities from a simulation run
of length 2000 eight-hour days. Once again, the simulation estimates are quite close to
the theoretical values, which gives increased confidence in the program.

EXAMPLE 5.11. We developed a simulation model for a large provider of cellular
phone service, where the goal was to determine the long-term availability (proportion of
time up) of several alternative network configurations. Originally, we tried computing
availability using analytic approaches such as continuous-time Markov chains and
conditional expectation [see, for example, Ross (2003)], but we were only able to obtain
results for simple cases. Therefore, we needed to use simulation, and we partially veri-
fied our simulation model by comparing the simulation and analytic results for the sim-
ple cases.

Technique 6

With some types of simulation models, it may be helpful to observe an anima-
tion of the simulation output (see Sec. 3.4.3).

EXAMPLE 5.12. A simulation model of a network of automobile traffic intersections
was developed, supposedly debugged, and used for some time to study such issues as
the effect of various light-sequencing policies. However, when the simulated flow of
traffic was animated, it was found that simulated cars were actually colliding in the
intersections; subsequent inspection of the computer program revealed several previ-
ously undetected errors.

Technique 7

Compute the sample mean and sample variance for each simulation input prob-
ability distribution, and compare them with the desired (e.g., historical) mean and
variance. This suggests that values are being correctly generated from these
distributions.

EXAMPLE 5.13. The parameters of gamma and Weibull distributions are defined
differently in various simulation packages and books. Thus, this technique would be
valuable here.

Technique 8

Use a commercial simulation package to reduce the amount of programming
required. On the other hand, care must be taken when using a simulation package
(particularly a recently released one), since it may contain errors of a subtle nature.
Also, simulation packages contain powerful high-level macro statements, which are
sometimes not well documented.

5.4
TECHNIQUES FOR INCREASING MODEL
VALIDITY AND CREDIBILITY

In this section we discuss six classes of techniques for increasing the validity and
credibility of a simulation model. You might review the ten steps in a sound simula-
tion study (Sec. 1.7) before proceeding.
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5.4.1 Collect High-Quality Information and Data on the System

In developing a simulation model, the analyst should make use of all existing infor-
mation, including the following:

Conversations with Subject-Matter Experts

A simulation model is not an abstraction developed by an analyst working in
isolation; in fact, the modeler must work closely with people who are intimately fa-
miliar with the system. There will never be one single person or document that con-
tains all the information needed to build the model. Therefore, the analyst will have
to be resourceful to obtain a complete and accurate set of information. Care must be
taken to identify the true SMEs for each subsystem and to avoid obtaining biased
data (see Example 5.19). Ideally, SMEs should have some knowledge of simulation
modeling, so that they supply relevant information. The process of bringing all the
system information together in one place is often valuable in its own right, even if a
simulation study is never performed. Note that since the specifications for a system
may be changing during the course of a simulation study, the modeler may have to
talk to some SMEs on a continuing basis.

EXAMPLE 5.14. For a manufacturing system, the modelers should obtain informa-
tion from sources such as machine operators, manufacturing and industrial engineers,
maintenance personnel, schedulers, managers, vendors, and blueprints.

EXAMPLE 5.15. For a communications network, relevant people might include
end-users, network designers, technology experts (e.g., for switches and satellites),
system administrators, application architects, maintenance personnel, managers, and
carriers.

Observations of the System

If a system similar to the one of interest exists, then data should be obtained
from it for use in building the model. These data may be available from historical
records or may have to be collected during a time study. Since the people who
provide the data might be different from the simulation modelers, it is important that
the following two principles be followed:

* The modelers need to make sure that the data requirements (type, format, amount,
conditions under which they should be collected, why needed, etc.) are specified
precisely to the people who provide the data.

* The modelers need to understand the process that produced the data, rather than
treat the observations as just abstract numbers.

The following are five potential difficulties with data:
 Data are not representative of what one really wants to model.

EXAMPLE 5.16. The data that have been collected during a military field test may not
be representative of actual combat conditions due to differences in troop behavior and
lack of battlefield smoke (see also Prob. 5.1).

 Data are not of the appropriate type or format.
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EXAMPLE 5.17. In modeling a manufacturing system, the largest source of random-
ness is usually random downtimes of a machine. Ideally, we would like data on time to
failure (in terms of actual machine busy time) and time to repair of a machine. Some-
times data are available on machine breakdowns, but quite often they are not in the
proper format. For example, the times to failure might be based on wall-clock time and
include periods that the machine was idle or off-shift.

* Data may contain measurement, recording, or rounding errors.

EXAMPLE 5.18. Repair times for military-aircraft components were often rounded to
the nearest day, making it impossible to fit a continuous probability distribution (see
Chap. 6).

* Data may be “biased” because of self-interest.

EXAMPLE 5.19. The maintenance department in an automotive factory reported the
reliability of certain machines to be greater than reality to make themselves look good.

* Data may have inconsistent units.

EXAMPLE 5.20. The U.S. Transportation Command transports military cargo by air,
land, and sea. Sometimes there is confusion in building simulation models because the
U.S. Air Force and the U.S. Army use short tons (2000 pounds) while the U.S. Navy
uses long tons (2200 pounds).

Existing Theory

For example, if one is modeling a service system such as a bank and the arrival
rate of customers is constant over some time period, theory tells us that the inter-
arrival times of customers are quite likely to be IID exponential random variables;
in other words, customers arrive in accordance with a Poisson process (see Sec. 6.12.1
and Example 6.4).

Relevant Results from Similar Simulation Studies

If one is building a simulation model of a military ground encounter (as has
been done many times in the past), then results from similar studies should be
sought out and used, if possible.

Experience and Intuition of the Modelers

It will often be necessary to use one’s experience or intuition to hypothesize
how certain components of a complex system operate, particularly if the system
does not currently exist in some form. It is hoped that these hypotheses can be sub-
stantiated later in the simulation study.

5.4.2 Interact with the Manager on a Regular Basis

We now discuss one of the most important ideas in this chapter, whose use will
increase considerably the likelihood that the completed model will be employed in
the decision-making process. It is extremely important for the modeler to interact
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with the manager on a regular basis throughout the course of the simulation study.
This approach has the following benefits:

* When a simulation study is initiated, there may not be a clear idea of the problem
to be solved. Thus, as the study proceeds and the nature of the problem becomes
clearer, this information should be conveyed to the manager, who may reformu-
late the study’s objectives. Clearly, the greatest model for the wrong problem is
invalid!

* The manager’s interest and involvement in the study are maintained.

* The manager’s knowledge of the system contributes to the actual validity of the
model.

* The model is more credible since the manager understands and accepts the
model’s assumptions. As a matter of fact, it is extremely desirable to have the
manager (and other important personnel) “sign off” on key model assumptions.
This may cause the manager to believe, “Of course, it’s a good model, since |
helped develop it.”

5.4.3 Maintain a Written Assumptions Document
and Perform a Structured Walk-Through

Communication errors are a major reason why simulation models often contain
invalid assumptions or have critical omissions. The documentation of all model
concepts, assumptions, algorithms, and data summaries in a written assumptions
document can greatly lessen this problem, and it will also enhance the credibility of
the model. (Within DoD and elsewhere an assumptions document is better known
as a conceptual model.) However, deciding on the appropriate content of an as-
sumptions document is a less-than-obvious task that depends on the modeler’s in-
sight, knowledge of modeling principles (e.g., from operations research, probability
and statistics, etc.), and experience in modeling similar types of systems. An as-
sumptions document is not an “exact” description of how the system works, but
rather a description of how it works relative to the particular issues that the model is
to address. Indeed, the assumptions document is the embodiment of the simulation
analyst’s vision of how the system of interest should be modeled.

The assumptions document should be written to be readable by analysts, SMEs,
and technically trained managers alike, and it should contain the following:

* An overview section that discusses overall project goals, the specific issues to be
addressed by the simulation study, model inputs, and the performance measures
for evaluation.

* A process-flow or system-layout diagram, if appropriate (see Fig. 14.31).

* Detailed descriptions of each subsystem in bullet format and how these sub-
systems interact. (Bullet format, as on this page, makes the assumptions document
easier to review at the structured walk-through of the assumptions document,
which is described below.)

* What simplifying assumptions were made and why. Remember that a simulation
model is supposed to be a simplification or abstraction of reality.
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* Limitations of the simulation model.

* Summaries of a data set such as its sample mean and a histogram. Detailed statisti-
cal analyses or other technical material should probably be placed in appendices
to the report—remember that the assumptions document should be readable by
technical managers.

* Sources of important or controversial information (people, books, technical
papers, etc.).

The assumptions document should contain enough detail so that it is a “blue-
print” for creating the simulation computer program. Additional information on as-
sumptions documents (conceptual models) can be found in Modeling & Simulation
Coordination Office (2011), Pace (2003), and Robinson (2008a,b).

As previously discussed, the simulation modeler will need to collect system
information from many different people. Furthermore, these people are typically
very busy dealing with the daily problems that occur within their organizations,
often resulting in their giving something less than their undivided attention to the
questions posed by the simulation modeler. As a result, there is a considerable dan-
ger that the simulation modeler will not obtain a complete and correct description of
the system. One way of dealing with this potential problem is to conduct a struc-
tured walk-through of the assumptions document before an audience of SMEs and
managers. Using a projection device, the simulation modeler goes through the as-
sumptions document bullet by bullet, but not proceeding from one bullet to the next
until everybody in the room is convinced that a particular bullet is correct and at an
appropriate level of detail. A structured walk-through will increase both the validity
and the credibility of the simulation model.

The structured walk-through ideally should be held at a remote site (e.g., a hotel
meeting room), so that people give the meeting their full attention. Furthermore, it
should be held prior to the beginning of programming in case major problems are
uncovered at the meeting. The assumptions document should be sent to participants
prior to the meeting and their comments requested. We do not, however, consider
this to be a replacement for the structured walk-through itself, since people may not
have the time or motivation to review the document carefully on their own. Fur-
thermore, the interactions that take place at the actual meeting are invaluable.
[Within DoD the structured walk-through of the assumptions document (conceptual
model) is sometimes called conceptual model validation.] It is imperative that all
key members of the project team be present at the structured walk-through and that
they all take an active role.

It is likely that many model assumptions will be found to be incorrect or to be
missing at the structured walk-through. Thus, any errors or omissions found in the
assumptions document should be corrected before programming begins.

We now present two examples of structured walk-throughs, the first being very
successful and the other producing quite surprising but still useful results.

EXAMPLE 5.21. We performed a structured walk-through in doing a simulation
study for a Fortune 500 manufacturing company (see Sec. 14.6). There were nine
people at the meeting, including two modelers and seven people from the client orga-
nization. The client personnel included the foreman of the machine operators, three
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engineers of various types, two people from the scheduling department, and a manager.
The assumptions document was 19 pages long and contained approximately 160 ten-
tative model assumptions. Each of the 160 assumptions was presented and discussed,
with the whole process taking 5%2 hours. The process resulted in several erroneous
assumptions being discovered and corrected, a few new assumptions being added, and
some level-of-detail issues being resolved. Furthermore, at the end of the meeting, all
nine people felt that they had a valid model! In other words, they had taken ownership
of the model.

EXAMPLE 5.22. At a structured walk-through for a transportation system, a signifi-
cant percentage of the assumptions given to us by our corporate sponsor were found to
be wrong by the SMEs present. (Due to the long geographic distances between the
home offices of the sponsor and the SMEgs, it was not possible for the SMEs to be pres-
ent at the kickoff meeting for the project.) As a result, various people were assigned
responsibilities to collect information on different parts of the system. The collected
information was used to update the assumptions document, and a second walk-through
was successfully performed. This experience pointed out the critical importance of hav-
ing all key project members present at the kickoff meeting.

Some people think that the need for an assumptions document and its formal
review are just common sense. However, based on talking to literally thousands of
simulation practitioners, we believe that, perhaps, 75 percent of all simulation mod-
els have inadequate documentation.

5.4.4 Validate Components of the Model by Using Quantitative Techniques

The simulation analyst should use quantitative techniques whenever possible to
test the validity of various components of the overall model. We now give some
examples of techniques that can be used for this purpose, all of which are generally
applicable.

If one has fitted a theoretical probability distribution to a set of observed data,
then the adequacy of the representation can be assessed by using the graphical plots
and goodness-of-fit tests discussed in Chap. 6.

As stated in Sec. 5.4.1, it is important to use appropriate data in building a
model; however, it is equally important to exercise care when structuring these data.
For example, if several sets of data have been observed for the “same” random phe-
nomenon, then the correctness of merging these data can be assessed by the
Kruskal-Wallis test of homogeneity of populations (see Sec. 6.13). If the data sets
appear to be homogeneous, they can be merged and the combined data set used for
some purpose in the simulation model.

EXAMPLE 5.23. For the manufacturing system described in the case study of
Sec. 14.6, time-to-failure and time-to-repair data were collected for two “identical”
machines made by the same vendor. However, the Kruskal-Wallis test showed that
the two distributions were, in fact, different for the two machines. Thus, each
machine was given its own time-to-failure and time-to-repair distributions in the
simulation model.
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An important technique for determining which model factors have a significant
impact on the desired measures of performance is sensitivity analysis. If a particular
factor appears to be important, then it needs to be modeled carefully. The following
are examples of factors that could be investigated by a sensitivity analysis:

* The value of a parameter (see Example 5.24)

* The choice of a distribution

* The entity moving through the simulated system (see Example 5.25)

* The level of detail for a subsystem (see Example 5.26)

* What data are the most crucial to collect (using a “coarse” model of the system)

EXAMPLE 5.24. In a simulation study of a new system, suppose that the value of a
parameter is estimated to be 0.75 as a result of conversations with SMEs. The impor-
tance of this parameter can be determined by running the simulation with 0.75 and, in
addition, by running it with each of the values 0.70 and 0.80. If the three simulation runs
produce approximately the same results, then the output is not sensitive to the choice
of the parameter over the range 0.70 to 0.80. Otherwise, a better specification of the
parameter is needed.

EXAMPLE 5.25. We built a simulation model for a candy-bar manufacturing line. Ini-
tially, we used a single candy bar as the basic entity moving through the model, but this
resulted in excessive computer execution time. A sensitivity analysis was performed,
and it was found that using one-quarter of a case of candy bars (150 candy bars) pro-
duced virtually the same simulation results for the desired performance measure, cases
produced per shift, while reducing the execution time considerably.

EXAMPLE 5.26. We developed a simulation model of the assembly and test area for
a PC manufacturing company. Later the company managers decided that they wanted to
run the model on their own computers, but the memory requirements of the model were
too great. As a result, we were forced to simplify greatly the model of the assembly area
to save computer memory. (The main focus of the simulation study was the required
capacity for the test area.) We ran the simplified simulation model (the model of the test
area was unchanged) and found that the desired performance measure, daily through-
put, differed by only 2 percent from that of the original model. [This is an example of
using one model to help validate another (see Sec. 5.4.5).] Thus, a large amount of detail
was unnecessary for the assembly area. Note, however, that the simplified model would
not have been appropriate to study how to improve the efficiency of the assembly area.
On the other hand, it may not have been necessary to model the test area in this case.

When one is performing a sensitivity analysis, it is important to use the method of
common random numbers (see Sec. 11.2) to control the randomness in the simulation.
Otherwise, the effect of changing one factor may be confounded with other changes
(e.g., different random values from some input distribution) that inadvertently occur.

If one is trying to determine the sensitivity of the simulation output to changes
in two or more factors of interest, then it is not correct, in general, to vary one factor
at a time while setting the other factors to some arbitrary values. A more correct
approach is to use statistical experimental design, which is discussed in Chap. 12.
The effect of each factor can be formally estimated; and if the number of factors is
not too large, interactions between factors can also be detected.
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5.4.5 Validate the Output from the Overall Simulation Model

The most definitive test of a simulation model’s validity is to establish that its out-
put data closely resemble the output data that would be expected from the actual
(proposed) system. This might be called results validation and, in this section, we
will discuss several ways that it could be carried out.

Comparison with an Existing System

If a system similar to the proposed one now exists, then a simulation model of
the existing system is developed and its output data are compared to those from
the existing system itself. If the two sets of data compare “closely,” then the model
of the existing system is considered “valid.” (The accuracy required from the
model will depend on its intended use and the utility function of the manager.)
The model is then modified so that it represents the proposed system. The greater
the commonality between the existing and proposed systems, the greater our con-
fidence in the model of the proposed system. There is no completely definitive ap-
proach for validating the model of the proposed system. If there were, there might
be no need for a simulation model in the first place. If the above comparison is
successful, then it has the additional benefit of providing credibility for the use of
simulation (see Example 5.27). The comparison of the model and system output
data could be done using numerical statistics such as the sample mean, the sample
variance, and the sample correlation function. Alternatively, the assessment could
be made by using graphical plots (see Example 5.30) such as histograms, distribu-
tion functions, box plots, and spider-web plots (called radar plots in Microsoft
Excel).

EXAMPLE 5.27. We performed a simulation study for the corporate headquarters of
a manufacturer of paper products. A particular manufacturing plant for this company
currently had two machines of a certain type, and local management wanted to purchase
a third machine. The goal of the study was to see whether the additional machine was
really needed. To validate our model, we first simulated the existing system with two
machines. The model and system throughputs for the two machines differed by 0.4 and
1.1 percent, while the machine utilizations differed by 1.7 and 11 percent. (The rela-
tively large error of 11 percent was caused by the second machine operator’s not fol-
lowing company policy.) Using the “validated” simulation model, we simulated the
system with three machines and found that the additional machine was not necessary.
Based on the credible simulation results, the vice president for manufacturing of the
entire company rejected the plant’s request for a new machine, resulting in a capital
avoidance of $1.4 million.

EXAMPLE 5.28. A U.S. Air Force test agency performed a simulation study for a
wing of bombers using the Logistics Composite Model (LCOM). The ultimate goal of
the study was to evaluate the effect of various proposed logistics policies on the avail-
ability of the bombers, i.e., the proportion of time that the bombers were available
to fly missions. Data were available from the actual operations of the wing over a
9-month period, and they included both failure data for various aircraft components
and the wing availability. To validate the model, the Air Force first simulated the
9-month period with the existing logistics policy. The model availability differed from
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FIGURE 5.2
Impact points for the test and simulated missiles (in feet).

the historical availability by less than 3 percent, providing strong evidence for the
validity of the model.

EXAMPLE 5.29. A major manufacturer of telecommunications switches submitted a
prototype switch to an artificial traffic stream (e.g., exponential interarrival times) in a
laboratory. A simulation model of the switch was then submitted to the same traffic
stream, and comparable model and system performance measures were compared.
The closeness of the respective measures gave the model developers confidence in the
validity of the model.

EXAMPLE 5.30. A hypothetical new ground-to-ground missile is being developed
by the U.S. Army. Eight prototype missiles were field tested for the same scenario
(and set of environmental conditions), and their impact points in an xy coordinate sys-
tem were recorded. A simulation model for the missile system was developed, 15 in-
dependent replications of the model were made for the same scenario using different
random numbers, and the corresponding impact points were computed. The impact
points for the test and simulated missiles (in feet) are plotted in Fig. 5.2. It appears
from the figure that the simulated missiles are less accurate than the test missiles, but
it would be desirable to have further substantiation. We next computed the miss dis-
tance d for each test missile and each simulated missile using the Pythagorean theo-
rem, which states that

d=Vx*+y

The resulting miss distances (in feet) are given in Table 5.4, where it’s seen that the average
miss distance for the simulated missiles is 14.7 percent larger than the average miss dis-
tance for the test missiles. A spider-web plot for the miss distances is given in Fig. 5.3.
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TABLE 5.4
Miss distances d for the test and simulated missiles (in feet)

Missile number Test miss distance Simulation miss distance
1 174.45 134.60
2 146.09 194.73
3 194.72 168.14
4 149.84 178.82
5 161.93 163.78
6 165.52 186.39
7 153.62 237.20
8 133.46 187.73
9 — 197.90
10 — 173.55
11 — 166.64
12 — 199.10
13 — 168.17
14 — 204.32
15 — 191.48
Sample mean 159.95 183.50
Sample variance 355.75 545.71

—— Test
—e& - Simulation

FIGURE 5.3
Spider-web plot for the test and simulation miss distances.
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Dot plots for the test and simulation miss distances.

The numbers 50, 100, . .., 250 are the miss distances, and the numbers 1, 2, ..., 15 are
the missile numbers. It is clear from this plot that the simulation miss distances are, in
general, larger than the test miss distances. Dot plots for the miss distances are given in
Fig. 5.4. It follows from these plots that the simulation miss distances have a larger
mean (central tendency) and variance (spread) than the test miss distances. In summary,
based on the sample means, the sample variances, and the three plots, it appears that the
model does not provide a valid representation of the prototype missile relative to the
criterion of miss distance. However, we will revisit this example in Sec. 5.6.2.

In addition to statistical procedures, one can use a Turing test [see Turing
(1950), Schruben (1980), and Carson (1986)] to compare the output data from the
model to those from the system. People knowledgeable about the system (e.g., en-
gineers or managers) are asked to examine one or more sets of system data as well
as one or more sets of model data, without knowing which sets are which. Each data
set should be presented on a separate piece of paper using exactly the same format.
If these SMEs can differentiate between the system and model data, their explana-
tion of how they were able to do so is used to improve the model.

EXAMPLE 5.31. Schruben (1980) reports the use of a Turing test in a simulation
study of an automobile-component factory. Data from the factory and from the simula-
tion were put on time-study forms and reviewed at a meeting by three managers, three
industrial engineers, and two factory workers. The inability of these people to agree on
which data were real and which were simulated led to immediate acceptance of the
simulation model.

EXAMPLE 5.32. An animation version of the Turing test was used in validating a
simulation model of microscopic vehicle flow on a freeway. An animation of traffic flow
from the simulation was displayed simultaneously on a large-screen monitor with an
animation produced from data collected from the actual freeway. The data from the
freeway were collected by a video camera mounted on an airplane.
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Up to now, we have discussed validating a simulation model relative to past
or present system output data; however, a perhaps more definitive test of a model
is to establish its ability to predict future system behavior. Since models often
evolve over time and are used for multiple applications (particularly legacy mod-
els within the DoD), there is often an opportunity for such prospective validation.
For example, if a model is used to decide which version of a proposed system to
build, then after the system has been built and sufficient time has elapsed for out-
put data to be collected, these data can be compared with the predictions of the
model. If there is reasonable agreement, we have increased confidence in the “va-
lidity” of the model. On the other hand, discrepancies between the two data sets
should be used to update the model. Regardless of the accuracy of a model’s past
predictions, a model should be carefully scrutinized before each new application,
since a change in purpose or the passage of time may have invalidated some aspect
of the existing model. This once again points out the need for good documentation
of the model.

Suppose that we compare the output data from an existing system with those
from a simulation model of that system and find significant discrepancies. If these
discrepancies or other information objectively suggests how to improve the model,
then these changes should be made and the simulation rerun. If the new simulation
output data compare closely with the system output data, then the model can be con-
sidered “valid.”

Suppose instead that there are major discrepancies between the system and
model output data, but that changes are made to the model, somewhat without jus-
tification (e.g., some parameter is “tweaked”), and the resulting output data are
again compared with the system output data. This procedure, which we call cali-
bration of a model, is continued until the two data sets agree closely. However, we
must ask whether this procedure produces a valid model for the system, in general,
or whether the model is only representative of this particular set of input data.
To answer this question (in effect, to validate the model), one can use a completely
independent set of system input and output data. The calibrated model might be
driven by the second set of input data (in a manner similar to that described in
Sec. 5.6.1) and the resulting model output data compared with the second set of
system output data. This idea of using one set of data for calibration and another
independent set for validation is fairly common in economics and the biological
sciences. In particular, it was used by the Crown Zellerbach Corporation in
developing a simulation model of tree growth. Here the system data were available
from the U.S. Forest Service.

EXAMPLE 5.33. In order to make the idea of model calibration clearer, consider
the xy data in Table 5.5, which are also plotted in Fig. 5.5. A linear regression model
and a sixth-degree polynomial regression model were each fit to the data using
the method of least squares, and both are also plotted in Fig. 5.5. Note that the
linear model does not go through any of the seven points, but that the calibrated
polynomial model goes through each of the points exactly. (The R* values are 0.97
and 1, respectively.) Thus, in this sense, the polynomial model provides a better fit
to the data.



TABLE 5.5

Data for calibration example

x y

1.1 5.5
2.3 6.1
3.2 10.1
4.5 11.7
59 15.1
6.4 16.8
7.1 194
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If we use the two models to predict the value of y for x’ = 1.5, then the linear and
(over-fit) polynomial models give 5.46 and 2.86, respectively, with the former predic-

tion appearing to be much more reasonable.

Comparison with Expert Opinion

Whether or not there is an existing system, SMEs should review the simulation
results for reasonableness. (Care must be taken in performing this exercise, since if
one knew exactly what output to expect, there would be no need for a model.) If the
simulation results are consistent with perceived system behavior, then the model is

said to have face validity.

EXAMPLE 5.34. The above idea was put to good use in the development of a simula-
tion model of the U.S. Air Force manpower and personnel system. (This model was
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Linear and sixth-degree polynomial regression models fit to data, and their predictions

forx’" = 1.5.
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designed to provide Air Force policy analysts with a systemwide view of the effects of
various proposed personnel policies.) The model was run under the baseline personnel
policy, and the results were shown to Air Force analysts and decision makers, who
subsequently identified some discrepancies between the model and perceived system
behavior. This information was used to improve the model, and after several additional
evaluations and improvements, a model was obtained that appeared to approximate cur-
rent Air Force policy closely. This exercise improved not only the validity of the model,
but also its credibility.

Comparison with Another Model

Suppose that another model was developed for the same system and for a
“similar” purpose, and that it is thought to be a “valid” representation. Then numer-
ical statistics or graphical plots for the model that is currently of interest can be
informally compared with the comparable statistics or graphical plots from the
other model. Alternatively, the confidence-interval procedures discussed in
Sec. 10.2 can be used to make a more formal comparison between the two models. It
should be kept in mind that just because two models produce similar results doesn’t
necessarily mean that either model is valid, since both models could contain a
similar error.

EXAMPLE 5.35. A defense supply center was building a new simulation model called
the Performance and Requirements Impact Simulation to replace an existing model.
One of the purposes of both models is to decide when to order and how much
to order for each stock number. To validate the old model, the total dollar amount of
all orders placed by the model for fiscal year 1996 was compared with the total dollar
amount for the actual system for the same time period. Since these dollar amounts dif-
fered by less than 3 percent, there was a fair amount of confidence in the validity of
the old model. To validate the new model, the two models were used to predict the
total dollar amount of all orders for fiscal year 1998, and the results differed by less
than 6 percent. Thus, there was reasonable confidence in the validity of the new
model.

In Example 5.35, it probably would have been a good idea for the simulation
analysts to also use a smaller level of aggregation for validation purposes, such as
the dollar amounts for certain categories of stock numbers. (It is possible that posi-
tive errors for some categories might cancel out negative errors for other catego-
ries.) Also, it would have been interesting to compare the total dollar amounts for all
orders placed by the two models in 1996.

5.4.6 Animation

An animation can be an effective way to find invalid model assumptions and to en-
hance the credibility of a simulation model.

EXAMPLE 5.36. A simulation model was developed for a candy packaging system. A
newly promoted operations manager, who had no familiarity with the simulation model,
declared, “That’s my system!” upon seeing an animation of his system for the first
time—the model gained instant credibility.
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5.5
MANAGEMENT’S ROLE IN THE SIMULATION PROCESS

The manager of the system of interest must have a basic understanding of simulation
and be aware that a successful simulation study requires a commitment of his or her
time and resources. The following are some of the responsibilities of the manager:

* Formulating problem objectives

* Directing personnel to provide information and data to the simulation modeler
and to attend the structured walk-through

* Interacting with the simulation modeler on a regular basis

» Using the simulation results as an aid in the decision-making process

Simulation studies require the use of an organization’s technical personnel for
some period of time. If the study is done in-house, then several company personnel
may be required full-time for several months. These people often have other jobs
such as being responsible for the day-to-day operations of a manufacturing system.
Even if a consultant does the study, company personnel must be involved in the
modeling process and may also be needed to collect data.

5.6
STATISTICAL PROCEDURES FOR COMPARING REAL-WORLD
OBSERVATIONS AND SIMULATION OUTPUT DATA

In this section we present statistical procedures that might be useful for carrying out
the comparison of model and system output data (see Sec. 5.4.5).

Suppose that R, R,, . . ., R, are observations from a real-world system and that
M,,M,, ..., M, are output data from a corresponding simulation model (see Exam-
ple 5.37). We would like to compare the two data sets in some way to determine
whether the model is an accurate representation of the real-world system. The first
approach that comes to mind is to use one of the classical statistical tests (¢, Mann-
Whitney, two-sample chi-square, two-sample Kolmogorov-Smirnov, etc.) to deter-
mine whether the underlying distributions of the two data sets can be safely regarded
as being the same. [For a good discussion of these tests, which assume IID data, see
Breiman (1973) and Conover (1999).] However, the output processes of almost all
real-world systems and simulations are nonstationary (the distributions of the suc-
cessive observations change over time) and autocorrelated (the observations in the
process are correlated with each other), and thus none of these tests is directly
applicable. Furthermore, we question whether hypothesis tests, as compared with
constructing confidence intervals for differences, are even the appropriate statistical
approach. Since the model is only an approximation to the actual system, a null hy-
pothesis that the system and model are the “same” is clearly false. We believe that it
is more useful to ask whether the differences between the system and the model are
significant enough to affect any conclusions derived from the model. In Secs. 5.6.1
through 5.6.3 we discuss, respectively, inspection, confidence-interval, and time-
series approaches to this comparison problem. Finally, two additional approaches
based on regression analysis and bootstrapping are discussed in Sec. 5.6.4.
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5.6.1 Inspection Approach

The approach that seems to be used by most simulation practitioners who attempt
the aforementioned comparison is to compute one or more numerical statistics
from the real-world observations and corresponding statistics from the model out-
put data, and then compare the two sets of statistics without the use of a formal sta-
tistical procedure (see Examples 5.27 and 5.28). Examples of statistics that might
be used for this purpose are the sample mean, the sample variance (see Sec. 4.4 for
a discussion of the danger in using the sample variance from autocorrelated data),
and the sample correlation function. (The comparison of graphical plots can also
be quite useful, as we saw in Example 5.30.) The difficulty with this inspection
approach, which is graphically illustrated in Example 5.37, is that each statistic is
essentially a sample of size 1 from some underlying population, making this idea
particularly vulnerable to the inherent randomness of the observations from both the
real system and the simulation model.

EXAMPLE 5.37. To illustrate the danger of using inspection, suppose that the real-
world system of interest is the M/M/1 queue with p = 0.6 and that the corresponding
simulation model is the M/M/1 queue with p = 0.5; in both cases the arrival rate is 1.
Suppose that the output process of interest is Dy, D,, . . . (where D; is the delay in queue
of the ith customer) and let

200

> D,
X = % for the system
and
200
> D,
Y= % for the model

(Thus, the number of observations for the system, k, and for the model, /, are both equal
to 200.) We shall attempt to determine how good a representation the model is for the
system for comparing an estimate for u, = E(Y) = 0.49 [the expected average delay of
the first 200 customers for the model; see Heathcote and Winer (1969) for a discussion
of how to compute E(Y)] with an estimate of u, = E(X) = 0.87. Table 5.6 gives the
results of three independent simulation experiments, each corresponding to a possible
application of the inspection approach. For each experiment, fi, and fi, represent the
sample mean of the 200 delays for the system and model, respectively, and fiy — fiy

TABLE 5.6
Results for three experiments with
the inspection approach

A A A A

Experiment Py My Ry — Ry
1 0.90 0.70 0.20
0.70 0.71 —0.01

3 1.08 0.35 0.73
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is an estimate of w, — u, = 0.38, which is what we are really trying to estimate. Note
that 4y, — [, varies greatly from experiment to experiment. Also observe for experi-
ment 2 that ity — i, = —0.01, which would tend to lead one to think that the model is
a good representation for the system. However, we believe that the model is really a
poor representation for the system for purposes of estimation of the expected average
delay in the real-world system, since u, is nearly 44 percent smaller than w,.

Because of the inherent danger in using the basic inspection approach pre-
sented above, we now describe a better approach for comparing system and model
output data if the system data are complete enough and in the right format. In par-
ticular, it is recommended that the system and model be compared by “driving” the
model with historical system input data (e.g., actual observed interarrival times and
service times), rather than samples from the input probability distributions, and then
comparing the model and system outputs; see Fig. 5.6. (The system outputs are
those corresponding to the historical system input data.) Thus, the system and the
model experience exactly the same observations from the input random variables,
which should result in a statistically more precise comparison. We call this idea the
correlated inspection approach, since it generally results in comparable model and
system output statistics being positively correlated. This approach is a more defini-
tive way to validate the assumptions of the simulation model other than the probabil-
ity distributions; the latter are validated by using the techniques of Chap. 6. (Note
that a simulation that is driven by historical input data is sometimes called a trace-
driven simulation.)

EXAMPLE 5.38. To illustrate the benefits of the correlated inspection approach, sup-
pose that the system is the five-teller bank of Sec. 2.6 with jockeying, and the model is
the same bank but without jockeying (i.e., customers never leave the line they originally
join). Assume, however, that the mean service time is now 4 minutes. Let

X = average delay in queue for system
and
Y = average delay in queue for model

We will attempt to determine the accuracy of the model by comparing an estimate of the
expected average delay for the model u, = E(Y) with an estimate of the expected aver-
age delay for the system w, = E(X). Table 5.7 gives the results from the first 10 of 500
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TABLE 5.7
Results for the first 10 of 500 experiments with the correlated and basic inspection
approaches, and a summary for all 500

Experiment j X; Y; Y; X, - Y, X, —Y;

1 3.06 3.81 2.62 —0.75 0.44

2 2.79 3.37 2.05 —0.58 0.74

3 221 2.61 4.56 —0.40 -2.35

4 2.54 3.59 1.86 -1.05 0.68

5 9.27 11.02 2.41 -1.75 6.86

6 3.09 3.75 1.85 —0.66 1.24

7 2.50 2.84 1.13 —0.34 1.37

8 0.31 0.71 3.12 —0.40 —2.81

9 3.17 3.94 5.09 -0.77 -1.92

10 0.98 1.18 1.25 —0.20 —0.27

Sample mean 2.10 2.85 2.70 —0.75 —0.60
of all 500

Sample variance 2.02 2.28 2.12 0.08 4.08
of all 500

independent experiments, each corresponding to a possible application of the correlated
inspection approach. There, X; and Y, are the average delay for the system and for the
model in the jth experiment, respectively, and Xj — Yj is an estimate of w, — w,, which
is what we are really trying to estimate. (Note that X; and Y; use exactly the same inter-
arrival times and service times; they differ only in the jockeying rule employed.) Also
given in the table are Y], the average delay for the model in the jth experiment when
independent random numbers are used to generate the interarrival times and service
times, and X] — Y/’ , whose mean is also wy — u,. [Note that X] and Y]’ are based on in-
dependent (and thus different) realizations of the same input probability distributions.]
Comparing Y} and X; corresponds approximately to an application of the basic inspec-
tion approach. (In an actual application of the basic inspection approach, the input prob-
ability distributions would not be known and would have to be estimated from system
input data.) Finally, the last two rows of the table give the usual sample mean and
sample variance for each column computed from all 500 experiments. Observe from the
table that X; — Y; is a much better estimator of uy — u, than is X; — Y, since it has
a considerably smaller variance (0.08 versus 4.08). Thus, the difference X — Y for a
particular application of the correlated inspection approach is likely to be much closer
to wy — my than the difference X — Y’ for a particular application of the basic inspec-
tion approach.

We now explain more clearly why Var(X — Y) is less than Var(X — Y’). In particu-
lar, if A and B are random variables, then it can be shown (see Prob. 4.13) that

Var(A — B) = Var(A) + Var(B) — 2 Cov(A, B)

In the case of the basic inspection approach, A = X, B = Y, Cov(X, Y’) = 0 (the esti-
mated value was 0.03; see Prob. 4.29), and thus

Var(X — Y’') = Var(X) + Var(Y’)
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For the correlated inspection approach,A = X, B = Y, C’c;/(X, Y) = 2.11 [é\or(X, Y) =
0.99] and thus

Var(X — Y) = Var(X) + Var(Y) — 2 Cov(X, Y)
= Var(X) + Var(Y') — 2 Cov(X, Y)
< Var(X — Y)

assuming that the sign of the true covariance is the same as that of its estimate.

The idea of comparing a model and the corresponding system under the same sta-
tistical conditions is similar to the use of the variance-reduction technique known as
common random numbers in simulation (see Sec. 11.2) and the use of blocking in sta-
tistical experimental design. It should be mentioned, however, that we do not recom-
mend using historical system input data to drive a model for the purpose of making
production runs (see Sec. 6.1).

EXAMPLE 5.39. The correlated inspection approach was used to help validate a sim-
ulation model of a cigarette manufacturing process at Brown & Williamson Tobacco
Company [see Carson (1986) and Carson et al. (1981) for details]. The manufacturing
system basically consists of a cigarette maker, a reservoir (buffer) for cigarettes, a
packer, and a cartoner. The maker and packer are subject to frequent product-induced
failures such as the cigarette paper’s tearing. The major objective of the study was to
determine the optimal capacity of the reservoir, which helps lessen the effect of the
above failures.

The existing system was observed over a 4-hour period, and time-to-failure and
time-to-repair data were collected for the maker and packer, as well as the total cigarette
production. These times to failure and times to repair were used to drive the simulation
model for a 4-hour simulation run, and the total model cigarette production was
observed. The fact that the model production differed from the actual production by
only 1 percent helped convince management of the model’s validity.

EXAMPLE 5.40. For the freeway simulation of Example 5.32, the correlated inspec-
tion approach was used to compare the average travel time for the simulation model and
the system. The model was driven by car entry times, speeds, lanes, etc., that were ob-
served from the actual system.

In summary, we believe that the inspection approach may provide valuable
insight into the adequacy of a simulation model for some simulation studies (par-
ticularly if the correlated approach can be used). As a matter of fact, for most stud-
ies it will be the only feasible statistical approach because of severe limitations on
the amount of data available on the operation of the real system. However, as
Example 5.37 shows, extreme care must be used in interpreting the results of this
approach (especially the basic version).

5.6.2 Confidence-Interval Approach Based on Independent Data

We now describe a more reliable approach for comparing a model with the corre-
sponding system for the situation where it is possible to collect a potentially large
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number of sets of data from both the system and the model. This might be the case,
e.g., when the system of interest is located in a laboratory (see Example 5.29). This
approach will not, however, be feasible for most military and manufacturing situa-
tions due to the paucity of real-world data.

In the spirit of terminating simulations (see Secs. 9.3 and 9.4, and Chap. 10),
suppose we collect m independent sets of data from the system and »n independent
sets of data from the model. Let X; be a random variable defined on the jth set of
system data, and let Y; be the same random variable defined on the jth set of model
data. (For Example 5 38, X; is the average delay in queue for the system from
experiment j.) The X;’s are IID random variables (assuming that the m sets of sys-
tem data are homogeneous) with mean py = E(X)), and the ¥;’s are IID random
variables (assuming that the n data sets for the model were produced by independent
replications) with mean w, = E(Y,). We will attempt to compare the model with
the system by constructing a confidence interval for { = u, — u,. We believe that
constructing a confidence interval for { is preferable to testing the null hypothesis
H,: wy = uy for the following reasons:

* Since the model is only an approximation to the system, H, will clearly be false
in almost all cases.

* A confidence interval provides more information than the corresponding hypoth-
esis test. If the hypothesis test indicates that uy # u,, then the confidence inter-
val will provide this information and also give an indication of the magnitude by
which w, differs from w,. Constructing a confidence interval for { is a special
case of the problem of comparing two systems by means of a confidence interval,
as discussed in Sec. 10.2. Thus, we may construct a confidence interval for {
by using either the paired-¢ approach or the Welch approach. (In the notation of
Sec. 10.2, n; = m, n, = n, X;; = X, and X,; = Y,.) The paired-7 approach requires
m = n but allows X; to be correlated with Y wh1ch would be the case if the idea
underlying the correlated inspection approach is used (see Sec. 5.6.1). The Welch
approach can be used for any values of m = 2 and n = 2 but requires that the X;’s
be independent of the ¥}’s.

Runciman, Vagenas, and Corkal (1997) used the paired-t approach to help val-
idate a model of underground mining operations. For their model X; was the aver-
age number of tons of ore hauled per shift for monthj (j = 1, 2, 3).

Suppose that we have constructed a 100(1 — «) percent confidence interval for
{ by using either the paired-r or Welch approach, and we let /(«r) and u(«) be the cor-
responding lower and upper confidence-interval endpoints, respectively. If 0 &
[l(a), u(a)], then the observed difference between u, and u,, that is, X(m) — Y(n),
is said to be statistically significant at level «.. This is equivalent to rejecting the null
hypothesis H: iy = uy in favor of the two-sided alternative hypothesis H,: py #
at the same level a.. If 0 € [l(«v), u(a)], any observed difference between w, and w,
is not statistically significant at level @ and might be explained by sampling
fluctuation. Even if the observed difference between w, and w, is statistically sig-
nificant, this need not mean that the model is, for practical purposes, an “invalid”
representation of the system. For example, if { = 1 but uy = 1000 and u, = 999,
then the difference that exists between the model and the system is probably of no
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practical consequence regardless of whether we detect statistical significance. We
shall say that the difference between a model and a system is practically significant
if the “magnitude” of the difference is large enough to invalidate any inferences
about the system that would be derived from the model. Clearly, the decision as to
whether the difference between a model and a system is practically significant is a
subjective one, depending on such factors as the purpose of the model and the util-
ity function of the person who is going to use the model.

If the length of the confidence interval for { is not small enough to decide prac-
tical significance, it will be necessary to obtain additional X;’s or ¥;’s (or both).
Note, however, that for the Welch approach it is not possible to make the confidence
interval arbitrarily small by adding only X;’s or only Y;’s. Thus, if the number of sets
of system data, m, cannot be increased, 1t may not be possible to determine practi-
cal significance by just making more and more replications of the model.

EXAMPLE 5.41. Suppose that X;and Y, are defined as in Example 5.38, and we would
like to construct a 90 percent confidence interval for { = uy — u, using the paired-z
approach to determine whether the model (no jockeying) is an accurate representation
of the system (with jockeying). Letting W, = X; — ¥, and m = n = 10, we obtained from
the first 10 rows of Table 5.7 the followmg

W(10) = X(10) — Y(10) = 2.99 — 3.68 = —0.69 (point estimate for {)
10
> W, = Wao)P?
j=1

Var[W(10)] = 100 =0.02

and the 90 percent confidence interval for { is

W(10) = 15065V Var[W(10)] = —0.69 = 0.26

or [—0.95, —0.43]. Since the interval does not contain 0, the observed difference be-
tween w, and u, is statistically significant. It remains to decide the practical signifi-
cance of such a difference.

EXAMPLE 5.42. Consider the missile system and corresponding simulation model of
Example 5.30. Let

Xj = miss distance for jth test missile (j = 1,2, ..., 8)
Yj = miss distance for jth simulated missile (j = 1,2, ..., 15)

Since m = 8 # 15 = n, we will use the Welch approach (see Sec. 10.2.2) to construct
a 95 percent confidence interval for { = uy, — u,. We get

X(8) = 159.95, Y(15) = 183.50
S%(8) = 355.75,  S%(15) = 545.71
f = 17.34 (estimated degrees of freedom)
and a 95 percent confidence for { = uy — w,is

_ _ S3(8)  Sy(5
X(8) = Y(15) * 1075 % + Yis ) _ 2355+ 1897
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or [—42.52, —4.58]. Since the interval does not contain 0, the observed difference be-
tween the mean miss distance for the test missile and the mean miss distance for the
simulated missile is statistically significant. The practical significance of such a differ-
ence must be determined by the relevant SMEs.

Two difficulties with the above replication approach are that it may require a
large amount of data (each set of output data produces only one “observation’) and
that it provides no information about the autocorrelation structures of the two out-
put processes (if of interest).

5.6.3 Time-Series Approaches

In this section we briefly discuss three time-series approaches for comparing model
output data with system output data. [A time series is a finite realization of a sto-
chastic process. For example, the delays D, D,, . . . , D,, from a queueing model
(see Example 5.37) or system form a time series.] These approaches require only
one set of each type of output data and may also yield information on the auto-
correlation structures of the two output processes. Thus, the two difficulties of the
replication approach mentioned above are not present here. There are, however,
other significant difficulties.

The spectral-analysis approach [see Fishman and Kiviat (1967) and Naylor
(1971, p. 247)] proceeds by computing the sample spectrum, i.e., the Fourier
cosine transformation of the estimated autocovariance function, of each output
process and then using existing theory to construct a confidence interval for the
difference of the logarithms of the two spectra. This confidence interval can po-
tentially be used to assess the degree of similarity of the two autocorrelation
functions. Two drawbacks of this approach are that it requires that the output
processes be covariance-stationary (an assumption generally not satisfied in
practice), and that a high level of mathematical sophistication is required to
apply it. It is also difficult to relate this type of confidence interval to the validity
of the simulation model.

Spectral analysis is a nonparametric approach in that it makes no assumptions
about the distributions of the observations in the time series. Hsu and Hunter (1977)
suggest an alternative approach, which consists of fitting a parametric time-series
model [see Box, Jenkins, and Reinsel (2008)] to each set of output data and then
applying a hypothesis test to see whether the two models appear to be the same. As
stated above, we believe that a hypothesis-test approach is less desirable than one
based on a confidence interval.

Chen and Sargent (1987) give a method for constructing a confidence interval
for the difference between the steady-state mean of a system and the corresponding
steady-state mean of the simulation model, based on Schruben’s standardized
time-series approach (see Sec. 9.5.3). An attractive feature of the method, com-
pared with the approach in Sec. 5.6.2, is that only one set of output data is needed
from the system and one set from the model. The method does, however, require
that the two sets of output data be independent and satisfy certain other
assumptions.
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5.6.4 Other Approaches

Kleijnen, Bettonvil, and Van Groenendaal (1998) developed a hypothesis test
based on regression analysis to test the composite null hypothesis that the model
mean is equal to the system mean and the model variance is equal to the system
variance, in the case of a frace-driven simulation model (see Sec 5.6.1). Their
test assumes that n (normally distributed) IID observations are available from the
system and n (normally distributed) IID observations are available from the
model, with n = 3. Therefore, it would have to be applied in the same context as
in Sec. 5.6.2. They evaluate the statistical properties of the test (i.e., the proba-
bility of a Type I error and the power) by performing experiments with the
M/M/1 queue.

Kleijnen, Cheng, and Bettonvil (2000, 2001) developed a distribution-free
hypothesis test based on bootstrapping [see, e.g., Efron and Tibshirani (1993)] to
test the null hypothesis that the model mean is equal to the system mean, in the case
of a trace-driven simulation model. Their test assumes that n IID observations are
available from the system and sn IID observations are available from the model,
with n = 3 and s a positive integer (e.g., 10) that is chosen by the user. Therefore, it
would have to be applied in the same context as in Sec. 5.6.2. They evaluate the sta-
tistical properties of the test by performing experiments with the M/M/1 queue and
other queueing systems.

Once again, we believe that it is preferable to use a confidence interval rather
than a hypothesis test to validate a simulation model.

PROBLEMS

5.1. Asstated in Sec. 5.4.1, care must be taken that data collected on a system are represen-
tative of what one actually wants to model. Discuss this potential problem with regard
to a study that will involve observing the efficiency of workers on an assembly line for
the purpose of building a simulation model.

5.2. Discuss why validating a model of a computer system might be easier than validating a
military combat model. Assume that the computer system of interest is similar to an
existing one.

5.3. If one constructs a confidence interval for { = w, — u,, using the confidence-interval
approach of Sec. 5.6.2, which of the following outcomes are possible?

Statistically Practically
significant significant
(a) Yes Yes
(b) Yes No
(©) Yes ?
(d) No Yes
(e) No No

Q) No ?
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5.4.

5.5.

5.6.

5.7.

5.8.

5.9.

Use the Welch approach with m = 5 and n = 10 to construct a 90 percent confidence
interval for { = w, — uy, given the following data:

X’s: 092,091,057, 0.86, 0.90
Y’s: 0.28,0.32,0.48, 0.49, 0.70, 0.51, 0.39, 0.28, 0.45, 0.57

Is the confidence interval statistically significant?

Suppose that you are simulating a single-server queueing system (see Sec. 1.4) with
exponential interarrival times and would like to perform a sensitivity analysis to deter-
mine the effect of using gamma versus lognormal (see Sec. 6.2.2) service times.
Discuss how you would use the method of common random numbers (see Sec. 11.2) to
make the analysis more statistically precise. What relationship does your method have
to the correlated inspection approach?

Repeat the analysis of Example 5.41 if the Y;’s are replaced by the Y}’s from Table 5.7.
Comment on the efficacy of the two confidence intervals.

Suppose that a simulation model is built for a manufacturing system consisting of a
large number of machines in series separated by buffers (queues). Since the computer
execution time of the model is excessive, it is decided to divide the model into two
submodels. The first submodel is run and the departure time of each part (and any other
required attributes) is written to a file. The second submodel is executed by driving it
with the information stored in the file. Discuss the legitimacy of this modeling
approach.

Construct empirical distribution functions (see the definition in Sec. 6.2.4) for the 8 test
miss distances and 15 simulation miss distances in Table 5.4, and then plot both func-
tions on the same graph. Based on this graph, does the test or simulation miss distances
tend to be smaller?

Construct box plots (see Sec. 6.4.3) for the 8 test miss distances and 15 simulation miss
distances in Table 5.4. Based on these plots, which miss distances have a larger mean
(central tendency) and which miss distances have a larger variance (spread)?



CHAPTER 6

Selecting Input Probability
Distributions

Recommended sections for a first reading: 6.1, 6.2, 6.4 through 6.7, 6.11

6.1
INTRODUCTION

To carry out a simulation using random inputs such as interarrival times or demand
sizes, we have to specify their probability distributions. For example, in the simula-
tion of the single-server queueing system in Sec. 1.4.3, the interarrival times were
taken to be IID exponential random variables with a mean of 1 minute; the demand
sizes in the inventory simulation of Sec. 1.5 were specified to be 1, 2, 3, or 4 items
with respective probabilities &, 1, 3, and §. Then, given that the input random vari-
ables to a simulation model follow particular distributions, the simulation proceeds
through time by generating random values from these distributions. Chapters 7
and 8 discuss methods for generating random values from various distributions
and processes. Our concern in this chapter is with how the analyst might go about
specifying these input probability distributions.

Almost all real-world systems contain one or more sources of randomness, as
illustrated in Table 6.1. Furthermore, in Figs. 6.1 through 6.4 we show histograms
for four data sets taken from actual simulation projects. Figure 6.1 corresponds to
890 machine processing times (in minutes) for an automotive manufacturer. It can
be seen that the histogram has a longer right tail (positive skewness) and that the
minimum value is approximately 25 minutes. In Fig. 6.2 we show a histogram for
219 interarrival times (in minutes) to a drive-up bank (see Example 6.4). Figure 6.3
displays a histogram for 856 ship-loading times (in days) (see Example 6.17).
Finally, in Fig. 6.4 we give a histogram for the number of yards of paper (scaled for
confidentiality reasons) on 1000 large rolls of paper used to make facial or bath-
room tissue. In this case the histogram has a longer left tail (negative skewness).

279
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TABLE 6.1
Sources of randomness for common simulation applications

Type of system Sources of randomness

Manufacturing Processing times, machine times to failure,
machine repair times

Defense-related Arrival times and payloads of missiles or
airplanes, outcome of an engagement, miss
distances for munitions

Communications Interarrival times of messages, message types,
message lengths

Transportation Ship-loading times, interarrival times of
customers to a subway

Note that none of the four histograms has a symmetric shape like that of a normal
distribution, despite the fact that many simulation practitioners and simulation
books widely use normal input distributions.

We saw in Sec. 4.7 that it is generally necessary to represent each source of
system randomness by a probability distribution (rather than just its mean) in the
simulation model. The following example shows that failure to choose the “correct”
distribution can also affect the accuracy of a model’s results, sometimes drastically.

EXAMPLE 6.1. A single-server queueing system (e.g., a single machine in a factory)
has exponential interarrival times with a mean of 1 minute. Suppose that 200 service
times are available from the system, but their underlying probability distribution is

0.20 -
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FIGURE 6.1
Histogram of 890 machine processing times for an automotive manufacturer.
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FIGURE 6.2
Histogram of 219 interarrival times to a drive-up bank.
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FIGURE 6.3
Histogram of 856 ship-loading times.
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FIGURE 6.4

Histogram of the yardages for 1000 large rolls of paper for a household-

products manufacturer.

unknown. Using an approach to be discussed in Sec. 6.5, we “fit” the “best” exponential,
gamma, Weibull, lognormal, and normal distributions (see Sec. 6.2.2 for a discussion of
these distributions) to the observed service-time data. (In the case of the exponential dis-
tribution, we chose the mean 3 so that the resulting distribution most closely “resembled”
the available data.) We then made 100 independent simulation runs (i.e., different random
numbers were used for each run, as discussed in Sec. 7.2) of the queueing system, using
each of the five fitted distributions. (For the normal distribution, if a service time was
negative, then it was generated again.) Each of the 500 simulation runs was continued
until 1000 delays in queue were collected. A summary of the results from these simula-
tion runs is given in Table 6.2. Note in the second column of the table that the average
of the 100,000 delays is given for each of the service-time distributions (see Prob. 6.27).
As we will see in Sec. 6.7, the Weibull distribution actually provides the best model
for the service-time data. Thus, the average delay for the real system should be close
to 4.36 minutes. On the other hand, the average delays for the normal and lognormal

TABLE 6.2
Simulation results for the five service-time distributions (in minutes where appropriate)

Service-time Average delay Average number Proportion
distribution in queue in queue of delays =20
Exponential 6.71 6.78 0.064
Gamma 4.54 4.60 0.019
Weibull 4.36 4.41 0.013
Lognormal 7.19 7.30 0.078

Normal 6.04 6.13 0.045
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distributions are 6.04 and 7.19 minutes, respectively, corresponding to model output
errors of 39 percent and 65 percent. This is particularly surprising for the lognormal dis-
tribution, since it has the same general shape (i.e., skewed to the right) as the Weibull
distribution. However, it turns out that the lognormal distribution has a “thicker” right tail,
which allows larger service times and delays to occur. The relative differences between
the “tail probabilities” in column 4 of the table are even more significant. The choice of
probability distributions can evidently have a large impact on the simulation output and,
potentially, on the quality of the decisions made with the simulation results.

If it is possible to collect data on an input random variable of interest, these data
can be used in one of the following approaches to specify a distribution (in increas-
ing order of desirability):

1. The data values themselves are used directly in the simulation. For example, if
the data represent service times, then one of the data values is used whenever a
service time is needed in the simulation. This is sometimes called a trace-driven
simulation.

2. The data values themselves are used to define an empirical distribution function
(see Sec. 6.2.4) in some way. If these data represent service times, we would
sample from this distribution when a service time is needed in the simulation.

3. Standard techniques of statistical inference are used to “fit” a theoretical distri-
bution form (see Example 6.1), e.g., exponential or Poisson, to the data and to
perform hypothesis tests to determine the goodness of fit. If a particular theoret-
ical distribution with certain values for its parameters is a good model for the
service-time data, then we would sample from this distribution when a service
time is needed in the simulation.

Two drawbacks of approach 1 are that the simulation can only reproduce what
has happened historically and that there is seldom enough data to make all the de-
sired simulation runs. Approach 2 avoids these shortcomings since, at least for con-
tinuous data, any value between the minimum and maximum observed data points
can be generated (see Sec. 8.3.16). Thus, approach 2 is generally preferable to ap-
proach 1. However, approach 1 does have its uses. For example, suppose that it is
desired to compare a proposed material-handling system with the existing system for
a distribution center. For each incoming order there is an arrival time, a list of the
desired products, and a quantity for each product. Modeling a stream of orders for a
certain period of time (e.g., for 1 month) will be difficult, if not impossible, using
approach 2 or 3. Thus, in this case the existing and proposed systems will often be
simulated using the historical order stream. Approach 1 is also recommended for
model validation when model output for an existing system is compared with the
corresponding output for the system itself. (See the discussion of the correlated
inspection approach in Sec. 5.6.1.)

If a theoretical distribution can be found that fits the observed data reasonably
well (approach 3), then this will generally be preferable to using an empirical dis-
tribution (approach 2) for the following reasons:

* An empirical distribution function may have certain “irregularities,” particularly
if only a small number of data values are available. A theoretical distribution, on
the other hand, “smooths out” the data and may provide information on the over-
all underlying distribution.
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* If empirical distributions are used in the usual way (see Sec. 6.2.4), it is not possi-
ble to generate values outside the range of the observed data in the simulation (see
Sec. 8.3.16). This is unfortunate, since many measures of performance for simu-
lated systems depend heavily on the probability of an “extreme” event’s occurring,
e.g., generation of a very large service time. With a fitted theoretical distribution,
however, values outside the range of the observed data can be generated.

* There may be a compelling physical reason in some situations for using a certain
theoretical distribution form as a model for a particular input random variable
(see, for example, Sec. 6.12.1). Even when we are fortunate enough to have this
kind of information, it is a good idea to use observed data to provide empirical
support for the use of this particular distribution.

* A theoretical distribution is a compact way of representing a set of data values.
Conversely, if n data values are available from a continuous distribution, then 2n
values (e.g., data and corresponding cumulative probabilities) must be entered
and stored in the computer to represent an empirical distribution in simulation
packages. Thus, use of an empirical distribution will be cumbersome if the data
set is large.

A theoretical distribution is easier to change. For example, suppose that a set of
interarrival times is found to be modeled well by an exponential distribution with
amean of 1 minute. If we want to determine the effect on the simulated system of
increasing the arrival rate by 10 percent, then all we have to do is to change the
mean of the exponential distribution to 0.909.

There are definitely situations for which no theoretical distribution will provide
an adequate fit for the observed data, including the following:

* The data are a mixture of two or more heterogeneous populations (see the discus-
sion of machine repair times in Sec. 6.4.2).

* The times to perform some task have been significantly rounded (effectively mak-
ing the data discrete), and there are not enough distinct values in the sample to
allow any continuous theoretical distribution to provide a good representation.

In situations where no theoretical distribution is appropriate, we recommend using
an empirical distribution. Another possible drawback of theoretical distributions
(e.g., lognormal) is that arbitrarily large values can be generated, albeit with a very
small probability. Thus, if it is known that a random variable can never take on val-
ues larger than b, then it might be desirable to truncate the fitted theoretical distrib-
ution at b (see Sec. 6.8). For example, it might be known that a service time in a
bank is extremely unlikely to exceed 15 minutes.

The remainder of this chapter discusses various topics related to the selection of
input distributions. Section 6.2 discusses how theoretical distributions are parame-
terized, provides a compendium of relevant facts on most of the commonly used
continuous and discrete distributions, and discusses how empirical distributions can
be specified. In Sec. 6.3 we present techniques for determining whether the data are
independent observations from some underlying distribution, which is a requirement
of many of the statistical procedures in this chapter. In Secs. 6.4 through 6.6 we
discuss the three basic activities in specifying a theoretical distribution on the basis
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of observed data. The ExpertFit distribution-fitting software and a comprehensive
example are discussed in Sec. 6.7. In Sec. 6.8 we indicate how certain of the theo-
retical distributions, e.g., gamma, Weibull, and lognormal, can be “shifted” away
from O to make them better fit our observed data in some cases; we also discuss
truncated distributions. We treat Bézier distributions, which are a fourth way to
specify a distribution based on observed data, in Sec. 6.9. In Sec. 6.10 we describe
how multivariate distributions are specified and estimated when observed data are
available. In Sec. 6.11 we describe several possible methods for specifying input
distributions when no data are available. Several useful probabilistic models for de-
scribing the manner in which “customers” arrive to a system are given in Sec. 6.12,
while in Sec. 6.13 we present techniques for determining whether observations
from different sources are homogeneous and can be merged.

The graphical plots and goodness-of-fit tests presented in this chapter were
developed using the ExpertFit distribution-fitting software (see Sec. 6.7).

6.2
USEFUL PROBABILITY DISTRIBUTIONS

The purpose of this section is to discuss a variety of distributions that have been found
to be useful in simulation modeling and to provide a unified listing of relevant prop-
erties of these distributions [see also Forbes et al. (2011); Johnson, Kotz, and
Balakrishnan (1994, 1995); and Johnson, Kotz, and Kemp (1992)]. Section 6.2.1
provides a short discussion of common methods by which continuous distributions
are defined, or parameterized. Then Secs. 6.2.2 and 6.2.3 contain compilations of
several continuous and discrete distributions. Finally, Sec. 6.2.4 suggests how the
data themselves can be used directly to define an empirical distribution.

6.2.1 Parameterization of Continuous Distributions

For a given family of continuous distributions, e.g., normal or gamma, there are
usually several alternative ways to define, or parameterize, the probability density
function. However, if the parameters are defined correctly, they can be classified, on
the basis of their physical or geometric interpretation, as being one of three basic
types: location, scale, or shape parameters.

A location parameter vy specifies an abscissa (x axis) location point of a distri-
bution’s range of values; usually vy is the midpoint (e.g., the mean u for a normal
distribution) or lower endpoint (see Sec. 6.8) of the distribution’s range. (In the lat-
ter case, location parameters are sometimes called shift parameters.) As y changes,
the associated distribution merely shifts left or right without otherwise changing.
Also, if the distribution of a random variable X has a location parameter of 0, then
the distribution of the random variable ¥ = X + 7y has a location parameter of 7.

A scale parameter 3 determines the scale (or unit) of measurement of the val-
ues in the range of the distribution. (The standard deviation o is a scale parameter
for the normal distribution.) A change in 3 compresses or expands the associated
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distribution without altering its basic form. Also, if the distribution of the random
variable X has a scale parameter of 1, then the distribution of the random variable
Y = BX has a scale parameter of 3.

A shape parameter o determines, distinct from location and scale, the basic
form or shape of a distribution within the general family of distributions of interest.
A change in « generally alters a distribution’s properties (e.g., skewness) more fun-
damentally than a change in location or scale. Some distributions (e.g., exponential
and normal) do not have a shape parameter, while others (e.g., beta) may have two.

6.2.2 Continuous Distributions

Table 6.3 gives information relevant to simulation modeling applications for 13 con-
tinuous distributions. Possible applications are given first to indicate some (certainly
not all) uses of the distribution [see Hahn and Shapiro (1994) and Lawless (2003) for
other applications]. Then the density function and distribution function (if it exists in
simple closed form) are listed. Next is a short description of the parameters, includ-
ing their possible values. The range indicates the interval where the associated ran-
dom variable can take on values. Also listed are the mean (expected value), variance,
and mode, i.e., the value at which the density function is maximized. MLE refers to
the maximum-likelihood estimator(s) of the parameter(s), treated later in Sec. 6.5.
General comments include relationships of the distribution under study to other dis-
tributions. Graphs are given of the density functions for each distribution. The nota-
tion following the name of each distribution is our abbreviation for that distribution,
which includes the parameters. The symbol ~ is read “is distributed as.”

Note that we have included the less familiar Johnson S,, Johnson S, log-
logistic, Pearson type V, and Pearson type VI distributions, because we have found
that these distributions often provide a better fit to data sets than standard distribu-
tions such as gamma, lognormal, and Weibull.

TABLE 6.3
Continuous distributions

Uniform U(a, b)
Possible Used as a “first” model for a quantity that is felt to be randomly varying between
applications a and b but about which little else is known. The U(0, 1) distribution is essential

in generating random values from all other distributions (see Chaps. 7 and 8).

1

ifa=x=b

Density fxy=9b—a
(See Fig. 6.5) 0 otherwise
0 ifx<a
L X —a .
Distribution F(x) = P fa=x=b
—a
1 ifb<x
Parameters a and b real numbers with a < b; a is a location parameter, b — a is a scale

parameter
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TABLE 6.3 (continued)

Uniform U(a, b)
Range [a, b]
M. a-+b
ean
2
. (b — a)’
V -
ariance 2
Mode Does not uniquely exist
MLE a = min X, b = max X,
l=i=n l=i=n
Comments 1. The U(0, 1) distribution is a special case of the beta distribution (when
o =a,=1).
2. If X ~ U(0, 1) and [x, x + Ax] is a subinterval of [0, 1] with Ax = 0,
x+Ax
P(XE[x,x-i-Ax]):J ldy = (x + Ax) — x = Ax
which justifies the name “uniform.”
f
1/(b—a)
! L FIGURE 6.5
0 a b X U(a, b) density function.
Exponential expo(f3)
Possible Interarrival times of “customers” to a system that occur at a constant rate, time
applications to failure of a piece of equipment.
1
. — ¢ P ifx=0
Density fx)y =48
(see Fig. 6.6) 0 otherwise
o =™ ifx=0
Distribution F(x) = .
0 otherwise
Parameter Scale parameter 8 > 0
Range [0, )
Mean B
Variance B?
Mode 0

(continued)
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TABLE 6.3 (continued)

Exponential expo(f3)
MLE B = X(n)
Comments 1. The expo(B) distribution is a special case of both the gamma and Weibull
distributions (for shape parameter = 1 and scale parameter 3 in both cases).
2. If X, X,,..., X, are independent expo(8) random variables, then X, +

X, + .-+ X, ~ gamma(m, B), also called the m-Erlang(B) distribution.
3. The exponential distribution is the only continuous distribution with the
memoryless property (see Prob. 4.30).

Jx)
1.2
1.0
0.8
0.6
0.4
0.2
L 1
0 5 6 X
FIGURE 6.6
expo(1) density function.
Gamma gamma(a, )
Possible Time to complete some task, e.g., customer service or machine repair
applications
Cayas le*x/B
. 7/3 ifx>0
Density fx) = I'(a)
(see Fig. 6.7) 0 otherwise

where I'(«) is the gamma function, defined by I'(z) = [ 1= 'e~"dt for any real
number z > 0. Some properties of the gamma function: I'(z + 1) = zI['(z)
for any z > 0, I'(k + 1) = k! for any nonnegative integer k, I'(k + 1) =
Va-1-3-5-.-(2k — 1)/2* for any positive integer k, ['(1/2) = V&
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gamma(a, B)
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Distribution

If « is not an integer, there is no closed form. If « is a positive integer, then

S /By

1 - ifx>0
F(x) = j=0 J !
0 otherwise
Parameters Shape parameter « > 0, scale parameter 8 > 0
Range [0, )
Mean af3
Variance af?
Mode Bla—1Difa=1,0ifa <1
MLE The following two equations must be satisfied:
Z InX;
B+ ¥a ="— af=Xn
n
which could be solved numerically. [W (&) = I''(&)/I'(&) and is called the
digamma function; I"" denotes the derivative of I'.] Alternatively, approxima-
tions to & and 3 can be obtained by letting 7 = [In X(n) — =", In X;/n] ',
using Table 6.21 (see App. 6A) to obtain & as a function of 7, and letting
B = X(n)/a. [See Choi and Wette (1969) for the derivation of this procedure
and of Table 6.21.]
J)
1.2+
1.0 |
a=3
0.8 -
0.6 -
/ o=l
=2
0.4 “
/ “m?
02
I I I
0 1 2 3 4 5 6 7 X
FIGURE 6.7
gamma(e, 1) density functions. (continued)
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TABLE 6.3 (continued)

Gamma gamma(a, )
Comments 1. The expo(B) and gamma(1, B) distributions are the same.
2. For a positive integer m, the gamma(m, () distribution is called the
m-Erlang(B) distribution.
3. The chi-square distribution with k df is the same as the gamma(k/2, 2)
distribution.
4. If X, X,, ..., X, are independent random variables with X; ~ gamma(c,, 8),
then X, + X, + -+ + X, ~ gamma(a, + o, + - -+ + @, B).
5. If X, and X, are independent random variables with X; ~ gamma(a;, 8), then
X,/(X, + X,) ~ beta(a,, a).
6. X ~ gamma(a, B) if and only if ¥ = 1/X has a Pearson type V distribution
with shape and scale parameters « and 1/, denoted PT5(a, 1/8).
7.
o ifa<l1
1
lim f(x) = ¢ — ifa=1
x—0 ﬁ
0 ifa>1
Weibull Weibull(a, )
Possible Time to complete some task, time to failure of a piece of equipment; used as a
applications rough model in the absence of data (see Sec. 6.11)
—aa1,-(/B)" ifx>0
Density fx) = {aﬁ e n

(see Fig. 6.8)
Distribution

Parameters

Range

Mean

Variance

Mode

MLE

0 otherwise

Fe) = {1 — e WP fx >0

0 otherwise
Shape parameter « > 0, scale parameter 8 > 0
[0, =)

0
@) -2 Q)]
B(a - l)w ifa=1

0 ifa <1
The following two equations must be satisfied:

n . n n \ /&
> X4In X, > nX, > x4
i=1 1 = - =1

o=t B=\ T
& n n

> X{
i=1

The first can be solved for & numerically by Newton’s method, and the second
equation then gives (8 directly. The general recursive step for the Newton
iterations is

A+ 1/&, — C/B,
1/&1% + (Bka - C/?)/Bi

G =0+
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J)
1.2

=3
1.0 /a

0.6 -

04
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f)
2.00

1.75

1.50

1.25

1.00 -

0.75

0.50

0.25 -

0.00

3.0 35 4.0 X

0.00 0.25 0.50 0.75 1.00
(b

FIGURE 6.8
Weibull(e, 1) density functions.

1.25 1.50 X

(continued)
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TABLE 6.3 (continued)

Weibull Weibull(e, B)
where
Z In X, ., .,
A="—0p B =X% C=>X4%X,
n i=1 i=1
and
H, = > X% (In X,)?
i=1
[See Thoman, Bain, and Antle (1969) for these formulas, as well as for confidence
intervals on the true « and .] As a starting point for the iterations, the estimate
n n 2 ~1/2
. (6/7#){2 (In X,)? — (Zln X,.> /n}
®y = i=1 i=1
n—1
[due to Menon (1963) and suggested in Thoman, Bain, and Antle (1969)] may
be used. With this choice of &, it was reported in Thoman, Bain, and Antle
(1969) that an average of only 3.5 Newton iterations were needed to achieve
four-place accuracy.
Comments 1. The expo() and Weibull(1, B) distributions are the same.

2. X ~ Weibull(a, B) if and only if X* ~ expo(8*) (see Prob. 6.2).

3. The (natural) logarithm of a Weibull random variable has a distribution
known as the extreme-value or Gumbel distribution [see Averill M. Law &
Associates (2013), Lawless (2003), and Prob. 8.1(b)].

4. The Weibull(2, B) distribution is also called a Rayleigh distribution with
parameter 3, denoted Rayleigh(B). If Y and Z are independent normal ran-
dom variables with mean 0 and variance 3* (see the normal distribution), then
X = (Y* + Z%'? ~ Rayleigh(2'/?B).

5. As a — o, the Weibull distribution becomes degenerate at 3. Thus, Weibull
densities for large a have a sharp peak at the mode.

6. The Weibull distribution has a negative skewness when o > 3.6 [see
Fig. 6.8(b)].

7.

® ifa <1
1
li =9 = ifa=1
XI_I}(l)f (€3] 5 if o
0 ifa>1
Normal N(p, o)
Possible Errors of various types, e.g., in the impact point of a bomb; quantities that are the
applications sum of a large number of other quantities (by virtue of central limit theorems)
1 2,2
Density f(x) = ———=¢ "W/ for all real numbers x
210’

(see Fig. 6.9)
Distribution
Parameters

Range

No closed form
Location parameter u € (—%, ), scale parameter o > 0

(700, :)O)



CHAPTER SIX 293

TABLE 6.3 (continued)

Normal N(p, o)
Mean M
Variance a’
Mode I

o n—1 1/2
MLE a=Xm), &=|——5*n)

n

Comments 1. If two jointly distributed normal random variables are uncorrelated, they are

fo
0.5

0.4

0.3

0.2

0.1

also independent. For distributions other than normal, this implication is not
true in general.

2. Suppose that the joint distribution of X,, X,, . .., X,, is multivariate normal
and let u; = E(X;) and C; = Cov(X;, X)). Then for any real numbers a, b,,
b, ...,b,, therandom variable a + b, X, + b,X, + - - - + b, X, has a normal

distribution with mean w = a + 3", b,u; and variance
m m
o’ = > bbC;
i=1 j=1
Note that we need not assume independence of the X.’s. If the X,’s are
independent, then

a? = > b Var(X,)

i=1

3. The N(O, 1) distribution is often called the standard or unit normal distri-
bution.

4. If X,, X,, ..., X, are independent standard normal random variables, then
X2+ X, + -+ + X;? has a chi-square distribution with k df, which is also
the gamma(k/2, 2) distribution.

FIGURE 6.9
N(0, 1) density function. (continued)
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TABLE 6.3 (continued)

Normal N(u, 0%
5. If X ~ N(u, o), then ¢ has the lognormal distribution with scale parameter
e and shape parameter o, denoted LN(, o2).
6. If X ~ N(O, 1), if Y has a chi-square distribution with k df, and if X and Y are
independent, then X/V/'Y/k has a t distribution with k df (sometimes called
Student’s t distribution).
7. If the normal distribution is used to represent a nonnegative quantity (e.g.,
time), then its density should be truncated at x = 0 (see Sec. 6.8).
8. As 0 — 0, the normal distribution becomes degenerate at .
Lognormal LN(u, o)
Possible Time to perform some task [density takes on shapes similar to gamma(e«, 3) and
applications Weibull(e, B) densities for a > 1, but can have a large “spike” close to x = 0
that is often useful]; quantities that are the product of a large number of other
quantities (by virtue of central limit theorem); used as a rough model in the
absence of data (see Sec. 6.11)
1 “nx—w?
. €ex ifx >
Density fx) =9 NV 2mo? P 207

(see Fig. 6.10)

0 otherwise

Distribution No closed form
Parameters Shape parameter oo > 0, scale parameter e > 0
Range [0, )
Mean e’””z/ 2
2 2
Variance e (" — 1)
)
1.0 [ 3
g = 2 1
o=2
0.8 -
0.6
0.4 ff o=l
0.2 1
I I I I 1 . I T =
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 50X
FIGURE 6.10

LN(0, o®) density functions.
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TABLE 6.3 (continued)

Lognormal LN(u, o)
2
Mode et 7
In X; < L
. i=1 N Z (InX; — ) N
MLE o= Lo = | o , MLE for scale parameter = ¢*
n =
n
Comments 1. X ~ LN(u, 0?) if and only if In X ~ N(u, o®). Thus, if one has data X,
X,, ..., X, that are thought to be lognormal, the logarithms of the data points
In X,, In X,, ..., In X, can be treated as normally distributed data for pur-
poses of hypothesizing a distribution, parameter estimation, and goodness-
of-fit testing.
2. As 0 — 0, the lognormal distribution becomes degenerate at e*. Thus,
lognormal densities for small o have a sharp peak at the mode.
3. lim f(x) = 0, regardless of the parameter values.
x—0
Beta beta(a,, a,)
Possible Used as a rough model in the absence of data (see Sec. 6.11); distribution of a
applications random proportion, such as the proportion of defective items in a shipment;
time to complete a task, e.g., in a PERT network
xa171(1 _ _x)“271 )
. —_— ifo<x<1
Density fx) = B(a,,a,)
(see Fig. 6.11) 0 otherwise

Distribution

Parameters

Range

Mean

Variance

Mode

where B(«a,, a,) is the beta function, defined by
1
Bz = [ 1710 = 2 dr
o

for any real numbers z;, > 0 and z, > 0. Some properties of the beta function:

I'(zpI'(z,)

L'z, + z)

No closed form, in general. If either «, or a, is a positive integer, a binomial
expansion can be used to obtain F(x), which will be a polynomial in x, and the

powers of x will be, in general, positive real numbers ranging from 0 through
o+ a, — 1.

B(zy, z) = B(zy, 7)), B(z,2) =

Shape parameters «; > 0 and o, > 0

[0, 1]

@
a + a,

@@

(a, + a))*(a, + a, + 1)

a, — 1

o +a, =2 ifo, >1,a,> 1

Oand 1 ifo, <1,a, <1

0 if(y <lL,a,=1) or if(a;=1a,>1)
1 if(ey=1,a,<1) or if(e;>1,a,=1)

does not uniquely exist ifa, =a, =1 .
auely ! 2 (continued)
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TABLE 6.3 (continued)

Beta beta(a;, a,)

MLE The following two equations must be satisfied:
V(&) — (&, + &) = InG,, W(&,) — W(&, + &) = InG,
where W is the digamma function, G, = (IT\_, X)'", and G, =
[TI/_,(1 — X,)]"/" [see Gnanadesikan, Pinkham, and Hughes (1967)]; note
that G, + G, = 1. These equations could be solved numerically [see Beckman
and Tietjen (1978)], or approximations to &, and &, can be obtained from

Table 6.22 (see App. 6A), which was computed for particular (G,, G,) pairs
by modifications of the methods in Beckman and Tietjen (1978).

Comments 1. The U(0, 1) and beta(1, 1) distributions are the same.
2. If X, and X, are independent random variables with X; ~ gamma(w;, 8), then
X,/(X, + X,) ~ beta(a,, a,).
3. A beta random variable X on [0, 1] can be rescaled and relocated to obtain a
beta random variable on [a, b] of the same shape by the transformation
a+ (b — a)X
4. X ~ beta(e;, ap) if and only if 1 — X ~ beta(a,, a)).
5. X ~ beta(a,, @,) if and only if ¥ = X/(1 — X) has a Pearson type VI dis-
tribution with shape parameters «, «, and scale parameter 1, denoted
PT6(er|, a,, 1).
f) @ =5a=15
3 —
a;=15a,=5
2
1 a; = 1.5, a; =3,
oy = 3 ay = 1.5
| |

(a)
f)
3 ap=2,,=08
a; =08, a,=2
2 o= lap=2 a,=02,a,=08
a; =2 a,=1
1 -
L L L L L L L L L
0 02 04 06 08 10X 0 02 04 06 08 10X
(c) (d)
FIGURE 6.11

beta(e,, ar,) density functions.
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Beta beta(a;, a,)
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6. The beta(l, 2) density is a left triangle, and the beta(2, 1) density is a right

triangle.

% ifa; <1
limf(x) = § o, ifa; =1, lim f(x) =

x—0 x—1

0 ifa,>1

%o ifa, <1
a ifa, =1
0 ifa, > 1

8. The density is symmetric about x = 3 if and only if @, = a,. Also, the mean

and the mode are equal if and only if o, = @, > 1.

Pearson type V PT5(e, B)
Possible Time to perform some task (density takes on shapes similar to lognormal, but
applications can have a larger “spike” close to x = 0)
x @t p=B/x
. . E—— ifx>0
Density fx) =4 B T(a)
(see Fig. 6.12) 0 otherwise
1—-F <l) ifx>0
Distribution F(x) = A\ x
0 otherwise

where F;(x) is the distribution function of a gamma(e, 1/8) random variable

Parameters Shape parameter a > 0, scale parameter 8 > 0

f0
3.6

o

24 -

1.8 -

1.2 -

0.6

0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0

FIGURE 6.12
PT5(e, 1) density functions.

4.5

50 x

(continued)
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TABLE 6.3 (continued)

Pearson type V PT5(e, B)
Range [0, %)
Mean A fora > 1
a—1
BZ
Variance — fora > 2
(¢ — D(a—2)
Mode B
a+ 1
MLE If one has data X,, X,, ..., X,, then fit a gamma(e,, ;) distribution to 1/2(1,
1/X,, ..., 1/X,, resulting in the maximum-likelihood estimators é&; and .
”l:hen theA maximum-likelihood estimators for the PT5(c, B) are & = &, and
B = 1/B; (see comment 1 below).
Comments 1. X ~ PT5(a, B) if and only if ¥ = 1/X ~ gamma(e, 1/B). Thus, the Pearson
type V distribution is sometimes called the inverted gamma distribution.
2. Note that the mean and variance exist only for certain values of the shape
parameter.
Pearson type VI PT6(a,, a,, B)
Possible Time to perform some task
applications
x a]—l
. ) /B) < ifx>0
Density f(x) = § BB(ay, ap)[1 + (x/B)]17 2
(see Fig. 6.13) 0 otherwise
o FB<L) ifx>0
Distribution F(x) = x+ B
0 otherwise
where Fy(x) is the distribution function of a beta(«,, @,) random variable
Parameters Shape parameters «; > 0 and «, > 0, scale parameter 8 > 0
Range [0, =)
a
Mean L fora, > 1
a, — 1
2a,(a; + a, — 1)
Variance B]% for e, > 2
(a, = Dy — 2)
(ay — 1)
Pln =D a, =1
Mode a, + 1
0 otherwise
MLE If one has data X, X,, ..., X, that are thought to be PT6(«,, «,, 1), then fit a

beta(a,, ) distribution to X,/(1 + X,) fori = 1, 2, ..., n, resulting in the
maximum-likelihood estimators &, and &,. Then the maximum-likelihood
estimators for the PT6(«,, a,, 1) (note that 8 = 1) distribution are also &, and
&, (see comment 1 below).
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Pearson type VI PT6(«,, a,, B)
Comments 1. X ~PT6(a,, a,, 1) if and only if ¥ = X/(1 + X) ~ beta(a,, a).
2. If X, and X, are independent random variables with X, ~ gamma(«,, 8) and
X, ~ gamma(a,, 1), then Y = X, /X, ~ PT6(«,, a,, B) (see Prob. 6.3).
3. Note that the mean and variance exist only for certain values of the shape
parameter a,.
J® 1 J)
4 =2 4
3 3
2 2
Ay = 4 ar = 2
1 _ 1
ay = 1
‘/I Il Il Il L |
0 1 2 3 4 5 6+ 0 5 6%
(@)
X X
f(4)__ a1=2 f(4). a1:4
3r- 3
2r ap =4 2 oy =4 5
2 a =
Ly 1
ay =1 a, =1
| L L 1 i il L |
0 1 3 4 5 6+ 0 1 2 3 4 5 6 X
() (d)
FIGURE 6.13
PT6(«,, a,, 1) density functions.
Log-logistic LL(e, B)
Possible Time to perform some task
applications
alx a—1
. % ifx>0
Density f(x) = 9 B[l + (x/B)*]
(see Fig. 6.14) 0 otherwise
1 .
N P —— ifx>0
Distribution Fx)y=41+ (x/B)¢
0 otherwise

Parameters

Shape parameter a > 0, scale parameter 8 > 0

(continued)
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TABLE 6.3 (continued)

Log-logistic LL(a, B)
Range [0, %)
Mean B0 cosecant(6) for a > 1, where 6 = 7/«
Variance B20{2 cosecant(26) — O[cosecant(h)]*} for o > 2
a—1 1/a
B( ) ifa>1
Mode a+1
0 otherwise
MLE Let ¥, = In X,. Solve the following two equations for a and b:
S+ e =2 ©.1)
i=1 2
and .
n Yi —a 1 — e(Yl-*&)/b
S 6
Then the MLEs for the log-logistic distribution are & = 1/a and f = e
Johnson, Kotz, and Balakrishnan (1995, chap. 23) suggest solving Eqgs. (6.1)
and (6.2) by using Newton’s method.
f
1.2 —1
1.0
a=73
0.8 - /
0.6 - a=2
04
a=1
0.2 - 1
a=s
0.0 I I 1
0 1 2 3 4 5 6
FIGURE 6.14

LL(e, 1) density functions.
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TABLE 6.3 (continued)

Log-logistic

LL(e, B)

Comment X ~ LL(«, B) if and only if In X is distributed as a logistic distribution (see
Prob. 8.1) with location parameter In B and scale parameter 1/a. Thus, if one
has data X, X,, . . ., X, that are thought to be log-logistic, the logarithms of
the data points In X, In X,, . . ., In X,, can be treated as having a logistic dis-
tribution for purposes of hypothesizing a distribution, parameter estimation,
and goodness-of-fit testing.

Johnson S JSB(«,, a,, a, b)

ay(b—a M a9
. el ) e 2[ e <b”c)} ifa<x<b
Density f(x) =9 (x—a)b—x)V2m
(see Fig. 6.15) 0 otherwise
xX—a
(0] + a,l ifa<x<b
Distribution Flx) = {a‘ % n(b - x)} ra=
0 otherwise
where ®(x) is the distribution function of a normal random variable with
w=0ando? =1

Parameters Location parameter a € (—%, ®), scale parameter b — a (b > a), shape
parameters o, € (—, ®) and a, > 0

Range la, b]

Mean All moments exist but are extremely complicated [see Johnson, Kotz, and
Balakrishnan (1994, p. 35)]

1
Mode The density is bimodal when o, < —=and
Y P V2
1 —2a3
| < ————= = 2a, tanh ' (V1 — 2a2)
@,
[tanh~" is the inverse hyperbolic tangent]; otherwise the density is unimodal. The
equation satisfied by any mode x, other than at the endpoints of the range, is
2(x —a -
x—a) =1+ aa,+d ln(x a)
b—a b—x
Comments 1. X ~JSB(«a,, ay, a, b) if and only if

X —
o + a ln(#) ~N(0, 1)

2. The density function is skewed to the left, symmetric, or skewed to the right
ifa,; >0, =0,ora <O0,respectively.

3. lim f(x) = lim f(x) = O for all values of «, and «,.
x—a x—b

4. The four parameters may be estimated using a number of methods [see, for

example, Swain, Venkatraman, and Wilson (1988) and Slitker and Shapiro
(1980)].

(continued)
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TABLE 6.3 (continued)

J)
6 -

ap = _3,[12:2

0.0 0.1 0.2 0.3

a; =0.533,a, = 0.5

0.4

a; = 0533, a, = 0.8

0.5 0.6 0.7 0.8 0.9 1.0 ¥
(@)

ayp = 0,&2:0.5

a1=0,a2=0.8 \

0 | | I

0.0 0.1 0.2 0.3

FIGURE 6.15
JSB(«;, a,, 0, 1) density functions.

0.4

0.5 0.6 0.7 0.8 0.9 1.0~
(b)
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TABLE 6.3 (continued)
Johnson S, JSU(ey, @5, v, B)

Density fx) = ® e";{“**“z In [%* \ ()%)2"'1]}2 for —o0 < x <
(see Fig. 6.16) V2 Vi(x — y)* + B

o Xy x—yY
Distribution F(x) = ®ya; + a,1n T + 3 +1 for —o0 < x <
Parameters Location parameter y € (—, ®), scale parameter 8 > 0, shape parameters
a, € (—%,%)and a, >0

Range (—oe, )

) a
Mean vy — Be'/? sinh (*‘), where sinh is the hyperbolic sine

@

Mode The equation satisfied by the mode, other than at the endpoints of the range, is

v + By, where y satisfies
y+ alaz\/)ﬁ + a%mln(y + \/ﬁ) =0

Comments 1. X ~JSU(«,, a,, v, B) if and only if

_ — o\
o +azln[x Y + (X y) +1
B B
2. The density function is skewed to the left, symmetric, or skewed to the right
ifa; >0,a, =0, ora, <0, respectively.
3. The four parameters may be estimated by a number of methods [see, for exam-
ple, Swain, Venkatraman, and Wilson (1988) and Slifker and Shapiro (1980)].

~ N(0, 1)

J)

<
o0
T

a;=0,a, =2

0.5 a1:2,a2:2

ay = 3,(12 =2
0.3

(@)

FIGURE 6.16
JSU(e;, a,, 0, 1) density functions.

(continued)
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TABLE 6.3 (continued)

S
0.8 -
0.7
0.6 -
05
04
03|
02
0.1
0.0 : —
—4 10 12 X
FIGURE 6.16
(continued)
Triangular triang(a, b, m)
Possible Used as a rough model in the absence of data (see Sec. 6.11)
applications
2(x — a) .
i — ifa=x=m
(b —a)(m — a)
i = 2(b —
Density . fx) ( Xx) m<x=b
(see Fig. 6.17) (b —a)(b —m)
0 otherwise
0 ifx<a
(x — a)’ .
m ifa=x=m
Distribution F(x) = b — x)
- iftm<x=0>
b-ayb-m 7
1 ifb <x
Parameters a, b, and m real numbers with @ < m < b. a is a location parameter, b — a is a
scale parameter, m is a shape parameter
Range [a, D]
at+b+m
Mean e

3
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TABLE 6.3 (continued)

Triangular triang(a, b, m)

. @+ b+ m?—ab — am — bm

Variance

18

Mode m

MLE Our use of the triangular distribution, as described in Sec. 6.11, is as a rough
model when there are no data. Thus, MLEs are not relevant.

Comment The limiting cases as m — b and m — a are called the right triangular and left
triangular distributions, respectively, and are discussed in Prob. 8.7. Fora = 0
and b = 1, both the left and right triangular distributions are special cases of
the beta distribution.

)
2/(b —a)

| FIGURE 6.17
0 a m b X triang(a, b, m) density function.

6.2.3 Discrete Distributions

The descriptions of the six discrete distributions in Table 6.4 follow the same pattern
as for the continuous distributions in Table 6.3.

6.2.4 Empirical Distributions

In some situations we might want to use the observed data themselves to specify
directly (in some sense) a distribution, called an empirical distribution, from which
random values are generated during the simulation, rather than fitting a theoretical
distribution to the data. For example, it could happen that we simply cannot find a
theoretical distribution that fits the data adequately (see Secs. 6.4 through 6.6). This
section explores ways of specifying empirical distributions.

For continuous random variables, the type of empirical distribution that can be
defined depends on whether we have the actual values of the individual original
observations X, X,, . . ., X, rather than only the number of X;’s that fall into each of
several specified intervals. (The latter case is called grouped data or data in the
form of a histogram.) If the original data are available, we can define a continuous,
piecewise-linear distribution function F by first sorting the X;’s into increasing
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TABLE 6.4
Discrete distributions

Bernoulli

Bernoulli(p)

Possible applications

Mass (see Fig. 6.18)

Distribution

Parameter
Range
Mean

Variance

Mode

MLE

Comments

p)

Random occurrence with two possible outcomes; used to generate other dis-

crete random variates, e.g., binomial, geometric, and negative binomial

1-p ifx=20

px) =<p ifx=1
0 otherwise
0 ifx <0
Fxy=41—p ifo=x<1
1 ifl =x
pE 1
{0, 1}
p
p(l —p)
0 ifp <3
Oand 1 ifp=1
1 ifp > %
p=X(n)
1. A Bernoulli(p) random variable X can be thought of as the outcome of

an experiment that either “fails” or “succeeds.” If the probability of
success is p, and we let X = 0O if the experiment fails and X = 1 if it
succeeds, then X ~ Bernoulli(p). Such an experiment, often called a
Bernoulli trial, provides a convenient way of relating several other dis-
crete distributions to the Bernoulli distribution.

. If tis a positive integer and X, X,, . . ., X, are independent Bernoulli(p)

random variables, then X, + X, + --- + X, has the binomial distribu-
tion with parameters ¢ and p. Thus, a binomial random variable can be
thought of as the number of successes in a fixed number of independent
Bernoulli trials.

. Suppose we begin making independent replications of a Bernoulli trial

with probability p of success on each trial. Then the number of failures
before observing the first success has a geometric distribution with
parameter p. For a positive integer s, the number of failures before

FIGURE 6.18
Bernoulli(p) mass function (p > 0.5

1 X here).



TABLE 6.4 (continued)

Bernoulli
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Bernoulli(p)

Discrete uniform

observing the sth success has a negative binomial distribution with
parameters s and p.

4. The Bernoulli(p) distribution is a special case of the binomial distribu-
tion (with = 1 and the same value for p).

DUG, )

Possible applications

Mass (see Fig. 6.19)

Distribution

Parameters
Range

Mean

Variance

Mode
MLE

Comment

px)

VG —i+1)

Random occurrence with several possible outcomes, each of which is
equally likely; used as a “first” model for a quantity that is varying
among the integers i through j but about which little else is known

1

p(x) = ]_17_"_1 ifxE{i,i+1,...,j}
0 otherwise
0 ifx <i
[x] —i+1 )
Fo = 5 ifisx=)
J — 1
1 ifj <x

where | x| denotes the largest integer <x

i and j integers with i = j; i is a location parameter, j — i is a scale
parameter

{i,i+1,...,]j}

i+j
2
G—i+1D>—1
12
Does not uniquely exist
f=min e = max X,

The DU(0, 1) and Bernoulli(}) distributions are the same.

|
j+2 * FIGURE 6.19
1 DU(i, j) mass function.
(continued)
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TABLE 6.4 (continued)

Binomial bin(z, p)

Possible applications Number of successes in 7 independent Bernoulli trials with probability p of
success on each trial; number of “defective” items in a batch of size t;
number of items in a batch (e.g., a group of people) of random size;
number of items demanded from an inventory

(t>p‘(1 -p)c ifxe {0,1,...,1}
p(x) =

Mass (see Fig. 6.20) X

0 otherwise

t
where ( ) is the binomial coefficient, defined by
x

(t)_ !
x) x!(t — x)!

0 ifx <0
L]
Distribution F(x) = Z(E)pi(l - p) if0=x=1
i=0
1 ift <x
Parameters t a positive integer, p € (0, 1)
Range {0,1,...,1}
fos | =5 ool =10
’ p=0.1 ’ p=0.1
05 0.5
04+ 0.4
03 03
02 0.2
0.1 0.1
0 I 1 0 I L1
0 1 2 3 4 5 X 0123456718910~
péxé_ 1=5 péxé_ =10
’ 0.5 ’ p=0.5
0.5 05
0.4+ 04 r
03+ 03
0.2 0.2
0.1 | 0.1 - |
oLl ] oLl | | |
0 1 2 3 4 5 X 0123456718910~
FIGURE 6.20

bin(¢, p) mass functions.
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Binomial
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bin(t, p)

Mean

Variance

Mode

MLE

Comments

Geometric

ip
ip(1 = p)
{p(t + 1) — landp(r + 1) if p(t + 1) is an integer
[p(t+1)] otherwise
If ¢ is known, then p = X(n)/t. If both t and p are unknown, then 7 and p

exist if and only if X(n) > (n — 1)S%(n)/n = V(n). Then the following
approach could be taken. Let M = max X, and fork =0, 1,..., M, let

I=i=n
f, be the number of X;’s = k. Then it can be shown that 7 and p are the
values for ¢ and p that maximize the function

M
g(t,p) :kaln(z —k+ 1)+ ntln(l — p) + nX(n) In =
k=1

subject to the constraints thatt € {M, M + 1,...} and 0 <p < 1.1Itis
easy to see that for a fixed value of ¢, say #,, the value of p that maximizes
&(ty, p)is X(n)/ty, so 1 and p are the values of r and X(n) /¢ that lead to
the largest value of g[t, X(n)/t] fort € {M,M + 1,...,M'}, where
M’ is given by [see DeRiggi (1983)]
e L X(m(M — 1) J
1 — [V(n)/X(n)]
Note also that g[t, X(n)/t] is a unimodal function of ¢.
1. If Y|, Y,, ..., Y, are independent Bernoulli(p) random variables, then
Y, +Y,+ -+ Y ~bin(, p).
2. If X,, X,, ..., X, are independent random variables and X; ~ bin(z,, p),
thenX, + X, +---+ X, ~bin(t, + 1, + - +1,p).
3. The bin(t, p) distribution is symmetric if and only if p = %
4. X ~ bin(t, p) if and only if t — X ~ bin(t, 1 — p).
5. The bin(1, p) and Bernoulli(p) distributions are the same.

geom(p)

Possible applications

Mass (see Fig. 6.21)

Distribution

Parameter

Range

Mean

Number of failures before the first success in a sequence of independent
Bernoulli trials with probability p of success on each trial; number of items
inspected before encountering the first defective item; number of items in a
batch of random size; number of items demanded from an inventory

) = {p(l -p)y  ifx€{0,1,...}
P 0 otherwise

1— (1 —p ifx=0
F(x):{ I-p if x

0 otherwise
p €0, 1)
{0, 1,...}
L=p
p

(continued)
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TABLE 6.4 (continued)

Geometric geom(p)
] —
Variance 3 P
p
Mode 0
1
MLE p==—
X(n) + 1
Comments 1. If Y}, Y,, ... is a sequence of independent Bernoulli(p) random vari-
ables and X = min{i: ¥, = 1} — 1, then X ~ geom(p).
2. If X, X,,..., X, are independent geom(p) random variables, then
X, + X, + .-+ + X, has a negative binomial distribution with parame-
ters s and p.
3. The geometric distribution is the discrete analog of the exponential dis-
tribution, in the sense that it is the only discrete distribution with the
memoryless property (see Prob. 4.31).
4. The geom(p) distribution is a special case of the negative binomial dis-
tribution (with s = 1 and the same value for p).
p(x) _
0.6 - p =025
0.5
04r
03
0.2
0.1 ‘ |
| | I I | 1 1
0
o 1 2 3 4 5 6 7 8 9 10+
px) B
0.6 - p =050
0.5
04
03
0.2
0.1 - |
0 | L FIGURE 6.21
0 1 2 3 4 5 6 7 8 9 10X geom(p)mass functions.
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Negative binomial
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negbin(s, p)

Possible applications

Mass (see Fig. 6.22)

Distribution

Parameters

Range

Mean

Variance

Mode

MLE

Comments

px) =

Number of failures before the sth success in a sequence of independent

Bernoulli trials with probability p of success on each trial; number of good
items inspected before encountering the sth defective item; number of items
in a batch of random size; number of items demanded from an inventory

+x—1
(si )p“(l—p)‘ ifxe {0,1,...}

0 otherwise

Wos+i—1Y) . ; .
Fx) = Z( . )p(l*p) ifx=0

i=0
0 otherwise

s a positive integer, p € (0, 1)
{0,1,...}
s(1 = p)

p

s(L—p)

[72

Lety = [s(1 — p) — 1]/p; then

yandy + 1 if y is an integer
Mode = .
ly] +1 otherwise

If 5 is known, then p = 5/[X(n) + s]. If both s and p are unknown, then §

and p exist if and only if V(n) = (n — 1)S*(n)/n > X(n). Let M =
max X, and fork =0,1,..., M, let f, be the number of X;’s = k. Then

1=i=n
we can show that § and p are the values for s and p that maximize the
function

M
h(s,p) = kaln(s +k—1)+nslnp + nX(n)In(1 — p)

k=1
subject to the constraints that s € {1,2,...} and 0 < p < 1. For a fixed
value of s, say s, the value of p that maximizes h(so, p) is 5,/ [X(n) + o],
so that we could examine A(1, 1/[X(n) + 1]), h(2,2/[X(n) + 2]),....
Then § and p are chosen to be the values of s and s/[X(n) + s] that lead
to the biggest observed value of h(s, s/[X(n) + s]). However, since
h(s,s/[X(n) + s]) is a unimodal function of s [see Levin and Reeds
(1977)], it is clear when to terminate the search.

LIf Y, Y, ..., Y, are independent geom(p) random variables, then

Y, +Y,+ -+ Y ~ negbin(s, p).

. If Y, Y,, ... is a sequence of independent Bernoulli(p) random vari-

ables and X = min{i:3/_, ¥; = s} — s, then X ~ negbin(s, p).

. If X, X,, ..., X, areindependent random variables and X; ~ negbin(s;, p),

then X, + X, +--- + X, ~ negbin(s;, + s, +--- +5,,p).

. The negbin(1, p) and geom(p) distributions are the same.

(continued)
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TABLE 6.4 (continued)

p)
0.30

0.25 -
0.20 -
0.15
0.10 -

0.05

p(x)
0.30

0.25

0.20

0.15

0.10 -

0.05 -

FIGURE 6.22

Poisson

4 5 6 7 8 9 10 X negbin(s, p) mass functions.

Poisson(A)

Possible applications

Mass (see Fig. 6.23)

Distribution

Parameter
Range
Mean

Variance

Number of events that occur in an interval of time when the events are
occurring at a constant rate (see Sec. 6.12); number of items in a batch
of random size; number of items demanded from an inventory

—)\)\x
¢ ifx € {0,1,...)
px) =4 x!
0 otherwise
0 ifx <0
_ [x] i
F(x) =
W12y 2 gre=o0
im0 1!
A>0
{0, 1,...}
A
A
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TABLE 6.4 (continued)

Poisson Poisson(A)

{/\ — land A if A is an integer

Mode .

[A] otherwise

MLE A =Xn).

Comments 1. LetY,,Y,, .. .be asequence of nonnegative IID random variables, and let
X = max{i: Ej’::I Y, = 1}. Then the distribution of the ¥;'s is expo(1/A)
if and only if X ~ Poisson(A). Also, if X' = max{i: Z]';l Y; = A}, then
the Y,’s are expo(1) if and only if X' ~ Poisson(A) (see also Sec. 6.12).

2. If X, X,, . .., X,, are independent random variables and X; ~ Poisson(A,),
then X, + X, + --- + X, ~ Poisson(A; + A, + --- + A ).

px) _ p) —

0.6 - A =05 0.6 - A=1
0.5 0.5
0.4 - 04 -
03 03
02 02
0.1 0.1
0 | 0 I |
0 1 2 3 4 54X 0 1 2 3 4 5 X
p() _ px) _
0.6 L A=2 0.6 L A=6
0.5 0.5
0.4 - 0.4
03 03
02 02
S Sl
0 | 1 | I | | I
012345678910 012345678910~
FIGURE 6.23

Poisson(A) mass functions.

order. Let X; denote the ith smallest of the X;’s, so that X, = X,) = -+ = X,
Then F is given by

0 if x < X
i — 1 x — X, .
F(x) = { - + u if X =x < Xy
n—1 (n—l)(X(Hl)—X(i)) fori=1,2,...,n—1
1 ifX(n)Sx

Figure 6.24 gives an illustration for n = 6. Note that F(x) rises most rapidly
over those ranges of x in which the X,’s are most densely distributed, as desired.
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F(x)

1

4

5

3

5

2

5

1

5
L L L L L L
X Xo) X3y Xy X5 Xe) *

FIGURE 6.24

Continuous, piecewise-linear empirical distribution function from
original data.

Also, for each i, F(X;) = (i — 1) /(n — 1), which is approximately (for large n) the
proportion of the X;’s that are less than X;; this is also the way we would like a con-
tinuous distribution function to behave. (See Prob. 6.5 for a discussion of another
way to define F.) However, one clear disadvantage of specifying this particular em-
pirical distribution is that random values generated from it during a simulation run
can never be less than X, or greater than X, (see Sec. 8.3.16). Also, the mean of
F(x) is not equal to the sample mean X(n) of the X;’s (see Prob. 6.6).

If, however, the data are grouped, then a different approach must be taken since
we do not know the values of the individual X,’s. Suppose that the n X,’s are grouped
into k adjacent intervals [a,, a)), [a,, a,), . . ., [a,_,, a;), so that the jth interval
contains n; observations, where n; + n, + --- + n, = n. (Often the a;’s will be
equally spaced, but we need not make this assumption.) A reasonable piecewise-
linear empirical distribution function G could be specified by first letting G(a,)) = 0
and G(aj) =m +n+---+ nj)/n forj=1,2,...,k Then, interpolating linearly
between the aj’s, we define

0 ifx <a,
r T4 .
G(x) = G(aj,l) + ﬁ [G(aj) — G(aj,l)] if a;_, =x< a;

J 1 forj=1,2,...,k

1 ifa, =x

Figure 6.25 illustrates this specification of an empirical distribution for k = 4. In
this case, G(aj) is the proportion of the X;’s that are less than a;, and G(x) rises most
rapidly over ranges of x where the observations are most dense. The random values
generated from this distribution, however, will still be bounded both below (by a,)
and above (by a,); see Sec. 8.3.16.

In practice, many continuous distributions are skewed to the right and have a
density with a shape similar to that in Fig. 6.26. Thus, if the sample size n is not very
large, we are likely to have few, if any, observations from the right tail of the true
underlying distribution (since these tail probabilities are usually small). Moreover,
the above empirical distributions do not allow random values to be generated



CHAPTER SIX 315

G(x)
1

(ny + np + n3)/n

(n; + ny)/n

ny/n

FIGURE 6.25
Continuous, piecewise-linear empirical distribution function from grouped
data.

beyond the largest observation. On the other hand, very large generated values can
have a significant impact on the disposition of a simulation run. For example, a large
service time can cause considerable congestion in a queueing-type system. As a
result, Bratley, Fox, and Schrage (1987, pp. 131-133, 150-151) suggest append-
ing an exponential distribution to the right side of the empirical distribution, which
allows values larger than X, to be generated.

For discrete data, it is quite simple to define an empirical distribution, provided
that the original data values X|, X,, . . ., X, are available. For each possible value x,
an empirical mass function p(x) can be defined to be the proportion of the X;’s that
are equal to x. For grouped discrete data we could define a mass function such that
the sum of the p(x)’s over all possible values of x in an interval is equal to the

f)

FIGURE 6.26
Typical density function experienced in practice.
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proportion of the X;’s in that interval. How the individual p(x)’s are allocated for the
possible values of x within an interval is essentially arbitrary.

6.3
TECHNIQUES FOR ASSESSING
SAMPLE INDEPENDENCE

An important assumption made by many of the statistical techniques discussed in
this chapter is that the observations X, X,, . . ., X,, are an independent (or random)
sample from some underlying distribution. For example, maximum-likelihood esti-
mation (see Sec. 6.5) and chi-square tests (see Sec. 6.6.2) assume independence. If
the assumption of independence is not satisfied, then these statistical techniques
may not be valid. However, even when the data are not independent, heuristic tech-
niques such as histograms can still be used.

Sometimes observations collected over time are dependent. For example, sup-
pose that X,, X,, . . . represent hourly temperatures in a certain city starting at noon
on a particular day. We would not expect these data to be independent, since hourly
temperatures close together in time should be positively correlated. As a second ex-
ample, consider the single-server queueing system in Sec. 1.4. Let X|, X,, . . . be the
delays in queue of the successive customers arriving to the system. If the arrival rate
of customers is close to the service rate, the system will be congested and the X,’s
will be highly positively correlated (see Sec. 4.3).

We now describe two graphical techniques for informally assessing whether the

data X, X,, . .., X, (listed in time order of collection) are independent. The correla-
tion plot is a graph of the sample correlation p; (see Sec. 4.4) forj = 1,2,...,1

(! is a positive integer). The sample correlation p; is an estimate of the true correla-
tion p; between two observations that are j observations apart in time. (Note that
—-1= p;= 1.) If the observations X, X,, . . . , X, are independent, then p;= Oforj=1,
2,...,n — 1. However, the p;’s will not be exactly zero even when the X;’s are
independent, since p; is an observation of a random variable whose mean is not
equal to O (see Sec. 4.4). If the p;’s differ from 0 by a significant amount, then this
is strong evidence that the X;’s are not independent.

The scatter diagram of the observations X, X,, . . ., X,, is a plot of the pairs
(X, X, )fori=1,2,...,n— 1. Suppose for simplicity that the X,’s are nonnegative.
If the X;’s are independent, one would expect the points (X,, X,,,) to be scattered
randomly throughout the first quadrant of the (X;, X, ,,) plane. The nature of the scat-
tering will, however, depend on the underlying distributions of the X;’s. If the X,’s
are positively correlated, then the points will tend to lie along a line with positive
slope in the first quadrant. If the X,’s are negatively correlated, then the points will
tend to lie along a line with negative slope in the first quadrant.

EXAMPLE 6.2. InFigs. 6.27 and 6.28 we give the correlation plot and scatter diagram
for 100 independent observations from an exponential distribution with a mean of 1.
Note in Fig. 6.27 that the sample correlations are close to 0, but have absolute values as
large as 0.16. The scattering of the points in Fig. 6.28 substantiates the independence of
the exponential data.
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FIGURE 6.27
Correlation plot for independent exponential data.
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. ® °
NS ¥ I ’
) %% g ° o °
8 o° , @ o o,
L] L]
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FIGURE 6.28

Scatter diagram for independent exponential data.
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pj
1 -
[ ]
¢ Maximum
0.5+ correlation
° 0.781
[ ]
0 5
) L[] LJ
5 19 15 .. 20 J
[ ] ()
° ° .
Minimum
=05+ correlation
—0.186
-1k
FIGURE 6.29

Correlation plot for correlated queueing data.

EXAMPLE 6.3. InFigs. 6.29 and 6.30 we present the correlation plot and scatter dia-
gram for 100 delays in queue from an M/M/1 queueing system (see Sec. 1.4.3) with uti-
lization factor p = 0.8. Note that the p’s are large for small values of j and that the
points in the scatter diagram tend to lie along a line with positive slope. These facts are
consistent with our statement that delays in queue are positively correlated.

There are also several nonparametric (i.e., no assumptions are made about the
distributions of the X;’s) statistical tests that can be used to test formally whether
X,, X,, ..., X, are independent. Bartels (1982) proposes a rank version of von
Neumann’s ratio as a test statistic for independence and provides the necessary crit-
ical values to carry out the test. However, one potential drawback is that the test
assumes that there are no “ties” in the data, where a tie means X; = X; for i # j. This
requirement will generally not be met for discrete data, and may not even be satis-
fied for continuous data if they are recorded with only a few decimal places of ac-
curacy. (See the interarrival times in Table 6.7.) Bartels states that his critical values
may still be reasonably accurate if the number of ties is small.

There are several versions of the runs test [see, for example, Sec. 7.4.1 and
Gibbons (1985)], which can also be used to assess the independence of the X’s.
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Scatter diagram for correlated queueing data.

They should have less difficulty with ties than the rank von Neumann test, since
runs tests require only that X; # X,,, fori = 1,2,..., n — 1. On the other hand,
Bartels showed empirically that the rank von Neumann test is considerably more
powerful than one of the runs tests against certain types of alternatives to the X;’s
being independent.

6.4
ACTIVITY I: HYPOTHESIZING FAMILIES
OF DISTRIBUTIONS

The first step in selecting a particular input distribution is to decide what general
families—e.g., exponential, normal, or Poisson—appear to be appropriate on the
basis of their shapes, without worrying (yet) about the specific parameter values for
these families. This section describes some general techniques that can be used to
hypothesize families of distributions that might be representative of a simulation
input random variable.

In some situations, use can be made of prior knowledge about a certain random
variable’s role in a system to select a modeling distribution or at least rule out some
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distributions; this is done on theoretical grounds and does not require any data at all.
For example, if we feel that customers arrive to a service facility one at a time, at a
constant rate, and so that the numbers of customers arriving in disjoint time inter-
vals are independent, then there are theoretical reasons (see Sec. 6.12.1) for postu-
lating that the interarrival times are IID exponential random variables. Recall also
that several discrete distributions—binomial, geometric, and negative binomial—
were developed from a physical model. Often the range of a distribution rules it out
as a modeling distribution. Service times, for example, should not be generated
directly from a normal distribution (at least in principle), since a random value from
any normal distribution can be negative. The proportion of defective items in a large
batch should not be assumed to have a gamma distribution, since proportions must
be between 0 and 1, whereas gamma random variables have no upper bound. Prior
information should be used whenever available, but confirming the postulated dis-
tribution with data is also strongly recommended.

In practice, we seldom have enough of this kind of theoretical prior information
to select a single distribution, and the task of hypothesizing a distribution family
from observed data is somewhat less structured. In the remainder of this section, we
discuss various heuristics, or guidelines, that can be used to help one choose appro-
priate families of distributions.

6.4.1 Summary Statistics

Some distributions are characterized at least partially by functions of their true pa-
rameters. In Table 6.5 we give a number of such functions, formulas to estimate
these functions from IID data X, X,, . . ., X, [these estimates are called summary
(or descriptive) statistics], an indication of whether they are applicable to continu-
ous (C) or discrete (D) data, and comments about their interpretation or use. (We
have included the sample minimum and maximum because of their utility, even
though they may not be a direct function of a distribution’s parameters.) Further
discussion of many of these functions may be found in Chap. 4.

These functions might be used in some cases to suggest an appropriate distri-
bution family. For a symmetric continuous distribution (e.g., normal), the mean pw is
equal to the median x,, 5. (For a symmetric discrete distribution, the population mean
and median may be only approximately equal; see the definition of the median in
Sec. 4.2.) Thus, if the estimates X(n) and £,s(n) are “almost equal,” this is some
indication that the underlying distribution may be symmetric. One should keep in
mind that X(n) and £, s(n) are observations of random variables, and thus their re-
lationship does not necessarily provide definitive information about the true relation-
ship between w and x s.

The coefficient of variation cv can sometimes provide useful information about
the form of a continuous distribution. In particular, cv = 1 for the exponential
distribution, regardless of the scale parameter 8. Thus, ¢v(n) being close to 1 sug-
gests that the underlying distribution is exponential. For the gamma and Weibull
distributions, cv is greater than, equal to, or less than 1 when the shape parameter «
is less than, equal to, or greater than 1, respectively. Furthermore, these distributions



TABLE 6.5
Useful summary statistics

Function

Sample estimate (summary statistic)

Continuous (C)
or discrete (D)
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Minimum, maximum

Mean w
Median x5
Variance ¢
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"
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Alternative measure of
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Alternative measure of
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Measure of symmetry
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will have a shape similar to the density function in Fig. 6.26 when « > 1, which
implies that cv < 1. On the other hand, the lognormal distribution always has a den-
sity with a shape similar to that in Fig. 6.26, but its cv can be any positive real num-
ber. Thus, if the underlying distribution (observed histogram) has this shape and
¢v(n) > 1, the lognormal may be a better model than either the gamma or Weibull.
For the remainder of the distributions in Table 6.3, the cv is not particularly useful.
[In fact, cv is not even well defined for distributions such as U(—c, ¢) (for ¢ > 0) or
N(0, 0?), since the mean w is zero.]

For a discrete distribution, the lexis ratio T plays the same role that the coeffi-
cient of variation does for a continuous distribution. We have found the lexis ratio to
be very useful in discriminating among the Poisson, binomial, and negative binomial
distributions, since 7 = 1, 7 < 1, and 7 > 1, respectively, for these distributions.
(Note that the geometric distribution is a special case of the negative binomial.)

The skewness v is a measure of the symmetry of a distribution. For symmetric
distributions like the normal, v = 0. If v > 0 (e.g., v = 2 for the exponential distri-
bution), the distribution is skewed to the right; if v < 0, the distribution is skewed to
the left. Thus, the estimated skewness P (n) [see Joanes and Gill (1998)] can be used
to ascertain the shape of the underlying distribution. Our experience indicates that
many distributions encountered in practice are skewed to the right.

It is possible to define another function of a distribution’s parameters, called the
kurtosis, which is a measure of the “tail weight” of a distribution [see, for exam-
ple, Kendall, Stuart, and Ord (1987, pp. 107-108)]. However, we have not found the
kurtosis to be very useful for discriminating among distributions.

6.4.2 Histograms

For a continuous data set, a histogram is essentially a graphical estimate (see the
discussion below) of the plot of the density function corresponding to the distribu-
tion of our data X, X,, . . ., X,. Density functions, as shown in Figs. 6.5 through
6.16, tend to have recognizable shapes in many cases. Therefore, a graphical esti-
mate of a density should provide a good clue to the distributions that might be tried
as a model for the data.

To make a histogram, we break up the range of values covered by the data into
k disjoint adjacent intervals [b,, b)), [b,, b,), ..., [b,_,, by). All the intervals
should be the same width, say, Ab = b; — b;_,, which might necessitate throwing
out a few extremely large or small X;’s to avoid getting an unwieldy-looking his-

togram plot. Forj =1, 2, .. ., k, let h; be the proportion of the X;’s that are in the
Jthiinterval [b;_,, b)). Finally, we define the function
0 iftx < b,
h(x) = \ I ifh,_; =x<b, forj=1,2,...,k
0 ifb, =x

which we plot as a function of x. (See Example 6.4 below for an illustration of a his-
togram.) The plot of A, which is piecewise-constant, is then compared with plots of
densities of various distributions on the basis of shape alone (location and scale
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differences are ignored) to see what distributions have densities that resemble the
histogram h.

To see why the shape of & should resemble the true density f of the data, let X
be a random variable with density f, so that X is distributed as the X;’s. Then, for any
fixedj(j=1,2,...,k),

b:
P(b_, =X <b) = L’ ) dx = Ab ()
-1

for some number y € (b;_;, b)). (The first equation is by the definition of a continu-
ous random variable, and the second follows from the mean-value theorem of
calculus.) On the other hand, the probability that X falls in the jth interval is approx-
imated by #;, which is the value of A(y). Therefore,

h(y) = h; = Abf(y)
so that h(y) is roughly proportional to f(y); that is, # and f have roughly the same shape.
(Actually, an estimate of fis obtained by dividing the function 4 by the constant Ab.)

Histograms are applicable to any continuous distribution and provide a readily
interpreted visual synopsis of the data. Furthermore, it is easy to “eyeball” a his-
togram in reference to certain density functions. There are, however, certain diffi-
culties. Most vexing is the absence of a definitive guide for choosing the number of
intervals k (or, equivalently, their width Ab).

Several rules of thumb have been suggested for choosing the number of inter-
vals k {e.g., Sturges’s rule [see Hoaglin, Mosteller, and Tukey (1983, pp. 23-24)]
and a normal approximation due to Scott (1979)}. The best known of these guide-
lines is probably Sturges’s rule, which says that k should be chosen according to the
following formula:

k=1[1+1log,n| =11+ 3.322log,, n]

However, in general, we do not believe that such rules are very useful (see Exam-
ple 6.4). We recommend trying several different values of Ab and choosing the
smallest one that gives a “smooth” histogram. This is clearly a matter of some sub-
jectivity and represents the major problem in using histograms. If Ab is chosen too
small, the histogram will have a “ragged” shape since the variances of the /;’s will
be large. If Ab is chosen too large, then the histogram will have a “block-like”
shape, and the true shape of the underlying density will be masked since the data
have been overaggregated. In particular, a large spike in the density function near
x = 0 or elsewhere (see Fig. 6.12) could be missed if Ab is too large.

As we have noted, a histogram is an estimate (except for rescaling) of the density
function. There are many other ways in which the density function can be estimated
from data, some of which are quite sophisticated. We refer the interested reader to the
survey paper of Wegman (1982, pp. 309-315) and the book by Silverman (1986).

The probability mass function corresponding to a discrete data set can also be
estimated by using a histogram. For each possible value x; that can be assumed by
the data, let i; be the proportion of the X;’s that are equal to x;. Vertical bars of height
h; are plotted versus x;, and this is compared with the mass functions of the discrete
distributions in Sec. 6.2.3 on the basis of shape.

For a discrete data set, #; (which is a random variable) is an unbiased estimator
of p(x;), where p(x) is the true (unknown) mass function of the data (see Prob. 6.7).
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h(x)

FIGURE 6.31
Histogram corresponding to a density function with two local modes.

However, in this case we need not make any arbitrary subjective decisions about
interval width and placement.

There are certain situations in which the histogram will have several local
modes (or “humps”), in which case none of the standard distributions discussed
in Sec. 6.2 may provide an adequate representation. In Fig. 6.31 we give such an
example, which might represent (continuous) times to repair some machine col-
lected over a 1-year period. There are two types of breakdowns for the machine.
Most of the breakdowns are minor, and the corresponding repair time is relatively
small; this case corresponds to the left hump in Fig. 6.31. A small proportion of the
breakdowns are major and have large repair times, since spare parts need to be
ordered. This results in the right hump in Fig. 6.31. If the observed repair times can
be separated into these two cases (corresponding to minor and major repairs), with
p; being the proportion of observations for case j (j = 1, 2), then a density f;(x) is fit
to the class j observations (j = 1, 2) using the methods discussed in Secs. 6.4
through 6.6. Thus, the overall repair-time density f(x) is given by

fx) = p fi(x) + pyfr(x)

and random repair times can be generated from f(x) during a simulation by using the
composition technique (see Sec. 8.2.2). See Sec. 6.9 and Prob. 6.8 for alternative
methods for modeling a histogram with several modes.

6.4.3 Quantile Summaries and Box Plots

The quantile summary [see, for example, Tukey (1970)] is a synopsis of the sample
that is useful for determining whether the underlying probability density function
or probability mass function is symmetric or skewed to the right or to the left. It
is applicable to either continuous or discrete data sets; however, for expository
convenience we will explain it only for the continuous case.



CHAPTER SIX 325

TABLE 6.6
Structure of the quantile summary for the sample X, X,, ..., X

n

Quantile Depth Sample value(s) Midpoint

Median i=@m+1)2 X, X,

Quartiles j=(i]+ /2 X, Xomjen) (X, + X" /2
Octiles k= (j]+1/2 X Xo—i+1) [XW Xore1))/2
Extremes 1 Xy X Xy + Xl

Suppose that F(x) is the distribution function for a continuous random variable.
Suppose further that F(x) is continuous and strictly increasing when 0 < F(x) < 1.
[This means that if x, < x, and 0 < F(x,) = F(x,) < 1, then in fact F(x,) < F(x,).]
For 0 < g < 1, the g-quantile of F(x) is that number xq such that F(x,)) = g. If
F~! denotes the inverse of F(x), then x,=F" Yg). {F~'is that funct10n such that
F[F~'(x)] = F"'[F(x)] = x.} Here we are particularly interested in the median x5,
the lower and upper quartiles x, ,5 and x, 55, and the lower and upper octiles x; ;,5 and
X,g75- A quantile summary for the sample X, X,, . . ., X, has a form that is given in
Table 6.6.

In Table 6.6, if the “depth” subscript / (/ is equal to i, j, or k) is halfway between
the integers m and m’ = m + 1, then X, is defined to be the average of X, and X,
The value X; is an estimate of the median, X, and X,_;,, are estimates of the
quartiles, and X(k) and X, ., are estimates of the octiles. If the underlying distribu-
tion of the X;’s is symmetric, then the four midpoints should be approximately
equal. On the other hand, if the underlying distribution of the X,’s is skewed to the
right (left), then the four midpoints (from the top to the bottom of the table) should
be increasing (decreasing).

A box plot is a graphical representation of the quantile summary (see Fig. 6.33).
Fifty percent of the observations fall within the horizontal boundaries of the box
[X(25- X.75]. (In some books, box plots do not contain octiles.)

The following two examples illustrate the use of the techniques discussed in
Sec. 6.4.

EXAMPLE 6.4. A simulation model was developed for a drive-up banking facility,
and data were collected on the arrival pattern for cars. Over a fixed 90-minute interval,
220 cars arrived, and we noted the (continuous) interarrival time X; (in minutes) between
carsiandi + 1,fori=1,2,...,219. Table 6.7 lists these n = 219 interarrival times
after they have been sorted into increasing order. The numbers of cars arriving in the
six consecutive 15-minute intervals were counted and found to be approximately equal,
suggesting that the arrival rate is somewhat constant over this 90-minute interval. Fur-
thermore, cars arrive one at a time, and there is no reason to believe that the numbers of
arrivals in disjoint intervals are not independent. Thus, on theoretical grounds (see
Sec. 6.12.1) we postulate that the interarrival times are exponential. To substantiate this
hypothesis, we first look at the summary statistics given in Table 6.8. Since X(219) =
0.399 > 0.270 = X,5(219) and #(219) = 1.478, this suggests that the underlying dis-
tribution is skewed to the right, rather than symmetric. Furthermore, ¢v(219) = 0.953,
which is close to the theoretical value of 1 for the exponential distribution. Next we
made three different histograms of the data, using b, = 0 in each case and Ab = 0.050,
0.075, and 0.100, as shown in Fig. 6.32 (see also Fig. 6.2). The smoothest-looking
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TABLE 6.7
n = 219 interarrival times (minutes) sorted into increasing order

0.01 0.06 0.12 0.23 0.38 0.53 0.88
0.01 0.07 0.12 0.23 0.38 0.53 0.88
0.01 0.07 0.12 0.24 0.38 0.54 0.90
0.01 0.07 0.13 0.25 0.39 0.54 0.93
0.01 0.07 0.13 0.25 0.40 0.55 0.93
0.01 0.07 0.14 0.25 0.40 0.55 0.95
0.01 0.07 0.14 0.25 0.41 0.56 0.97
0.01 0.07 0.14 0.25 0.41 0.57 1.03
0.02 0.07 0.14 0.26 0.43 0.57 1.05
0.02 0.07 0.15 0.26 0.43 0.60 1.05
0.03 0.07 0.15 0.26 0.43 0.61 1.06
0.03 0.08 0.15 0.26 0.44 0.61 1.09
0.03 0.08 0.15 0.26 0.45 0.63 1.10
0.04 0.08 0.15 0.27 0.45 0.63 1.11
0.04 0.08 0.15 0.28 0.46 0.64 1.12
0.04 0.09 0.17 0.28 0.47 0.65 1.17
0.04 0.09 0.18 0.29 0.47 0.65 1.18
0.04 0.10 0.19 0.29 0.47 0.65 1.24
0.04 0.10 0.19 0.30 0.48 0.69 1.24
0.05 0.10 0.19 0.31 0.49 0.69 1.28
0.05 0.10 0.20 0.31 0.49 0.70 1.33
0.05 0.10 0.21 0.32 0.49 0.72 1.38
0.05 0.10 0.21 0.35 0.49 0.72 1.44
0.05 0.10 0.21 0.35 0.50 0.72 1.51
0.05 0.10 0.21 0.35 0.50 0.74 1.72
0.05 0.10 0.21 0.36 0.50 0.75 1.83
0.05 0.11 0.22 0.36 0.51 0.76 1.96
0.05 0.11 0.22 0.36 0.51 0.77

0.05 0.11 0.22 0.37 0.51 0.79

0.06 0.11 0.23 0.37 0.52 0.84

0.06 0.11 0.23 0.38 0.52 0.86

0.06 0.12 0.23 0.38 0.53 0.87

TABLE 6.8

Summary statistics for the
interarrival-time data

Summary statistic Value
Minimum 0.010
Maximum 1.960
Mean 0.399
Median 0.270
Variance 0.144
Coefficient of variation 0.953

Skewness 1.478
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FIGURE 6.32
Histograms of the interarrival-time data in Table 6.7: (a) Ab = 0.050;
(b) Ab = 0.075; (c¢) Ab = 0.100.

(continued)
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FIGURE 6.32
(continued)

histogram appears to be for Ab = 0.100 and its shape resembles that of an exponential
density. (Note that Sturges’s rule gives k = 8 and Ab = 0.250, resulting in overaggrega-
tion of the data.) Finally, in Fig. 6.33 we give the quantile summary and box plot for the
interarrival times. The increasing midpoints and the elongated nature of the right side of
the box plot reaffirm that the underlying distribution is exponential. In summary, for
both theoretical and empirical reasons, we hypothesize that the interarrival times are
exponential.

Quantile Depth Sample value(s) Midpoint

Median 110 0.270 0.270

Quartiles 55.5 0.100 0.545 0.323

Octiles 28 0.050 0.870 0.460

Extremes 1 0.010 1.960 0.985
FIGURE 6.33

Quantile summary and box plot for the interarrival-time data.
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TABLE 6.9
Values and counts for n = 156 demand sizes arranged
into increasing order

0(59), 1(26), 2(24), 3(18), 4(12),
5(5), 6(4), 7(3), 9(3), 11(2)
TABLE 6.10

Summary statistics for the
demand-size data

Summary statistic Value
Minimum 0.000
Maximum 11.000
Mean 1.891
Median 1.000
Variance 5.285
Lexis ratio 2.795
Skewness 1.687

329

EXAMPLE 6.5. Table 6.9 gives the values and counts for n = 156 observations on the
(discrete) number of items demanded in a week from an inventory over a 3-year period,
arranged into increasing order. Rather than giving all the individual values, we give the
frequency counts; 59 X;’s were equal to 0, 26 X,’s were equal to 1, etc. Summary statis-
tics and a histogram for these data are given in Table 6.10 and Fig. 6.34, respectively.

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0

FIGURE 6.34
Histogram of the demand-size data in Table 6.9.
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Since the lexis ratio 7(156) = 2.795, the binomial and Poisson distributions do not seem
likely models. Furthermore, the large positive value of the skewness 7(156) = 1.687
would appear to rule out the discrete uniform distribution that is symmetric. Therefore,
the possible discrete models (of those considered in this book) are the geometric and
negative binomial distributions, with the former being a special case of the latter when
s = 1. However, based on the monotonically decreasing histogram in Fig. 6.34 (and the
mass functions in Fig. 6.21), we hypothesize that the demand data are from a geometric
distribution.

6.5
ACTIVITY II: ESTIMATION OF PARAMETERS

After one or more candidate families of distributions have been hypothesized in
Activity I, we must somehow specify the values of their parameters in order to have
completely specified distributions for possible use in the simulation. Our IID data
X, X,, ..., X, were used to help us hypothesize distributions, and these same data
can also be used to estimate their parameters. When data are used directly in this
way to specify a numerical value for an unknown parameter, we say that we are
estimating that parameter from the data.

An estimator is a numerical function of the data. There are many ways to spec-
ify the form of an estimator for a particular parameter of a given distribution, and
many alternative ways to evaluate the quality of an estimator. We shall consider
explicitly only one type, maximum-likelihood estimators (MLES), for three reasons:
(1) MLEs have several desirable properties often not enjoyed by alternative methods
of estimation, e.g., least-squares estimators, unbiased estimators, and the method of
moments; (2) the use of MLEs turns out to be important in justifying the chi-square
goodness-of-fit test (see Sec. 6.6.2); and (3) the central idea of maximum-likelihood
estimation has a strong intuitive appeal.

The basis for MLEs is most easily understood in the discrete case. Suppose that
we have hypothesized a discrete distribution for our data that has one unknown
parameter 6. Let p,(x) denote the probability mass function for this distribution, so
that the parameter 6 is part of the notation. Given that we have already observed the
IID data X, X,, . . ., X, we define the likelihood function L(6) as follows:

L(0) = po(X)pp(Xy) - - - pe(X,)

Now L(0), which is just the joint probability mass function since the data are inde-
pendent (see Sec. 4.2), gives the probability (likelihood) of obtaining our observed
data if 6 is the value of the unknown parameter. Then the MLE of the unknown
value of #, which we denote by 9, is defined to be the value of 6 that maximizes
L(0); that is, L(é) = L(0) for all possible values of 6. Thus, 6 “best explains” the
data we have collected. In the continuous case, MLEs do not have quite as simple
an intuitive explanation, since the probability that a continuous random variable
equals any fixed number is always O [see Prob. 6.26 and Breiman (1973, pp. 67-68)
for intuitive justification of MLEs in the continuous case]. Nevertheless, MLEs for
continuous distributions are defined analogously to the discrete case. If f,(x) denotes
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the hypothesized density function (again we assume that there is only one unknown
parameter 6), the likelihood function is given by

L(O) = fo(X)fp(X3) - - - fo(X,)

The MLE 0 of  is defined to be the value of @ that maximizes L(6) over all permis-
sible values of 6. The following two examples show how to compute MLEs for the
distributions hypothesized earlier in Examples 6.4 and 6.5.

EXAMPLE 6.6. For the exponential distribution, 8 = 8 (8 > 0) and fB(x) =1/ B)e""/ B
for x = 0. The likelihood function is

Mm:<?ﬂWXéEW0“(é[MO

1 n
=B exp(—— Z Xi>
B i=1
and we seek the value of 8 that maximizes L(8) over all 3 > 0. This task is more easily
accomplished if, instead of working directly with L(8), we work with its logarithm.
Thus, we define the log-likelihood function as

(B =InL(B) = —nlnp — é iX,-
i=1

Since the logarithm function is strictly increasing, maximizing L(f) is equivalent to
maximizing /(), which is much easier; that is, 8 maximizes L(S) if and only if 8 max-
imizes /(). Standard differential calculus can be used to maximize /() by setting its
derivative to zero and solving for 8. That is,

il — 1 &
B LY
g B B i

which equals zero if and only if 8 = S_, X,/n = X(n). To make sure that 8 = X(n) is
a maximizer of /(8) (as opposed to a minimizer or an inflection point), a sufficient (but
not necessary) condition is that d*//df?, evaluated at 8 = X(n), be negative. But

d*l _n

2 n
_— = — — — Xi
ag* B B’;

which is easily seen to be negative when 8 = X(n) since the X,’s are positive. Thus, the
MLE of Bis B = X(n). Notice that the MLE is quite natural here, since 8 is the mean
of the hypothesized distribution and the MLE is the sample mean. For the data of
Example 6.4, B = X(219) = 0.399.

EXAMPLE 6.7. The discrete data of Example 6.5 were hypothesized to come from a
geometric distribution. Here 6 = p (0 <p < 1) and p,(x) = p(1 — p)*forx =0, 1,....
The likelihood function is

L(p) = p"(1 — p)~i=1%i

which is again amenable to the logarithmic transformation to obtain

I(p) = InL(p) =nlnp+§n: X.In(1 — p)

i=1
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Differentiating I(p), we get

n

> X
a _n_ =
dpp 1-p
which equals zero if and only if p = 1/[X(n) + 1]. To make sure that this is a maxi-
mizer, note that

> X,
&L n =
> p* (A -p)
for any valid p. Thus, the MLE of pis p = 1/[X(n) + 1], which is intuitively appeal-
ing (see Prob. 6.9). For the demand-size data of Example 6.5, p = 0.346.

The above two examples illustrate two important practical tools for deriving
MLEs, namely, the use of the log-likelihood function and setting its derivative (with
respect to the parameter being estimated) equal to zero to find the MLE. While these
tools are often useful in finding MLEs, the reader should be cautioned against
assuming that finding a MLE is always a simple matter of setting a derivative to
zero and solving easily for 6. For some distributions, neither the log-likelihood
function nor differentiation is useful; probably the best-known example is the uni-
form distribution (see Prob. 6.10). For other distributions, both tools are useful, but
solving dI/d# = 0 cannot be accomplished by simple algebra, and numerical meth-
ods must be used; the gamma, Weibull, and beta distributions are (multiparameter)
examples of this general situation. We refer the reader to Breiman (1973, pp. 65-84)
for examples of techniques used to find MLEs for a variety of distributions.

We have said that MLEs have several desirable statistical properties, some of
which are as follows [see Breiman (1973, pp. 85-88) and Kendall and Stuart (1979,
chap. 18)]:

1. For most of the common distributions, the MLE is unique; that is, L(é) is strictly
greater than L(6) for any other value of 6.

2. Although MLEs need not be unbiased, in general, the asymptotic distribution
(as n — ) of 0 has mean equal to 6 (see property 4 below).

3. MLE§ are invariant; that is, if ¢ = h(6) for some function 4, then the MLE of ¢
is h(0). (Unbiasedness is not invariant.) For example, the variance of an expo(/3)
random variable is 8%, so the MLE of this variance is [X(n)]2

4. MLE:s are asymptotically normally distributed; that is, \f(e - 0) —>N(0 6(0)),
where 8(0) = —n/E(d*/d6?) (the expectat}on is with respect to X;, assuming that
X, has the hypothesized distribution) and 2 denotes convergence in distribu-
tion. Furthermore, if 6 is any other estimator such that V(o — 0) =N N(0, o2),
then 8(8) = o> (Thus, MLEs are called best aasymptotically normal.)

5. MLE:s are strongly consistent; that is, lim, 0 = 6 (w.p. 1).

n—o

The proofs of these and other properties sometimes require additional mild “regu-
larity” assumptions; see Kendall and Stuart (1979).

Property 4 is of special interest, since it allows us to establish an approximate
confidence interval for 6. If we define 6(0) as in property 4 above, it can be shown
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that
0—6
V8(6)/n
as n — . Thus, for large n an approximate 100(1 — «) percent confidence interval
for 6 is

@
—N(0, 1)

- 8(0)
2| T (6.3)

EXAMPLE 6.8. Construct a 90 percent confidence interval for the parameter p of the
geometric distribution, and specialize it to the data of Example 6.5. It is easy to show
that

dp*

Poo=p’  pPU-p)
so that 8(p) = p*(1 — p) and, for large n, an approximate 90 percent confidence inter-
val for p is given by

E{dﬂ n n(l—p)/p n

21 — 5
b+ Leas, [P D)

For the data of Example 6.5, we get 0.346 = 0.037.

This suggests a way of checking how sensitive a simulation output measure of
performance is to a particular input parameter. The simulation could be run for 6 set
at, say, the left endpoint, the center (), and the right endpoint of the confidence
interval in (6.3). If the measure of performance appeared to be insensitive to values
of 0 in this range, we could feel confident that we have an adequate estimate of 6 for
our purposes. On the other hand, if the simulation appeared to be sensitive to 6, we
might seek a better estimate of 6; this would usually entail collecting more data.

The general form of the above problem may be stated as follows. A simula-
tion model’s performance measures depend on the choice of input probability
distributions and their associated parameters. When we choose the distributions
to use for a simulation model, we generally don’t know with absolute certainty
whether these are the correct distributions to use, and this lack of complete
knowledge results in what we might call model uncertainty. Also, given that cer-
tain input distributions have been selected, we typically do not know with com-
plete certainty what parameters to use for these distributions, and we might call
this parameter uncertainty. (Parameters are typically estimated from observed
data or are specified subjectively based on expert opinion.) The term input-model
uncertainty is used to refer to these two issues collectively. Ideally, we would
like to have a method for constructing a confidence interval for a simulation per-
formance measure that takes into account both the sampling variability of the
simulation model (see Chap. 9) and input-model uncertainty. Henderson (2003)
says that such a method should be understandable by the simulation practitioner,
based on sound statistical procedures, relatively easy to implement, and compu-
tationally efficient.
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There have been a number of methods suggested for addressing the problem of
input-model uncertainty, including the following [see Barton (2012) and Henderson
(2003)]:

* Bayesian model averaging [Chick (2001), Zouaoui and Wilson (2003, 2004)]

* Delta-method approaches [Cheng and Holland (1997, 1998, 2004)]

* Metamodel-assisted bootstrapping [Barton et al. (2013), Chapter 12]; see Cheng
(2006) and Efron and Tibshirani (1993) for a discussion of bootstrap resampling

* Nonparametic bootstrapping [Barton and Schruben (1993, 2001)]

¢ Quick method based on a random-effects model [ Ankenman and Nelson (2012)]

Unfortunately, most of these methods are reasonably complicated and make
assumptions that may not always be satisfied in practice [see Barton (2012) and
Barton et al. (2013)]. For example, Bayesian model averaging and the delta-method
approaches assume that the family (or families) of distributions (but not the param-
eter values) that best represents a source of system randomness is known in ad-
vance, which is unlikely to be true in most real-world applications.

So far, we have explicitly treated only distributions with a single unknown
parameter. If a distribution has several parameters, we can define MLEs of these
parameters in a natural way. For instance, the gamma distribution has two parame-
ters (a and 3), and the likelihood function is defined to be

n a—1 n
B"“(H X,~> exp[ —(I/B)ZX,}
i=1 i=1
[T'(a)]"

The MLEs & and 3 of the unknown values of « and 8 are defined to be the values
of @ and 3 that (jointly) maximize L(«, ). [Finding & and 3 usually proceeds by
letting /(a, B) = In L(e, B) and trying to solve the equations 3//da = 0 and /a8 = 0
simultaneously for « and .] Analogs of the properties of MLEs listed above also
hold in this multiparameter case. Unfortunately, the process of finding MLEs when
there are several parameters is usually quite difficult. (The normal distribution is a
notable exception.)

For each of the distributions in Secs. 6.2.2 (except for the Johnson S, Johnson
Sy and triangular distributions) and 6.2.3, we listed either formulas for the MLEs
or a method for obtaining them numerically. For the gamma MLEs, Table 6.21 can
be used with standard linear interpolation. For the beta MLEs, Table 6.22 can be
used; one could either simply pick (&, &,) corresponding to the closest table values
of G, and G, or devise a scheme for two-dimensional interpolation.

L(a, B) =

6.6
ACTIVITY III: DETERMINING HOW REPRESENTATIVE
THE FITTED DISTRIBUTIONS ARE

After determining one or more probability distributions that might fit our observed
data in Activities I and II, we must now closely examine these distributions to see
how well they represent the true underlying distribution for our data. If several of
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these distributions are “representative,” we must also determine which distribution
provides the best fit. In general, none of our fitted distributions will probably be
exactly correct. What we are really trying to do is to determine a distribution that is
accurate enough for the intended purposes of the model.

In this section we discuss both heuristic procedures and goodness-of-fit
hypothesis tests for determining the “quality” of fitted distributions.

6.6.1 Heuristic Procedures

We will discuss five heuristic or graphical procedures for comparing fitted distribu-
tions with the true underlying distribution; several additional techniques can be
found in Averill M. Law & Associates (2013).

Density-Histogram Plots and Frequency Comparisons

For continuous data, a density-histogram plot can be made by plotting Ab f (x)
over the histogram A(x) and looking for similarities. [Recall that the area under
h(x) is Ab.] A frequency comparison is an alternative graphical comparison of a
histogram of the data with the density function f(x) of a fitted distribution. Let
[by, b)), [by, by), . .., [by_, by be a set of k histogram intervals each with width
Ab =b; — b, Let h; be the observed proportion of the X;’s in the jth interval
[b, I j) and let r;be the expected proportion of the n observatlons that would fall
in the jth 1nterval if the fitted distribution were in fact the true one; i.e., r; is given
by (see Prob. 6.13)

b A
rj:j Fx) dx (6.4)

bj—1

Then the frequency comparison is made by plotting both 4, and r; in the jth histo-
gram interval forj = 1,2, ..., k.

For discrete data, a frequency comparison is a graphical comparison of a histo-
gram of the data with the mass function p(x) of a fitted distribution. Let /; be the
observed proportion of the X;’s that are equal to x;, and let r; be the expected propor-
tion of the n observations that would be equal to x; if the fitted distribution were in
fact the true one, i.e., r; = p(x;). Then the frequency comparison is made by plotting
both /; and r; versus x; for all relevant values of x;.

For either the contlnuous or discrete case, if the fitted distribution is a good
representation for the true underlying distribution of the data (and if the sample size
n is sufficiently large), then r; and h; should closely agree.

EXAMPLE 6.9. For the interarrival-time data of Example 6.4, we hypothesized an
exponential distribution and obtained the MLE B = 0.399 in Example 6.6. Thus, the
density of the fitted distribution is
{2 506703 ifx =0

otherwise

[ =

For the histogram in Fig. 6.32(c), we give a density-histogram plot in Fig. 6.35.
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FIGURE 6.35

Density-histogram plot for the fitted exponential distribution and the interarrival-time data.

EXAMPLE 6.10. The demand-size data of Example 6.5 were hypothesized to have
come from a geometric distribution, and the MLE of the parameter p was found in
Example 6.7 to be p = 0.346. Thus, the mass function of the fitted distribution is

5(x) {0.346(0.654))“ ifx=0,1,2,...

x) =

P 0 otherwise
For the histogram in Fig. 6.34, r; = p(x;) = p(j — 1) forj =1, 2, ..., 12, and the
frequency comparison is given in Fig. 6.36, where the h,’s are represented by the white

vertical bars and the r;’s by the gray vertical bars. Once again, the agreement is good
except possibly for x, = 1.

Distribution-Function-Differences Plots
The density-histogram plot can be thought of as a comparison of the individual

probabilities of the fitted distribution and of the individual probabilities of the true
underlying distribution. We can also make a graphical comparison of the cumulative
probabilities (distribution functions). Define a (new) empirical distribution function
F,(x) as follows:

number of X,’s = x
F,(x) = . (6.5)

which is the proportion of the observations that are less than or equal to x. Then we
could plot F(x) (the distribution function of the fitted distribution) and F,(x) on the
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FIGURE 6.36
Frequency comparison for the fitted geometric distribution and the demand-size data.

same graph and look for similarities. However, distribution functions generally do
not have as characteristic an appearance as density or mass functions do. In fact,
many distribution functions have some sort of “S” shape, and eyeballing for differ-
ences or similarities in S-shaped curves is somewhat perplexing. We therefore de-
fine the distribution-function-differences plot to be a plot of the differences between
F (x) and F(x), over the range of the data. If the fitted distribution is a perfect fit and
the sample size is infinite, then this plot will be a horizontal line at height 0. Thus,
the greater the vertical deviations from this line, the worse the quality of fit. Many
fitted distributions that are bad in an absolute sense have large deviations at the
lower end of the range of the data.

EXAMPLE 6.11. A distribution-function-differences plot for the interarrival-time
data of Example 6.4 and the fitted exponential distribution is given in Fig. 6.37. This
plot indicates a good fit except possibly at the lower end of the range of the observed
data. (The dotted horizontal lines are error bounds that depend on the sample size n. If
a differences plot crosses these lines, then this is a strong indication of a bad fit. These
error bounds were determined from the differences for each of the 35,000 data sets
discussed in Sec. 6.7.)

EXAMPLE 6.12. A distribution-function-differences plot for the demand-size data of
Example 6.5 and the fitted geometric distribution is given in Fig. 6.38. This plot indi-
cates a good fit except possibly at the lower end of the range of the observed data.
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Distribution-function-differences plot for the fitted exponential distribution and the

interarrival-time data.
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Distribution-function-differences plot for the fitted geometric distribution and the

demand-size data.
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Probability Plots
A probability plot can be thought of as another graphical comparison of an es-
timate of the true distribution function of our data X, X,, . . ., X, with the distribu-

tion function of a fitted distribution. There are many kinds (and uses) of probability
plots, only two of which we describe here; see Barnett (1975), Hahn and Shapiro
(1994), and Wilk and Gnanadesikan (1968) for additional discussions.

As in Sec. 6.2.4, let X ;) be the ith smallest of the X;’s, sometimes called the ith
order statistic of the XJ s. A reasonable estimate of the d1str1but10n function F(x) of
a random variable X is F)(x), which was defined by Eq. (6.5). Note that F,(X;) =
i/n. For purposes of probability plotting, however, it turns out to be somewhat in-
convenient to have F, (X)) = 1, that is, to have an empirical distribution function
that is equal to 1 for a finite value of x (see Prob. 6.14). We therefore will use the

following empirical distribution function here:

- 05 i—05
F.(X) = F,(X;) — IR —
fori = 1, 2,..., n. [Clearly, for moderately large n, this adjustment is quite

small. Other adjustments have been suggested, such as i/(n + 1).] A straightfor-
ward procedure would then be to plot the n points (X(l), 0.5/n), (X2, 1.5/n), ...,
(X(,> (n —0.5) /n), compare this result with a plot of the distribution function
of a distribution being considered as a model for the data, and look for similari-
ties. However, as stated above, many distribution functions have some sort of
“S” shape, and eyeballing S-shaped curves for similarities or differences is
difficult. Most of us, however, can recognize whether a set of plotted points ap-
pears to lie more or less along a straight line, and probability-plotting techniques
reduce the problem of comparing distribution functions to one of looking for a
straight line.

Letg, = (i — 0.5)/nfori=1,2,...,n,s0that 0 < g, < 1. For any continuous
data set (see Prob. 6.15), a quantile—quantile (Q—Q) plot (see Sec. 6.4.3 for the
definition of a quantile) i 1s a graph of the g;-quantile of a fitted (model) distribution
function F(x), namely, =F" (%) Versus the g;-quantile of the empirical distri-
bution function F' (X)), namely, x5 = =F, (‘L) X, fori=1,2, ..., n The defini-
tion of a O—Q plot is illustrated i 1n Fig. 6.39, where we have represented F (x) as a
smooth curve for convenience. Corresponding to each ordinate value g are the two
quantiles x)" and x;.

If F(x) is the same distribution as the true underlying distribution F(x), and if
the sample size n is large, then F (x) and I:“n(x) will be close together and the O—-Q
plot will be approximately linear with an intercept of O and a slope of 1. Even if F(x)
is the correct distribution, there will be departures from linearity for small to mod-
erate sample sizes.

A probability—probability (P-P) plot is a graph of the model probability F (X))
versus the sample probability F (X)) = g, fori=1,2,..., n;itis valid for both
continuous and discrete data sets. This definition is also illustrated in Fig. 6.39.
Corresponding to each abscissa value p are the two probabilities F( p) and F (p). If
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FIGURE 6.39

Definitions of O—Q and P-P plots.

F(x) and I:"n(x) are close together, then the P—P plot will also be approximately
linear with an intercept of 0 and a slope of 1.

The Q-0 plot will amplify differences that exist between the tails of the model
distribution function F' (x) and the tails of the empirical distribution function Fn (x),
whereas the P—P plot will amplify differences between the middle of F(x) and the
middle of F, (x). The difference between the right tails of the distribution functions
in Fig. 6.40 is amplified by the O—Q plot but not the P—P plot. On the other hand,
the difference between the “middles” of the two distribution functions in Fig. 6.41
is amplified by the P—P plot.

The above formulations of Q—Q and P—P plots implicitly assumed that
the X;’s were distinct (no ties); this certainly will not always be the case. To
modify the definitions when the X;’s may not be distinct, let Y, Y,, ..., Y,
be the distinct values in the sample X,, X,, . . ., X,, arranged in increasing order,
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FIGURE 6.40 R
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TABLE 6.11 o
Approaches for computing F or ! for certain mathematically
intractable distributions

A A

F F1
Gamma See Bhattacharjee (1970) See Best and Roberts (1975)
Normal See Milton and Hotchkiss (1969) See Moro (1995)
Lognormal Fit a normal distribution Same as F

toY;,=InX fori=1,2,
..., n;see Sec. 6.2.2

Beta See Bosten and Battiste (1974) See Cran, Martin,
and Thomas (1977)
Pearson Fit a gamma distribution Same as F
type V toY,=1/X;,fori=1,2,
..., n;see Sec. 6.2.2
Pearson Fit a beta distribution Same as F
type VI oY, =X,/(1 +X,) for
i=1,2,...,n;see Sec. 6.2.2
Johnson S, See the normal distribution Same as F
Johnson S, See the normal distribution Same as F

where [ = n. (If the X/’s are distinct, then Y, = X fori=1,2,...,n.)Letg}be
defined by

q; = (proportion of X;’s = Y,) — %

In other words, ¢} = F,(Y,). Then ¢/ replaces ¢, and Y, replaces X, in the definitions
of 0—Q and P-P plots.

_ The construction of a Q-0 plot requires the calculation of the model quantile
F~!(q,). For the uniform, exponential, Weibull, and log-logistic distributions,
there is no problem, since a closed-form expression for £ ! is available. For the other
continuous distributions, we give in Table 6.11 either a transformation for address-
ing the problem or a reference to a numerical approximation for #~'. Also given in
Table 6.11 are similar prescriptions for computing the model probability F (Xi)»
which is required for a PP plot. Functions for computing F or F'~!' are also
available in the IMSL Statistical Library [Rogue Wave (2013)], and the ExpertFit
statistical package (see Sec. 6.7) performs Q—Q and P—P plots automatically.

EXAMPLE 6.13. A Q-0 plot for the fitted exponential distribution and the interarrival-
time data is given in Fig. 6.42. The plot is fairly linear except for large values of ¢'. This
is not uncommon, since the Q—Q plot will amplify small differences between F (x) and
F(x) when they are both close to 1. The corresponding P—P plot is given in Fig. 6.43.
Its linearity indicates that the middle of the fitted exponential agrees closely with the
middle of the true underlying distribution.
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FIGURE 6.42
O-0 plot for exponential distribution and interarrival-time data.

EXAMPLE 6.14. The P—P plot for the fitted geometric distribution and the demand-
size data is given in Fig. 6.44. Once again we find the P—P plot to be reasonably linear,
indicating agreement between the geometric and true distributions.

6.6.2 Goodness-of-Fit Tests

A goodness-of-fit test is a statistical hypothesis test (see Sec. 4.5) that is used to as-
sess formally whether the observations X, X,, . . . , X, are an independent sample
from a particular distribution with distribution function F.Thatis, a goodness-of-fit
test can be used to test the following null hypothesis:

H,: The X;’s are IID random variables with distribution function F

Before proceeding with a discussion of several specific goodness-of-fit tests, we
feel compelled to comment on the formal structure and properties of these tests.
First, failure to reject H,, should not be interpreted as “accepting H,, as being true.”
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FIGURE 6.43
P-P plot for exponential distribution and interarrival-time data.

These tests are often not very powerful for small to moderate sample sizes n; that is,
they are not very sensitive to subtle disagreements between the data and the fitted
distribution. Instead, they should be regarded as a systematic approach for detecting
fairly gross differences. On the other hand, if n is very large, then these tests will
almost always reject H, [see Gibbons (1985, p. 76)]. Since H,, is virtually never
exactly true, even a minute departure from the hypothesized distribution will be
detected for large n. This is an unfortunate property of these tests, since it is usually
sufficient to have a distribution that is “nearly” correct.

Chi-Square Tests

The oldest goodness-of-fit hypothesis test is the chi-square test, which dates
back at least to the paper of K. Pearson (1900). As we shall see, a chi-square test
may be thought of as a more formal comparison of a histogram with the fitted den-
sity or mass function (see the frequency comparison in Sec. 6.6.1).

To compute the chi-square test statistic in either the continuous or discrete case,
we must first divide the entire range of the fitted distribution into k adjacent intervals
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FIGURE 6.44
P—P plot for geometric distribution and demand-size data.

lay, a)), [a,, a,), . . ., [a,_,, a;), where it could be that a, = —, in which case the
first interval is (—, a,), or a, = +o°, or both. Then we tally

N; = number of X;’s in the jth interval [a;_, a;)

forj=1,2,...,k (Note that EJILI N; = n.) Next, we compute the expected propor-
tion p; of the X;’s that would fall in the jth interval if we were sampling from the
fitted distribution. In the continuous case,

p= " fd

where f is the density of the fitted distribution. For discrete data,

p= > b
a];l Sxi<aj

where p is the mass function of the fitted distribution. Finally, the test statistic is
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Since np; is the expected number of the n X’ s that would fall in the jth interval if H,
were true (see Prob. 6. 17) we would expect x? to be small if the fit were good. There-
fore, we reject Hy if x* is too large. The precise form of the test depends on whether we
have estimated any of the parameters of the fitted distribution from our data.

First, suppose that all parameters of the fitted distribution are known; that is, we
specified the fitted distribution without making use of the data in any way. [This all-
parameters-known case might appear to be of little practical use, but there are at
least two applications for it in simulation: (1) In the Poisson-process test (later in
this section), we test to see whether times of arrival can be regarded as being IID
U(0, T) random variables, where T is a constant independent of the data; and (2) in
empirical testing of random-number generators (Sec. 7.4.1), we test for a U(0, 1)
distribution.] Then if H,, is true, X° converges in distribution (as n — =) to a chi-
square distribution with k — 1 df, which is the same as the gamma((k — 1)/2, 2]
distribution. Thus for large n, a test with approximate level « is obtained by reject-
ing Hy if x> > xji_,,_, (see Fig. 6.45), where x{_,,_, is the upper 1 — «a critical
point for a chi-square distribution with k — 1 df. (Values for x;_,,_, can be found
in Table T.2 at the end of the book.) Note that the chi-square test is only valid, i.e.,
is of level «, asymptotically as n — .

J)
Chi-square density with k — 1 df
/ Shaded area = «
0 2 X
Xi-1L1-a
|<— Do not reject i Reject
FIGURE 6.45

The chi-square test when all parameters are known.
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The chi-square test when m parameters are estimated by their MLEs.

Second, suppose that in order to specify the fitted distribution, we had to esti-
mate m parameters (m = 1) from the data. When MLEs are used, Chernoff and
Lehmann (1954) showed that if H,, is true, then as n — < the distribution function
of x? converges to a distribution function that lies between the distribution functions
of chi-square distributions with k — 1 and k — m — 1 df. (See Fig. 6.46, where
F, ,and F,_,, , represent the distribution functions of chi-square distributions with
k—1and k — m — 1 df, respectively, and the dotted distribution function is the
one to which the distribution function of y* converges as n — .) If we let x7_, be
the upper 1 — « critical point of the asymptotic distribution of x?, then

2 -2 =2
Xe=m-11-a = X1-a = Xk-1,1-a

as shown in Fig. 6.46; unfortunately, the value of y?_, will not be known in general.
It is clear that we should reject Hy if x* > x;_,,_, and we should not reject H, if
X° < Xi-m-1.1_o an ambiguous situation occurs when

2 - 2= 2
Xi=m-11—a = X = Xk-1,1-a

It is often recommended that we reject Hy only if x* > x;_,,_,. since this is con-
servative; that is, the actual probability &’ of committing a Type I error [rejecting
H, when it is true (see Sec. 4.5)] is at least as small as the stated probability « (see
Fig. 6.46). This choice, however, will entail loss of power (probability of rejecting
a false H,)) of the test. Usually, m will be no more than 2, and if & is fairly large, the
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difference between x;_,, o and x;_, ,_, will not be too great. Thus, we reject H
if (and only if) y* > Xiq,l—w as in the all-parameters-known case. The rejection
region for y? is indicated in Fig. 6.46.

The most troublesome aspect of carrying out a chi-square test is choosing the
number and size of the intervals. This is a difficult problem, and no definitive
prescription can be given that is guaranteed to produce good results in terms of
validity (actual level of the test close to the desired level «) and high power for all
alternative distributions and all sample sizes. There are, however, a few guidelines
that are often followed. First, some of the ambiguity in interval selection is elimi-
nated if the intervals are chosen so that p, = p, = - - - = p,, which is called the
equiprobable approach. In the continuous case, this might be inconvenient to do
for some distributions since the distribution function of the fitted distribution
must be inverted (see Example 6.15 below). Furthermore, for discrete distribu-
tions, we will generally be able to make the p;’s only approximately equal (see
Example 6.16).

We now discuss how to choose the intervals to ensure “validity” of the test. Let
a= mink np;, and let y(5) be the number of np;’s less than 5. Based on extensive

l=j=
theoretijcal and empirical investigations (for the all-parameters-known case), Yarnold
(1970) states that the chi-square test will be approximately valid if £ = 3 and
a = 5y(5)/k. For equiprobable intervals, these conditions will be satisfied if k = 3
and np; = 5 for all j.

We now turn our attention to the power of the chi-square test. A test is said to
be unbiased if it is more likely to reject H, when it is false than when it is true or, in
other words, power is greater than the probability of a Type I error. A test without
this property would certainly be undesirable. It can be shown that the chi-square test
is always unbiased for the equiprobable approach [see Kendall and Stuart (1979,
pp. 455-461)]. If the np;’s are not equal (and many are small), it is possible to obtain
a valid test that is highly biased [see Haberman (1988)].

In general, there is no rule for choosing the intervals so that high power is ob-
tained for all alternative distributions. For a particular null distribution, a fixed sam-
ple size n, and the equiprobable approach, Kallenberg, Oosterhoff, and Schriever
(1985) showed empirically that power is an increasing function of the number of
intervals k for some alternative distributions, and a decreasing function of k for
other alternative distributions. Surprisingly, they also found in certain cases that the
power was greater when the np;’s were smaller in the tails (see Prob. 6.18).

In the absence of a definitive guideline for choosing the intervals, we recom-
mend the equiprobable approach and np; = 5 for all j in the continuous case. This
guarantees a valid and unbiased test. In the discrete case, we suggest making the
np;’s approximately equal and all at least 5. The lack of a clear prescription for
interval selection is the major drawback of the chi-square test. In some situations
entirely different conclusions can be reached from the same data set depending on
how the intervals are specified, as illustrated in Example 6.17. The chi-square test
nevertheless remains in wide use, since it can be applied to any hypothesized distri-
bution; as we shall see below, other goodness-of-fit tests do not enjoy such a wide
range of applicability.
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TABLE 6.12
A chi-square goodness-of-fit test for the interarrival-time data

(N; = np)?
Jj Interval N; np; o
np;

1 [0, 0.020) 8 10.950 0.795
2 [0.020, 0.042) 11 10.950 0.000
3 [0.042, 0.065) 14 10.950 0.850
4 [0.065, 0.089) 14 10.950 0.850
5 [0.089, 0.115) 16 10.950 2.329
6 [0.115, 0.142) 10 10.950 0.082
7 [0.142, 0.172) 7 10.950 1.425
8 [0.172, 0.204) 5 10.950 3.233
9 [0.204, 0.239) 13 10.950 0.384
10 [0.239, 0.277) 12 10.950 0.101
11 [0.277,0.319) 7 10.950 1.425
12 [0.319, 0.366) 7 10.950 1.425
13 [0.366, 0.419) 12 10.950 0.101
14 [0.419, 0.480) 10 10.950 0.082
15 [0.480, 0.553) 20 10.950 7.480
16 [0.553, 0.642) 9 10.950 0.347
17 [0.642, 0.757) 11 10.950 0.000
18 [0.757,0.919) 9 10.950 0.347
19 [0.919, 1.195) 14 10.950 0.850
20 [1.195, =) 10 10.950 0.082

¥? =22.188

EXAMPLE 6.15. We now use a chi-square test to compare the n = 219 interarrival
times of Table 6.7 with the fitted exponential distribution having distribution function
F(x) = 1 — /% for x = 0. If we form, say, k = 20 intervals with p; = 1/k = 0.05
forj =1, 2,..., 20, then np; = (219)(0.05) = 10. 950, so that this satisfies the
guldehnes that the intervals be chosen with equal p;’s and np; = 5. In this case, it is
easy to find the a;’s, since F can be inverted. That is, we set a, = 0 and a,, = %, and
forj=1,2,...,19 we want g, to satisfy F (a;) = j/20; this is equivalent to setting
a;= —0.399 ln (1 —j/20)forj=1,2,...,19 since a; = =F" 1(j/20). (For continuous
distributions such as the normal, gamma, and beta, the inverse of the distribution func-
tion does not have a simple closed form. In these cases, however, F ~! can be evaluated
by numerical methods; consult the references given in Table 6.11.) The computations
for the test are given in Table 6.12, and the value of the test statistic is X2 = 22.188. Re-
ferring to Table T.2, we see that x7y,4, = 27.204, which is not exceeded by x>, so we
would not reject H,, at the « = 0.10 level. (Note that we would also not reject H, for
certain larger values of « such as 0.25.) Thus, this test gives us no reason to conclude
that our data are poorly fitted by the expo(0.399) distribution.

EXAMPLE 6.16. As an illustration of the chi-square test in the discrete case, we test
how well the fitted geom(0.346) distribution agrees with the demand-size data of
Table 6.9. As is usually the case for discrete distributions, we cannot make the p_i’s
exactly equal, but by grouping together adjacent points on which the mass function p(x)
is defined (here, the nonnegative integers), we can define intervals that make the p;’s
roughly the same. One way to do this is to note that the mode of the fitted distribution is 0;
thus, p(0) = 0.346 is the largest value of the mass function. The large value for the
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TABLE 6.13
A chi-square goodness-of-fit test for the demand-size data

_ (N, = npy)?
J Interval N; np; —
np;
1 {0} 59 53.960 0.471
{1,2} 50 58.382 1.203
3 {3,4,...} 47 43.658 0.256
x> =1.930

mode limits our choice of intervals, and we end up with the three intervals given in
Table 6.13, where the calculations for the chi-square test are also presented. In particu-
lar, x* = 1.930, which is less than the critical value x3 4, = 4.605. Thus, we would not
reject H,, at the « = 0.10 level, and we have no reason to believe that the demand-size
data are not fitted well by a geom(0.346) distribution.

EXAMPLE 6.17. If we fit the log-logistic distribution to the 856 ship-loading times
of Fig. 6.3, then we obtain the MLEs & = 8.841 and ﬁ = 0.822 for the shape and
scale parameters, respectively. We now perform a chi-square test at level « = 0.1
using k = 10, 20, and 40 equiprobable intervals, with the results given in Table 6.14.
(Note that all three choices for k satisfy the recommendation that np; = 5.) We see
that the log-logistic distribution is rejected for 20 intervals, but is not rejected for
10 or 40 intervals.

Kolmogorov-Smirnov Tests

As we just saw, chi-square tests can be thought of as a more formal comparison
of a histogram of the data with the density or mass function of the fitted distribu-
tion. We also identified a real difficulty in using a chi-square test in the continuous
case, namely, that of deciding how to specify the intervals. Kolmogorov-
Smirnov (K-S) tests for goodness of fit, on the other hand, compare an empirical
distribution function with the distribution function F of the hypothesized
distribution. As we shall see, K-S tests do not require us to group the data in any
way, so no information is lost; this also eliminates the troublesome problem
of interval specification. Another advantage of K-S tests is that they are valid
(exactly) for any sample size n (in the all-parameters-known case), whereas
chi-square tests are valid only in an asymptotic sense. Finally, K-S tests tend to
be more powerful than chi-square tests against many alternative distributions;
see, for example, Stephens (1974).

TABLE 6.14
Chi-square goodness-of-fit tests for the ship-loading data

k Statistic Critical value Result of test
10 11.383 14.684 Do not reject
20 27.645 27.204 Reject

40 50.542 50.660 Do not reject
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Nevertheless, K-S tests do have some drawbacks, at least at present. Most seri-
ously, their range of applicability is more limited than that for chi-square tests. First,
for discrete data, the required critical values are not readily available and must be
computed using a complicated set of formulas [see Conover (1999, pp. 435-437),
Gleser (1985), and Pettitt and Stephens (1977)]. Second, the original form of the
K-S test is valid only if all the parameters of the hypothesized distribution are known
and the distribution is continuous; i.e., the parameters cannot have been estimated
from the data. However, the K-S test has been extended to allow for estimation of
the parameters in the cases of normal (lognormal), exponential, Weibull, and log-
logistic distributions. Although the K-S test in its original (all-parameters-known)
form has often been applied directly for any continuous distribution with estimated
parameters and for discrete distributions, this will, in fact, produce a conservative
test [see Conover (1999, pp. 432, 442)]. That is, the probability of a Type I error will
be smaller than specified, with a corresponding loss of power.

To define the K-S statistic, we will use the empirical distribution function
F,(x) defined by Eq. (6.5), which is a (right- contmuous) step function such that
F(X;) = i/nfori=1,2,...,n(see Prob. 6.19). If F(x) is the fitted distribution
function, a natural assessment of goodness of fit is some kind of measure of the
closeness between the functions F, and F. The K-S test statistic D, is simply the
largest (vertical) distance between F L(x) and F (x) for all values of x and is defined
formally by

D, = sup{|F,(x) = Fx)]}

[The “sup” of a set of numbers A is the smallest value that is greater than or equal
to all members of A. The “sup” is used here instead of the more familiar “max” since,
in some cases, the maximum may not be well defined. For example, if A = (0, 1),
there is no maximum but the “sup” is 1.] The statistic D, can be computed by
calculating

D," = max {i — ﬁ(X(,-))}, D,” = max {F(X(:)) J :l 1}

l=i=n
and finally letting
D, =max {D,",D,"}

An example is given in Fig. 6.47 for n = 4, where D, = D,". [Beware! Incorrect
computational formulas are often given for D,. In particular, one sometimes sees

|

as a “formula” for D,. For the situation of Fig. 6. 47 it is true that D), = D,. Con-
sider, however Fig. 6 48, where D), = F (X(z)) 2 but the correct Value for D, is
F (X)) — 4, Wthh occurs just before x = X Clearly, D! # D, in this case.] Dlrect
computation of D, " and D, requires sorting the data to obtam the X;’s. However
Gonzalez, Sahni, and Franta (1977) provide an algorithm for computing D," and
D, without sorting.

— F(X;)

I=i=n |1

D, = max{
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FIGURE 6.47

Geometric meaning of the K-S test statistic D, for n = 4.

Clearly, a large value of D, indicates a poor fit, so that the form of the test is
to reject the null hypothesis H, if D, exceeds some constant d, | _,, where « is the
specified level of the test. The numerical value of the critical point d, , _, depends
on how the hypothesized distribution was specified, and we must distinguish
several cases.

Case 1

If all parameters of F are known, i.e., none of the parameters of F is estimated
in any way from the data, the distribution of D, does not depend on E, assuming (of
course) that F is continuous. This rather remarkable fact means that a single table of
values for d will suffice for all continuous distribution forms; these tables are

nl—a

widely available [see, for example, Owen (1962)]. Stephens (1974) devised an

T F(v)
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FIGURE 6.48

An example in which the K-S test statistic D, is not equal to D,
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TABLE 6.15
Modified critical values ¢, _,, ¢;_,, and c]_ , for adjusted K-S test statistics

11—«
Case Adjusted test statistic 0.850 0.900 0950 0.975 0.990
0.11
All parameters Va4 0.12 + — | D, 1.138  1.224 1358 1.480 1.628
known Vi
_ 0.85
N(X(n), S*(n)) (\/;z - 0.01 + T)D" 0.775 0.819 0.895 0955 1.035
n
_ 0.2 0.5
expo(X(n)) D, — —|{ Vn + 026 + 7 0926 0990 1.094 1.190 1.308
n n

accurate approximation that eliminates the need for all but a tiny table; instead of
testing for D, > d we reject Hy if

n,l—a>
0.11
\/ﬁ+0.12+—>D >
< \/’; n 11—«

where values for ¢,_, (which do not depend on n) are given in the all-parameters-
known row of Table 6.15. This all-parameters-known case is the original form of the
K-S test.

Case 2

Suppose that the hypothesized distribution is N(u, o%) with both u and o un-
known. We can estimate . and o? by X(n) and S(n), respectively, and define the
distribution function F to be that of the N(X(n), $*(n)) distribution; i.e., let F(x) =
®{[x — X(n)]/VS*(n)}, where @ is the distribution function of the standard
normal distribution. Using this F (which has estimated parameters), D, is computed in
the same way, but different critical points must be used. Lilliefors (1967) estimated (via
Monte Carlo simulation) the critical points of D, as a function of n and 1 — «.
Stephens (1974) performed further Monte Carlo simulations and provided an accu-
rate approximation that obviates the need for large tables; namely, we reject H, if

0.85
Vn —0.01 + —)D > ¢
( W n -«
where values for ¢|_, are given in the N(X(n), S2(n)) row of Table 6.15. (This case
includes a K-S test for the lognormal distribution if the X;’s are the logarithms of
the basic data points we have hypothesized to have a lognormal distribution; see
Sec. 6.2.2.)

Case 3

Suppose the hypothesized distribution is expo(8) with S unknown. Now f3 is
estimated by its MLE X(n), and we define F to be the expo(X(n)) distribution func-
tion; that is, F(x) = 1 — ¢ /X for x = 0. In this case, critical points for D, were
originally estimated by Lilliefors (1969) in a Monte Carlo study, and exact tables
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TABLE 6.16

Modified critical values c%_, for the K-S test for the
Weibull distribution

1-«

n 0.900 0.950 0.975 0.990
10 0.760 0.819 0.880 0.944
20 0.779 0.843 0.907 0.973
50 0.790 0.856 0.922 0.988
% 0.803 0.874 0.939 1.007

were later obtained by Durbin (1975) [see also Margolin and Maurer (1976)].
Stephens’s (1974) approximation in this case is to reject H, if

0.2 0.5 )
(Dn - 7)(\/;3 +0.26 + W) >,

where ¢{__, can be found in the expo(X(n)) row of Table 6.15.

Case 4

Suppose the hypothesized distribution is Weibull with both shape parameter o
and scale parameter 8 unknown; we estimate these parameters by their respective
MLEs & and B. (See the discussion of the Weibull MLEs in Sec. 6.2.2.) And F is
taken to be the Weibull(&, ) distribution function F(x) = 1 — exp[—(x/B)*] for
x =0, and D, is computed in the usual fashion. Then H, is rejected if the adjusted
K-S statistic VaD, is greater than the modified critical value c*_, [see Chandra,
Singpurwalla, and Stephens (1981)] given in Table 6.16. Note that critical values
are available only for certain sample sizes n, and that the critical values for n = 50
and o (an extremely large sample size) are, fortunately, very similar. [Critical values
for other n less than 50 are given by Littell, McClave, and Offen (1979).]

Case 5

Suppose that the hypothesized distribution is log-logistic with both shape pa-
rameter « and scale parameter 3 unknown. Let the X;’s here be the logarithms of the
basic data points. Estimate the parameters by their respective MLEs & and 3 based
on the X;’s (see Sec. 6.2.2). Also F(x) is taken to be the logistic distribution function

F(x) = (1+ e[f("flnﬁ)]d)fl for —oo < x <

and D, is computed in the usual fashion. Then H, is rejected if the adjusted K-S
statistic V/nD, is greater than the modified critical value ¢| _, [see Stephens (1979)]
given in Table 6.17. Note that the critical values are available only for certain sample
sizes n, and that the critical values for n = 50 and « are, fortunately, very similar.

EXAMPLE 6.18. In Example 6.15 we used a chi-square test to check the goodness of
fit of the fitted expo(0.399) distribution for the interarrival-time data of Table 6.7. We
can also apply a K-S test with F(x) = 1 — ¢/%%* for x = 0, by using Case 3 above.
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TABLE 6.17

Modified critical values c|_,, for the K-S test for the
log-logistic distribution

1-«

n 0.900 0.950 0.975 0.990
10 0.679 0.730 0.774 0.823
20 0.698 0.755 0.800 0.854
50 0.708 0.770 0.817 0.873
% 0.715 0.780 0.827 0.886

Using the formulas for D5}, and D5y, we found that D,y = 0.047, so that the adjusted
test statistic is

219 V219

Since 0.696 is less than 0.990 = ¢ o, (from the last row of Table 6.15), we do not reject
H, at the « = 0.10 level.

02 0.5
(Dm - —>(\/219 +0.26 + ) = 0.696

Note that critical values for the K-S test in the case of the gamma distribution
with estimated parameters have been published by Tadikamalla (1990), but, unfor-
tunately, the largest sample size considered is 40.

Anderson-Darling Tests*

One possible drawback of K-S tests is that they give the same weight to the dif-
ference |F,(x) — F(x)| for every value of x, whereas many distributions of interest
differ primarily in their tails. The Anderson-Darling (A-D) test [see Anderson and
Darling (1954)], on the other hand, is designed to detect discrepancies in the tails
and has higher power than the K-S test against many alternative distributions [see
Stephens (1974)]. The A-D statistic A2 is defined by

A= nJ [F,(0) = FOO I (0 f (x) dx

where the weight function y(x) = 1/{F(x)[1 — F(x)]}. Thus, A% is just the
weighted average of the squared differences [F,(x) — F (x)]% and the weights are
the largest for F (x) close to 1 (right tail) and F (x) close to O (left tail). If we let
Z, = ﬁ(X(l.)) fori=1,2,...,n,then it can be shown that

A2 = (—{ > (i—D[nZ +1In(l - ZnHi)]}/n) —n
i=1
which is the form of the statistic used for actual computations. Since A2 is a
“weighted distance,” the form of the test is to reject the null hypothesis H,, if A2
exceeds some critical value a where « is the level of the test.

nl—a’

*Skip this section on the first reading.
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TABLE 6.18
Modified critical values for adjusted A-D test statistics

1-«
Case Adjusted test statistic 0.900 0.950 0.975 0.990
All parameters known AZforn =5 1.933 2.492 3.070 3.857
_ 5 4 25\ ,
N(X(n), $7(n)) L+—==—JA; 0.632 0.751 0.870 1.029
non
_ 06 ,
Expo(X(n)) 1+—A; 1.062 1.321 1.591 1.959
n
. LA 021\ ,
Weibull(a, B) 1+ —]JA, 0.637 0.757 0.877 1.038
Van
TP 025\ ,
Log-logistic(a, 8) 1+ A; 0.563 0.660 0.769 0.906
n

Critical values a, | _, are available for the A-D test for the same five continuous
distributions [see Stephens (1974, 1976, 1977, 1979) and D’ Agostino and Stephens
(1986, p. 134)] as for the K-S test. [See Gleser (1985) for a discussion of the discrete
case.] Furthermore, F (x) is computed in the same manner as before; see Example
6.19 below. Performance of the A-D test is facilitated by the use of adjusted test
statistics (except for the all-parameters-known case) and modified critical values,
which are given in Table 6.18. If the adjusted test statistic is greater than the modi-
fied critical value, then H) is rejected.

D’ Agostino and Stephens (1986, pp. 151-156) give a procedure for performing
an A-D test for the gamma distribution, where the critical values are obtained by
interpolating in a table. An A-D test can also be performed for the Pearson type V
distribution by using the fact that if X has a Pearson type V distribution, then 1/X
has a gamma distribution (see Sec. 6.2.2). Cheng and Currie (2009) show how boot-
strapping can be used to estimate critical values for the A-D test in the case of
distributions with no published tables.

EXAMPLE 6.19. We can use Case 3 of the A-D test to see whether the fitted exponen-
tial distribution F(x) = 1 — ¢™/**° provides a good model for the interarrival-time
data at level a = 0.10. We found that A3,y = 0.558, so that the adjusted test statistic is

0.6
(1 + m)A%lg = 0560

Since 0.560 is less than the modified critical value 1.062 (from the third row of
Table 6.18), we do not reject H;, at level 0.10.

Poisson-Process Tests*

Suppose that we observe a Poisson process (see Sec. 6.12.1) for a fixed interval
of time [0, T'], where T is a constant that is decided upon before we start our

*Skip this section on the first reading.
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observation. Let n be the number of events we observe in the interval [0, T], and let
t,be the time of the ithevent fori = 1,2,...,n. {Thus, 0=, =t,=...=¢t,=T.
If t, < T, then no events occurred in the interval (z,, T].} Then the joint distribu-
tion of 1, t,, . . ., t, is related to the U(0, T) distribution in the following way.
Assume that Y, ¥,, ..., Y, (the same n as above) are IID random variables with
the U(O, T) distribution, and let Y ;), Y, ..., ¥, be their corresponding order
statistics (see Sec. 6.2.4). Then a property of the Poisson process is that t,, #,, . . . , t,
have the same joint distribution as Y, Y5, . . ., ¥,,). [See Ross (2003, p. 303) for
a proof.]

One way of interpreting this property is that if someone simply showed us
the values of t, t,, . . . , t, without telling us that ¢, was obtained as the time of the
ith event in some sequence of events, it would appear (in a statistical sense) that
these n numbers had been obtained by taking a sample of n IID random values
from the U(0, T') distribution and then sorting them into increasing order. Alter-
natively, one could think of this property as saying that if we consider t,, t,, . . . , t,
as unordered random variables, they are IID with the U(0, T') distribution. This is
why we sometimes see a Poisson process described as one in which events occur
“at random,” since the instants at which events occur are uniformly distributed
over time.

In any case, this property provides us with a different way of testing the null
hypothesis that an observed sequence of events was generated by a Poisson process.
(We have already seen one way this hypothesis can be tested, namely, testing
whether the interevent times appear to be IID exponential random variables; see
Sec. 6.12.1 and Examples 6.15, 6.18, and 6.19.) We simply test whether the event
times ¢, f,, . . . , t, appear to be IID U(0, T') random variables using any applicable
testing procedure.

EXAMPLE 6.20. The interarrival-time data of Table 6.7 were collected over a fixed
90-minute period, and n = 220 arrivals were recorded during this interval. (It was
decided beforehand to start observing the process at exactly 5 .M., rather than at the
first time after 5:00 when an arrival happened to take place. Also, data collection
terminated promptly at 6:30 p.M., regardless of any arrivals that occurred later. It is
important for the validity of this test that the data collection be designed in this way,
i.e., independent of the actual event times.) The times of arrivals were t, = 1.53,¢, =
1.98, ..., 1, = 88.91 (in minutes after 5 p.Mm.). To test whether these numbers can
be regarded as being independent with the U(0,90) distribution, we used the all-
parameters-known cases of the chi-square and K-S tests. [The density and distribu-
tion functions of the fitted distribution are, respectively, f(x) = 1/90 and
F(x) = x/90, for 0 = x = 90. Note also that our “data” points are already sorted,
conveniently.] We carried out a chi-square test with the k = 17 equal-size intervals
[0, 5.294), [5.294, 10.588), . . ., [84.706, 90] so that np; = 220/17 = 12.941 for
j=12,...,17. The resultmg value of x* was 13.827, and since x7g000 = 23.542,
we cannot reject the null hypothesis that the arrivals occurred in accordance with a
Poisson process at level 0.10. The K-S test resulted in D,,, = 0.045, and the value of
the adjusted test statistic from the all-parameters-known row of Table 6.15 is thus
0.673. Since this is well below ¢,,, = 1.224, once again we cannot reject the null
hypothesis at level 0.10.
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6.7
THE ExpertFit SOFTWARE AND AN EXTENDED EXAMPLE

Performing the statistical procedures discussed in this chapter can, in some cases,
be difficult, time-consuming, and prone to error. For example, the chi-square test
with equiprobable intervals requires the availability of the inverse of the distribution
function, which is not available in closed form for some distributions (e.g., normal
and gamma). Thus, in these cases a numerical approximation to the inverse of the
distribution function would have to be obtained and programmed. Also, the K-S test
is often misstated or misapplied in textbooks and software packages. These consid-
erations led to the development of the ExpertFit distribution-fitting software.

The commercial versions of ExpertFit [see Averill M. Law & Associates
(2013)] will automatically and accurately determine which of 40 probability distri-
butions best represents a data set. The selected distribution is then put into the
proper format for direct input to a large number of different simulation packages.
ExpertFit contains the following four modules that are used sequentially to deter-
mine the best distribution:

* “Data” reads or imports data into ExpertFit, displays summary statistics, and
makes histograms; makes correlation plots and scatter diagrams; and performs
the Kruskal-Wallis test for homogeneity of data sets (see Sec. 6.13).

* “Models” fits distributions to the data by using the method of maximum likeli-
hood, ranks the distributions in terms of quality of fit, and determines whether the
“best” distribution is actually good enough to use in a simulation model. (Other-
wise, it recommends the use of an empirical distribution.)

* “Comparisons” compares the best distribution(s) to the data to further determine
the quality of fit, using density-histogram plots, distribution-function-differences
plots, probability plots, goodness-of-fit tests, etc.

* “Applications” displays and computes characteristics of a fitted distribution such
as the density function, moments, probabilities, and quantiles; it also puts the
selected distribution into the proper format for a chosen simulation package.

ExpertFit has the following documentation:

* Context-sensitive help for all menus and all results tables and graphs

* Online feature index and tutorials (see the “Help” pull-down menu in the Menu
Bar at the top of the screen)

* User’s Guide with eight complete examples

There is a Student Version of ExpertFit on the book’s website, www.mhhe.com/
law, that can be used to analyze most data sets corresponding to the examples and
problems in this chapter. It cannot, however, be used to analyze your own data sets.

We now use ExpertFit to perform a comprehensive analysis of the n = 200 ser-
vice times of Example 6.1. However, for expository convenience we limit our analy-
sis to the exponential, gamma, Weibull, lognormal, log-logistic, Pearson type V,
Pearson type VI, and normal distributions. In Table 6.19 we present the “Data Sum-
mary” (i.e., summary statistics) for the service times, and Fig. 6.49 is a correspond-
ing histogram based on k = 12 intervals of width Ab = 0.2. (The interval width was
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TABLE 6.19
Data summary for the service-time data

Data characteristic Value
Source file EXAMPLEG61
Observation type Real valued
Number of observations 200
Minimum observation 0.054
Maximum observation 2.131

Mean 0.888
Median 0.849
Variance 0.210
Coefficient of variation 0.515
Skewness 0.513

determined by trial and error.) The shape of the histogram strongly suggests that the
underlying distribution is skewed to the right, which tends to rule out the normal
distribution. This is supported by noting that X(200) = 0.888 > 0.849 = £,5(200)
and (200) = 0.513 > 0. Furthermore, ¢v(200) = 0.515 makes it fairly unlikely
that the true distribution could be exponential, which has a coefficient of variation
of 1; this conclusion is supported by the shape of the histogram.
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FIGURE 6.49
Histogram of 200 service times with Ab = 0.2.
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Relative Evaluation of Candidate Models

Relative

Maodel Score Parameters

1 - Weibull 100.00 Location 0.00000
Scale 1.00342
Shape 2.04472

2 - Gamma 83.33 Location 000000
Scale D.27318
Shape 3.25198

3 - Log-Logistic 6250 Location 0.00000
Scale 0.79528
Shape 291443

7 models are defined with scores between 0.00 and 10000

Absolute Evaluation of Model 1 - Weibull

Evaluation: Good

Suggestion: Additional evaluations using Comparisons Tab might be informative_
See Help for more information.

Additional information about Model 1 - Weibull

"Eror” in the model mean
relative to the sample mean -5.839%e 4 =007%

FIGURE 6.50
ExpertFit results screen for the service-time data.

The “Automated Fitting” option, which is in the Models module, was then used
to fit, rank, and evaluate the specified distributions other than the normal distribu-
tion automatically. The normal distribution was not automatically fit to the data,
since it can take on negative values that are inconsistent with the range of service
times. (If desired, the normal distribution could be fit to this data set manually by
using “Fit Individual Models” in the Models module.) The resulting ExpertFit
results screen is shown in Fig. 6.50. From the “Relative Evaluation of Candidate
Models,” it can be seen that the Weibull distribution is ranked first and received a
“Relative Score” (see below) of 100.00 followed by the gamma distribution and
the log-logistic distribution with Relative Scores of 83.33 and 62.50, respectively.
The maximum-likelihood estimates for the best-fitting Weibull distribution are
& = 2.045 and B = 1.003.

Even if a distribution is ranked first, this does not necessarily mean that it is
good enough to use in a simulation. However, since the “Absolute Evaluation” is
“Good,” there is no current evidence for not using the Weibull distribution. On the
other hand, it is prudent to obtain further confirmation using the Comparisons mod-
ule. If the highest-ranked distribution receives an Absolute Evaluation of “Bad,”
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then it is not suitable for use in a simulation model and ExpertFit will recommend
the use of an empirical distribution (see Sec. 6.2.4).

The ExpertFit ranking and evaluation algorithm was developed as follows. We had
15 heuristics that were thought to have some ability to discriminate between a good-
fitting and bad-fitting distribution. (The chi-square statistic was not considered because
it depends on an arbitrary choice of intervals.) To determine which of these heuristics
was actually the best, a random sample of size n was generated from a known “parent”
distribution, and each of the 15 heuristics was applied to see if it could, in fact, choose
the correct distribution. This was repeated for 200 independent samples, giving an
estimated probability that each heuristic would pick the parent distribution for the
specified sample size. This whole process was repeated for 175 parent distribution/
sample-size pairs, resulting in several heuristics that appeared to be superior. These
heuristics were combined to give the overall algorithm for ranking the fitted distribu-
tions and for computing the relative scores. The 35,000 generated data sets were also
used to develop the rules for determining the Absolute Evaluations.

The ranking screen also shows that the error in the mean of the Weibull distribu-
tion relative to the sample mean is only 0.07 percent.

As suggested by the Absolute Evaluation, we will now try to obtain additional
confirmation for the Weibull distribution by using graphical plots and goodness-of-
fit tests. In Fig. 6.51 we give density-histogram plots for the Weibull and gamma

Density-Histogram Plot
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[] 12 intervals of width 0.2 W 1 - Weibull [ 2- Gamma
FIGURE 6.51

Density-histogram plots for the service-time data and the Weibull and gamma
distributions.
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Distribution-Function-Differences Plot
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FIGURE 6.52

Distribution-function-differences plots for the service-time data and the
Weibull and gamma distributions.

distributions (see also the Color Plates). It can be seen that the Weibull distribution
matches the histogram well and that the gamma distribution is clearly inferior.
Figure 6.52 gives distribution-function-differences plots for the two distributions
and, once again, the superiority of the Weibull distribution can be seen (see the
Color Plates). The P—P plots in Fig. 6.53 also show that the Weibull distribution is
preferable.

We next performed an equiprobable chi-square test for the Weibull distribution
at level « = 0.05 using k = 20 intervals. The chi-square statistic was 15.6, which is
less than the critical value 30.144; therefore, this particular chi-square test gives us
no reason to reject the Weibull distribution. The adjusted test statistic for the K-S
test was 0.428, which is less than the &« = 0.05 modified critical value 0.874. Once
again we have no reason to reject the Weibull distribution. Finally, the test statistic
for the A-D test was 0.264, which is less than the « = 0.05 critical value 0.746, giv-
ing us no reason to reject the Weibull distribution.

Thus, based on the Absolute Evaluation, the graphical plots, and the goodness-
of-fit tests, there is no reason to think that the Weibull distribution is not a good
representation for the service-time data.
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P-P Plot
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FIGURE 6.53

P-P plots for the service-time data and the Weibull and gamma distributions.

6.8
SHIFTED AND TRUNCATED DISTRIBUTIONS

The exponential, gamma, Weibull, lognormal, Pearson type V, Pearson type VI, and
log-logistic distributions, discussed in Sec. 6.2.2, have range [0, o). Thus, if the
random variable X has any of these distributions, it can take on arbitrarily small pos-
itive values. However, frequently in practice if X represents the time to complete
some task (such as customer service), it is simply impossible for X to be less
than some fixed positive number. For example, in a bank it is probably not possible
to serve anyone in less than, say, 30 seconds; this will be reflected in the service-
time data we might collect on the bank’s operation. Thus, in reality P(X <
30 seconds) = 0; however, for a fitted gamma distribution, for instance, there is a
positive probability of generating a random value that is less than 30 seconds. Thus,
it would appear that a modification of these distribution forms would provide a
more realistic model and might result in a better fit in some cases.

This change can be effected by shifting the distribution some distance to
the right. What this really amounts to is generalizing the density function of
the distribution in question to include a location parameter (see Sec. 6.2.1).
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For example, the gamma distribution shifted to the right by an amount y > 0
has density

B (x — ,y)a—l e VB
fx) = I'(a)

0 otherwise

ifx >y

which has the same shape and scale parameters as the gamma («, 8) distribution but
is shifted vy units to the right. (This is often called the three-parameter gamma dis-
tribution.) Shifted versions of the other distributions discussed above are defined
similarly, by replacing x by x — -y in the density functions and their domains of defi-
nition. The range of these shifted distributions is [y, ©).

With these shifted distributions, we then have to estimate y as well as the other
parameters. In theory, this can be done by finding the MLE for v in addition to the
MLE:s for the original parameters. For the shifted exponential, ¥ and B are relatively
easy to find (see Prob. 6.12). However, finding MLEs for the three-parameter
distributions is considerably more problematic. For example, in the case of the
gamma, Weibull, and lognormal distributions, it is known that (global) MLEs are
not well defined [see Cheng and Amin (1983), Cohen and Whitten (1980), and
Zanakis (1979a)]. That is, the likelihood function L can be made infinite by choos-
ing ¥ = X, (the smallest observation in the sample), which results in inadmissible
values for the other parameters. A simple approach to the three-parameter estima-
tion problem is first to estimate the location parameter y by

_ yv2
X(I)X(n) X(k)

Xoy + X — 2X

where k is the smallest integer in {2, 3, ..., n — 1} such that X ;) > X,, [see Dubey
(1967)]. It can be shown that ¥ < X, if and only if X ;) < [X;, + X(n)]/2, which is
very likely to occur; see Prob. 6.23. [Zanakis (1979b) has shown empirically the accu-
racy of ¥ for the Weibull distribution.] Given the value ¥, we next define X’ as follows:

X'=X,—%=0 fori=1,2,...,n

:)'/:

Finally, MLE estimators of the scale and shape parameters are obtained by applying
the usual two-parameter MLE procedures to the observations X/, X5, . . ., X).

EXAMPLE 6.21. In Fig. 6.54, we give a histogram (with Ab = 0.2) of the times (in
hours) to unload n = 808 coal trains, each consisting of approximately 110 cars.
(Figure 6.54 is actually a density-histogram plot.) The shape of the histogram suggests
that a fitted distribution would require a positive location parameter. Since X, = 3.37,
Xo) = 3.68, and X445 = 6.32, we get ¥ = 3.329. The values X; = X; — 3.329 for
i=1,2,...,808 were then used to obtain the MLEs & = 7.451 and 8 = 1.271 for the
log-logistic distribution, whose density function is also given in Fig. 6.54. In general,
the agreement between the shifted log-logistic density function and the histogram seems
quite good.

In some situations a fitted distribution might provide a good model for observed
data generally, but other information says that, for instance, no value can be larger
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FIGURE 6.54
Density-histogram plot for the train-unloading data and the fitted log-logistic
distribution.

than some finite constant b > 0. If the range of the fitted density fis [0, %), this is
incompatible with the upper limit b, so we might instead use a truncated density

f*(x) = f(x)/F(b) for 0 = x = b (and 0 otherwise), where F(b) = be(x) dx < 1.
0

A method to generate random values from f* is given in Sec. 8.2.1.

EXAMPLE 6.22. Ifagamma distribution is found to provide a good model for service
times in a bank, the density function might be truncated above b = 15 minutes if larger
values than this are extremely unlikely.

6.9
BEZIER DISTRIBUTIONS

There is a fourth approach [Wagner and Wilson (1996a, 1996b)] for specifying
a probability distribution that models a set of observed data X, X,, ..., X, (see
Sec. 6.1 for the other three approaches). If X is a continuous random variable with
finite range [a, b] and a distribution function F(x) having any shape, then F(x) can
be approximated arbitrarily closely by a Bézier distribution function with suffi-
ciently high degree m. Let {p,, p;,.... P,,} be a set of control points, where
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p=0,z)(@=12,...,m—1),p, = (a, 0), and p,, = (b, 1). The Bézier dis-
tribution function P(¢) is given parametrically by

m

P(1) = > B, (Hp; fort €[0,1] (6.6)
i=0
where

B,h) = - ‘A=

m:
o !
(m — 1)!

Let y be the vector of y;’s, and let z be the vector of z;’s. Furthermore, let F,(x) be
the empirical distribution function defined by Eq. (6.9), and let F(x; m, y, z) be the
Bézier distribution function given by Eq. (6.6). For fixed m, F(x; m, y, z) is fit to the X;’s
by using a suitable optimization technique (e.g., least-squares estimation) to find the
minimum distance between F, (x) and F(x; m, y, z) over all possible y and z, and subject
to certain constraints. (The optimization determines p,fori = 1,2,...,m — 1.)

A Bézier distribution is an alternative to an empirical distribution for modeling
a data set that is not represented well by a standard theoretical distribution. Further-
more, a software package for fitting Bézier distributions has been developed by
Wagner and Wilson. There is, however, a difficulty in using Bézier distributions, at
least at present. Bézier distributions are not implemented in most simulation pack-
ages, and doing so on one’s own could be difficult in some software.

6.10
SPECIFYING MULTIVARIATE DISTRIBUTIONS,
CORRELATIONS, AND STOCHASTIC PROCESSES

So far in this chapter we have considered only the specification and estimation of
the distribution of a single, univariate random variable at a time. If the simulation
model needs input of only such scalar random variables, and if they are all indepen-
dent of each other across the model, then repeated application to each input of the
methods we’ve discussed up to now in this chapter will suffice. Indeed, this is the
standard mode of operation in most simulation projects, and it is the one supported
by most simulation packages.

There are systems, however, in which the input random variables are statisti-
cally related to each other in some way:

* Some of the input random variables together form a random vector with some
multivariate (or joint) probability distribution (see Sec. 4.2) to be specified by the
modeler.

* In other cases we may not want (or be able) to go quite so far as to specify the
complete multivariate distribution, but nonetheless suspect that there could be
correlation between different input random variables having their own individual,
or marginal, distributions, without knowledge or specification of the complete
multivariate distribution. We would like our inputs to reflect this correlation even
if we can’t specify the entire multivariate distribution.
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* In yet other cases, we may want to specify an entire input stochastic process (see
Sec. 4.3) in which the marginal distribution of the individual random variables
composing the process is to be specified, as well as the autocorrelations between
them out through some desired lag. This could be regarded as an infinite-dimensional
input random vector.

It is easy to think of physical situations where such input might occur:

* Consider a maintenance shop that can be modeled as a tandem queue with two
service stations. At the first station, incoming parts are inspected, and any defects
are marked for repair at the second station. Since a badly damaged part would
probably require above-average times for both inspection and repair, we might
expect the two service times for a given part to be positively correlated. Mitchell
et al. (1977) found that ignoring this correlation in modeling a system can lead to
serious inaccuracies in simulation results.

* In a model of a communications system, the sizes of (and perhaps interarrival
times between) arriving messages could form a stochastic process with some
stationary marginal univariate distribution of message size, as well as some
kind of correlation out through several lags. For instance, it could be that
large messages tend to come in groups, as do small messages, resulting in posi-
tive autocorrelation within the message-size input process. Livny et al. (1993)
show that autocorrelation in either the service-time or interarrival-time input
process of a simple M/M/1 queue can have a major effect on the output perfor-
mance measures.

* In a model of an inventory or production system, the stream of incoming orders
could display negative lag-one autocorrelation if a large order in one period tends
to be followed by a small order in the next period, and vice versa.

Thus, if the modeler has evidence of some kind of statistical relationship between a
simulation’s various scalar input random variables, or if an input stream is a process
over time that exhibits autocorrelation within itself, then consideration might be
given to modeling these relationships and generating them during the simulation to
avoid possible problems with model validity.

In the remainder of this section we briefly discuss some of these issues with
regard to specification and estimation [see the book chapter by Biller and Ghosh
(2006) for a comprehensive discussion], and in Sec. 8.5 we discuss generating the
corresponding observations for input to the simulation as it runs. In Sec. 6.12 we
take up the related issue of modeling arrival processes; in Sec. 8.6 we discuss gen-
eration methods for such processes. Many of these issues are discussed in Leemis
(2004) and in Sec. 5 of Nelson and Yamnitsky (1998).

6.10.1 Specifying Multivariate Distributions

Let X = (X, X, . . . , X,)" be an input random vector of dimension d (A" denotes
the transpose of a vector or matrix A, so that X is a d X 1 column vector). For
instance, in the maintenance-shop example above, d = 2 (in which case X is
called bivariate), X, is the inspection time of a part, and X, is the subsequent
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repair time of that same part. Let X, = (X;;, Xy - - . » X;)" be the kth of n IID
observations on this d-dimensional random vector; in the maintenance shop we

<X11 > (Xl ) <X1n )
X2] X22 in

of observed data corresponding to the inspection and repair times of n different
parts, and we would further want to be able to generate such a sequence of 2-vectors
as input to the simulation.

Note that while we allow correlation within the components of a specific X, we
are assuming here that the component random variables across different X,’s are
independent, i.e., that the random vectors X, X,, . .., X, are independent of each
other. In the maintenance-shop situation this means that while the inspection and
repair times of a given part may be related, there is no relation between either of
these times across different parts—the parts are assumed to behave independently
of each other. [In Sec. 6.10.3, we allow autocorrelation in the {X,, X,, . . .} sequence,
but mostly in the univariate (scalar) case d = 1.]

The multivariate (or joint) distribution function of the random vector X is
defined as

Fx)=PX=x)=PX, =x,.X,=x,,....X,=x,)

for any fixed d-vector x = (x|, X, . . ., xd)T. This includes all the cases of continu-
ous, discrete, or mixed individual marginal distributions. In addition to implying the
marginal distributions, all the information about relationships between the individual
component random variables is embodied in the multivariate distribution function,
including their correlations.

As with univariate scalar random variables, there are a variety of multivariate
distributions that have been developed and parameterized in various ways and into
various families; see Chap. XI of Devroye (1986), Johnson (1987), Johnson et al.
(1997), and Kotz et al. (2000). However, it may be difficult or impractical to esti-
mate the entire multivariate distribution of a random vector from observed data,
particularly if the sample size n is not large. Thus, we restrict ourselves in the re-
mainder of this subsection to certain special cases of multivariate-distribution esti-
mation that have been found useful in simulation, and we discuss in Sec. 6.10.2
what can be done if our estimation goals are more modest than that of specifying the
entire multivariate distribution. And since our interest is ultimately in simulation
input, we must also pay attention to how realizations of such random vectors can be
generated, as discussed in Sec. 8.5.

Multivariate Normal

This is probably the best-known special case of a multivariate distribution.
While this distribution might have somewhat limited direct utility as a simulation-
input model since all its marginal distributions are symmetric and have infinite tails
in both directions, it does serve as a springboard to other more useful input-modeling
distributions.
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The multivariate normal density function (see Sec. 4.2) is defined as

x-w'Ex-w

fx) = @m) P [E] ex 5

for any vector x in d-dimensional real space. Here, p. = (W, iy, - . . , )" is the
mean vector, 2, is the covariance matrix with (i, j)th entry g;= 0= Cov(X,, XJ.)
(so 3 is symmetric and positive definite), || is the determinant of 3, and 3" is the
matrix inverse of 2. The marginal distribution of X; is N(u,, o;;). We denote the mul-
tivariate normal distribution as N (., ).

The correlation coefficient between X; and X; is pij =0,/Vo = p;» which is

ll jj

always between —1 and +1. Thus, since o; = = p; V0,0, an alternative pa-
rameterization of the multivariate normal distnbutlon would be to replace 3 by the
parametersoﬁandp”fori =1,2,...,dandj=i+1,i+2,...,d.

Note that in the multivariate-normal case, the entire joint distribution is
uniquely determined by the marginal distributions and the correlation coefficients.
This is generally not true for other, non-normal multivariate distributions; i.e., there
could be several different joint distributions that result in the same set of marginal
distributions and correlations.

To fit a multivariate normal distribution to observed d-dimensional data X,
X,, ..., X, the mean vector w is estimated by the MLE

p=X=(X.X.....X)" (6.7)

where X; = Si-1 X;/n, and the covariance matrix 3 is estimated by the d X d
matrix 2 whose (i, j)th entry is

Z (X,'k - X,)(Xjk - X,)
G, = =1 (6.8)

v n

The correlation coefficient p;; is estimated by the MLE

~ a-ij ~
b= gy P ©9)

i jj
With a multivariate normal distribution so estimated, generation from it is pos-
sible by methods given in Sec. 8.5.2.

Multivariate Lognormal

This multivariate distribution affords the modeler positively skewed marginal
distributions on [0, %) with the possibility of correlation between them.

Rather than giving the explicit definition of its full joint density function, it is
more useful for simulation purposes to describe the multivariate lognormal in terms
of its transformational relation to the multivariate normal. We say that X =
(X,, X5, . . ., X,)" has a multivariate lognormal distribution if and only if

Y=(Y.Y,....Y)'=(nX,InX,,...,InX,)’
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has a multivariate normal distribution N ,(p, X); see Jones and Miller (1966) and
Johnson and Ramberg (1978). Put another way, the multivariate lognormal random
vector X can be represented as

X = (e, e, ..., e%)"

where Y is multivariate normal N,(p, 2). The marginal distribution of X; is uni-
variate lognormal LN(u,, o ;) where w; is the ith element of p and o is the ith
diagonal entry in ..

Since the multivariate normal random vector Y in the above logarithmic trans-
formation of X has mean vector i = (,, iy, - - . , ;)" and covariance matrix 3,
with (i, j)th entry o ; (so the correlation coefficients are p; = o,/ Vo ,0,), it turns
out that

E(X) = etit7iil? (6.10)
Var(X;) = e*i*7ii(e”ii — 1) (6.11)
and
o; + o

Cov(X, X)) = (e”i — 1)exp( p; + p; + s (6.12)

This implies that the correlation coefficient between X; and X is

e’i — 1

Cor(X, X;) = (6.13)

V(ei — 1)(e% — 1)
Note that p and X, are not the mean vector and covariance matrix of the multivariate
lognormal random vector X, but rather are the mean and covariance of the corre-
sponding multivariate normal random vector Y. The mean vector and covariance
matrix (and correlations) of X are given by Eqgs. (6.10) through (6.13) above.

To fit a multivariate lognormal distribution to a sample X, X,, ..., X, of
d-dimensional vectors, take the natural logarithm of each component scalar obser-
vation in each observed data vector to get the data vectors Y, Y,, ..., Y,; treat

these Y,’s as multivariate normal with unknown mean vector w and covariance
matrix %; and estimate p and 2, respectively, by Egs. (6.7) and (6.8) above.

Generation from a fitted multivariate lognormal distribution is discussed in
Sec. 8.5.2.

Multivariate Johnson Translation System

The univariate Johnson translation system, which includes the normal, lognor-
mal, Johnson Sy (see Sec. 6.2.2), and Johnson S, distributions, affords considerable
flexibility in terms of range and shape of fitted distributions. This family of distri-
butions has been extended to the multivariate case; see Chap. 5 of Johnson (1987),
Stanfield et al. (1996), and Wilson (1997).

As in the univariate case, the multivariate Johnson translation system permits
great flexibility in terms of range and shape to obtain good fits to a wide variety of
observed multivariate data vectors, certainly far more flexibility than given by the
multivariate normal or lognormal distributions discussed above. In particular, in the
method developed by Stanfield et al. (1996), the first four moments of the marginal
distributions from the fitted multivariate distribution match those of the observed
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data, and the correlation structure in the fitted distribution matches the empirical
correlations as well. Fitting such a distribution to observed data involves several
steps and uses methods to fit univariate Johnson distributions; for details on this fit-
ting procedure, as well as generating random vectors from the fitted multivariate
Johnson distribution, see Stanfield et al. (1996).

Bivariate Bézier

Univariate Bézier distributions, as described in Sec. 6.9, have been extended to the
bivariate case (d = 2 dimensions) by Wagner and Wilson (1995). Software is also de-
scribed there that allows graphical interactive adjustment of the fitted distribution; in
addition, generating random vectors is discussed there. Further results and methods
concerning bivariate Bézier distributions can be found in Wagner and Wilson (1996a).

Extension of Bézier distributions to three or more dimensions is described by
Wagner and Wilson (1995) as “feasible but cumbersome.”

6.10.2 Specifying Arbitrary Marginal Distributions and Correlations

In Sec. 6.10.1 we discussed several cases where a complete multivariate distri-
bution might be specified to model the joint behavior of d possibly related input ran-
dom variables that together compose an input random vector. In each of these cases,
the fitted member of the multivariate distribution family involved (normal,
lognormal, Johnson, or Bézier) determined the correlation between pairs of the
component random variables in the vector, as well as their marginal distributions; it
also imposed a more general and complete description of the joint variation of the
component random variables as embodied in the joint density function itself.

Sometimes we need greater flexibility than that. We may want to allow for pos-
sible correlation between various pairs of input random variables to our simulation
model, yet not impose an overall multivariate distribution forcing the fitted marginal
distributions all to be members of the same family. In other words, we would like to
be free to specify arbitrary univariate distributions to model the input random vari-
ables separately, as described in Secs. 6.1 through 6.9, yet also estimate correlations
between them quite apart from their marginal distributions. In fact, we might even
want some of the component input random variables to be continuous, others to be
discrete, and still others to be mixed continuous-discrete, yet still allowing for cor-
relations between them.

A very simple, and fairly obvious, procedure for doing this is just to fit distribu-
tions to each of the univariate random variables involved, one at a time and in isola-
tion from the others, and then to estimate suspected correlations between pairs of
input random variables by Eq. (6.9) above. Gather these random variables together
into an input random vector, which then by construction has the desired univariate
marginal distributions and desired correlation structure. However, it is important to
note that this procedure does not specify, or “control,” the resulting joint distribution
of the random vector as a whole—in fact, we generally won’t even know what this
joint distribution is. Thus, the suggested procedure allows for greater flexibility on
the marginal distributions and correlations, but exerts less overall control. Another
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caution is that the form and parameters of the marginal distributions can impose
restrictions on what correlations are possible; see Whitt (1976).

While specification of such a situation seems, at least in principle, relatively
straightforward, we need to make sure that whatever we specify here can be gener-
ated from during the simulation. We discuss this in Sec. 8.5.5, based on work in Hill
and Reilly (1994) and Cario et al. (2002).

6.10.3 Specifying Stochastic Processes

As mentioned earlier, there are situations in which a sequence of input random vari-
ables on the same phenomenon are appropriately modeled as being draws from the
same (marginal) distribution, yet might exhibit some autocorrelation between
themselves within the sequence. For instance, if {X,, X,, . . .} denote the sizes of
successive messages arriving to a communications node, the X;’s might be from the
same (stationary) distribution, but Cor(X,, X;,, could be nonzero for lags [ = 1,
2,..., p, where the longest autocorrelation lag p would be specified as part of the
modeling activity. In this case, the X;’s are identically distributed, but they are not inde-
pendent and so form a stationary stochastic process with possible autocorrelation out
through lag p. As mentioned earlier, such autocorrelation in an input stream can have a
major impact on a simulation’s results, as demonstrated by Livny et al. (1993).

In this subsection we briefly describe some models for this situation, and in
Sec. 8.5.6 we discuss how realizations from such models can be generated as input
to the simulation. Except for VARTA processes, we consider only the case where
the points X, in the process are univariate (scalar) random variables, rather than
being themselves multivariate random vectors.

AR and ARMA Processes

Standard autoregressive (AR) or autoregressive moving-average (ARMA)
models, developed in Box et al. (2008) for time-series data analysis, might first
come to mind for modeling an input time series. While there are many different
parameterizations of these processes in the literature, one version of a stationary
AR(p) model with mean p is

Xi=pt+td(Xio) —p) + (X — ) + -+ + ¢p(Xi7p — ) te (6.14)

where the g;’s are IID normal random variables with mean 0 and variance chosen to
control Var(Xj), and the ¢,’s are constants that must obey a condition for the X,’s to
have a stationary marginal distribution. The definition of ARMA models adds
weighted proportions of past values of the g;’s to the above recursion [see Box et al.
(2008) for complete details].

To fit such models to observed data, a linear-regression approach is taken to
estimate the unknown parameters of the process. The marginal distribution of the
X.’s is generally restricted to being normal, however, making this model of limited
direct use in simulation-input modeling since the range is infinite in both directions.
AR processes do serve, however, as “base” processes for ARTA models discussed
below, which are more flexible and useful as simulation input process models.
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Gamma Processes

These processes, developed by Lewis et al. (1989), yield marginal distributions
having a gamma distribution, as well as autocorrelation between points within the
process. They are constructed by a kind of autoregressive operation, similar in spirit
to the normal AR processes described in Eq. (6.14) above. This includes the case of
exponential marginals, known as exponential autoregressive (EAR) processes.

ARTA Processes

Cario and Nelson (1996) developed autoregressive-to-anything (ARTA) pro-
cesses, which seek to model any stationary marginal distribution and any autocor-
relation structure. ARTA processes can exactly match the desired autocorrelation
structure out to a specified lag p, as well as the desired stationary marginal distribu-
tion; in addition, they are specified by an automated procedure requiring no subjec-
tive interactive manipulation.

To define an ARTA process, start by specifying a standard stationary AR pro-
cess {Z;} with N(0O, 1) marginal distribution ({Z;} is called the base process). Then
define the final input process to the simulation as

X, = F'[®(2)] (6.15)

where F ™! is the inverse of the desired stationary marginal distribution F and ®
denotes the N(O, 1) distribution function. Since ®(Z;) has a U(0, 1) distribution by
a basic result known as the probability integral transform [see, e.g., Mood, Graybill,
and Boes (1974, pp. 202-203)], applying F ' to this U(0, 1) random variable
results in one that has distribution function F. Thus, it is clear that the marginal dis-
tribution of X; will be the desired F.

The principal work in specifying the desired ARTA process, however, is to
specify the autocorrelation structure of the base process {Z;} so that the resulting
final input process {X;} will exhibit the autocorrelation structure desired. Cario and
Nelson (1998) developed numerical methods to do so, as well as a software package
to carry out the calculations. The software assumes that the marginal distribution
and the autocorrelations for the {X;} process are given, although it will compute
sample autocorrelations from a set of observed time-series data if desired.

Biller and Nelson (2005, 2008) present a statistical methodology and software
for fitting an ARTA process with marginal distributions from the Johnson transla-
tion system (see Sec. 6.10.1) to a set of observed univariate time-series data.

VARTA Processes

Biller and Nelson (2003) provided a methodology for modeling and generating
stationary multivariate stochastic processes {X,, X,, .. .}, which they call vector-

autoregressive-to-anything (VARTA) processes. Let X; = (X, X, . . . , X,)" be the
input random vector of dimension d at time i, fori = 1,2, . ... Let FJ be the distri-
bution function of X], forj=1,2,...,dandi =1, 2,.... Also, let pj’kJ(X) =
Cor(Xj,i, Xy i) forjk=1,2,...,dandlagl =0,1,...,p, where pj'j,O(X) = 1.

Their methodology assumes that F; is a given member of the Johnson translation
system and that the correlations p;; (X) are specified. (In general, F; will be differ-
ent for each value of j.)
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The principal work in specifying the desired VARTA process is to specify the auto-
correlation structure of a Gaussian vector-autoregressive base process {Z;} so that the
resulting final input process {X;} will exhibit the autocorrelation structure desired.

Biller (2009) generalizes VARTA processes using copula theory to allow repre-
senting dependence structures that arise in situations where extreme component
realizations occur together.

6.11
SELECTING A DISTRIBUTION IN THE ABSENCE OF DATA

In some simulation studies it may not be possible to collect data on the random
variables of interest, so the techniques of Secs. 6.4 through 6.6 are not applicable to
the problem of selecting corresponding probability distributions. For example, if the
system being studied does not currently exist in some form, then collecting data
from the system is obviously not possible. This difficulty can also arise for existing
systems, if the number of required probability distributions is large and the time
available for the simulation study prohibits the necessary data collection and analy-
sis. Also, sometimes data are collected by an automated data-collection system,
which doesn’t provide the data in a suitable format. In this section we discuss four
heuristic procedures for choosing a distribution in the absence of data.

Let us assume that the random quantity of interest is a continuous random vari-
able X. It will also be useful to think of this random variable as being the time to per-
form some task, e.g., the time required to repair a piece of equipment when it fails. The
first step in using the triangular-distribution or beta-distribution approaches is to iden-
tify an interval [a, b] (Where a and b are real numbers such that @ < b) in which it is felt
that X will lie with probability close to 1; that is, P(a = X = b) = 1. To obtain subjec-
tive estimates of a and b, subject-matter experts (SMEs) are asked for their most opti-
mistic and pessimistic estimates, respectively, of the time to perform the task. Once an
interval [a, b] has been identified subjectively, the next step is to place a probability
density function on [a, b] that is thought to be representative of X.

In the triangular-distribution approach, the SMEs are also asked for their subjec-
tive estimate of the most-likely time to perform the task. This most-likely value m is the
mode of the distribution of X. Given a, b, and m, the random variable X is then consid-
ered to have a triangular distribution (see Sec. 6.2.2) on the interval [a, b] with mode m.
A graph of a triangular density function is given in Fig. 6.17. Furthermore, an algo-
rithm for generating a triangular random variate is given in Sec. 8.3.15.

One difficulty with the triangular approach is that it requires subjective esti-
mates of the absolute minimum and maximum possible values a and b, which can
be problematic. For example, is the value b the maximum over the next 3 months or
the maximum over a lifetime? A second major problem with the triangular distribu-
tion is that it cannot have a long right tail, as is often the case with density functions
for the time to perform some task. [Alternative triangular distributions are discussed
in Keefer and Bodily (1983).]

A second approach to placing a density function on [a, b] is to assume that the
random variable X has a beta distribution (see Sec. 6.2.2) on this interval with shape
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parameters o, and «,. This approach offers greater modeling flexibility because of
the variety of shapes that the beta density function can assume (see Fig. 6.11). On
the other hand, it is not clear how to choose the parameters o, and «, so as to spec-
ify the distribution completely. We can suggest several possible ideas. If one is will-
ing to assume that X is equally likely to take on any value between a and b, choose
o, = a, = 1, which results in the U(a, b) distribution (see Fig. 6.11). (This model
might be used if very little is known about the random variable X other than its
range [a, b].) An alternative idea, which we feel is generally more realistic, is to as-
sume that the density function of X is skewed to the right. (Our experience with real-
world data indicates that density functions corresponding to a task time usually
have this shape.) This density shape corresponds to @, > a,; > 1 in the beta
distribution (see Fig. 6.11). Furthermore, such a beta distribution has a mean p and
a mode m, given by
a,(b — a) N (a; — 1)(b — a)

=g+ —— and m=a
H o + o, o ta,—2

Given subjective estimates of w and m, these equations can be solved to obtain the
following estimates of «; and a:

(v —a)2m —a — D) (b — wa,

| = and 0y = ————

(m — p)(b — a) m—a
Note, however, that u must be greater than m for the density to be skewed to the
right; if u < m, it will be skewed to the left. Algorithms for generating a beta ran-
dom variate are given in Sec. 8.3.8.

A difficulty with the second idea for specifying a beta distribution is that some
SMEs will have trouble differentiating between the mean and the mode of a distri-
bution. Keefer and Bodily (1983) suggest alternative ways of specifying the param-
eters of a beta distribution.

People sometimes use the triangular or beta distribution to model a source of
randomness even when it is feasible to collect and analyze the necessary data. This
might be done just because the analyst doesn’t want to be bothered collecting data,
or because the analyst doesn’t understand the importance of choosing an appropri-
ate distribution. Example 6.23 shows that the cavalier use of the triangular (or beta)
distribution can sometimes result in very erroneous results.

EXAMPLE 6.23. Consider a single-server queueing system with exponential interar-
rival times with mean 1 and lognormal service times with mean 0.9 and variance 1.39
(u = —0.605 and o?=1), as shown in Fig. 6.55. However, the service-time distribution
is actually unknown to the analyst, and he first tries to approximate this distribution by
a triangular distribution with @ = 0, m = 0.2, and b = 1.97 (the 0.9-quantile for the
lognormal distribution). Note that a and m have been guessed correctly. Using the for-
mula for the steady-state average delay in queue d for an M/G/1 queue in App. 1B, it can
be shown that d = 11.02 for the lognormal distribution, but d = 1.30 for this triangular
distribution. Thus, approximating the lognormal distribution by this triangular distribu-
tion results in an 88.2 percent error (see Table 6.20 and Fig. 6.55).

Alternatively, suppose the analyst tries to approximate the unknown lognormal dis-
tribution by a triangular distribution with ¢ = 0, m = 0.2, and a mean of 0.9 (correct),
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TABLE 6.20

Approximating a lognormal distribution by triangular or beta
distributions

Service-time Steady-state average Percent
distribution delay in queue, d error
Lognormal(—0.605, 1) 11.02 0
Triangular(0, 1.97, 0.2) 1.30 88.2
Triangular(0, 2.5, 0.2) 5.66 48.7
2.5 Beta(1.08, 1.92) 5.85 46.9

which results in b = 2.5. [The mean of a triangular distribution is (@ + b + m)/3.] In
this case, d = 5.66, which is still an error of 48.7 percent.

Finally, suppose that the analyst tries to approximate the lognormal distribution by
a beta distribution witha = 0, b = 2.5, u = 0.9, and m = 0.2 (the same as for the second
triangular distribution), resulting in &, = 1.08 and &, = 1.92. In this case, d = 5.85,
which is a 46.7 percent error.

In summary, we have seen that approximating an unknown distribution by a trian-
gular or beta distribution can result in a large error in the simulation output.

*Because of the shortcomings of the triangular and beta approaches, we now
develop two new models for representing a task time in the absence of data that are

iG]
1.25 -
lognormal(—0.605, 1) (correct distribution)
1.00 |- —
/ triangular(0, 1.97, 0.2)
0.75

triangular(0, 2.5, 0.2)

0.50
2.5 beta(1.08, 1.92)

0.25

0.00 | | | I I I | | !
0.00 025 050 075 1.00 125 150 175 200 225 250%
FIGURE 6.55

Lognormal distribution and approximating triangular and beta distributions.

*Skip the remainder of this section on the first reading.
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based on the lognormal and Weibull distributions. These models require subjective
estimates of the location parameter -y, the most-likely task time m, and the g-quantile
(100gth percentile) x,, of the task-time distribution. The location parameter y plays
a role similar to that played by the minimum value a above, but now X must be
greater than y. We also assume that 0 =y <m <x, <.

We begin with the lognormal distribution. If ¥ has normal distribution with
mean u and variance o, then V = e” has a (two-parameter) lognormal distribution
with scale parameter ¢* (e* > 0) (see Sec. 6.2.2) and shape parameter o (o > 0). If
X = V + v, then X has a three-parameter lognormal distribution (see Sec. 6.8) with
location parameter 7y, scale parameter ¢, and shape parameter o, denoted by
LN(y, w, o). It follows from the discussion of the lognormal distribution in
Sec. 6.2.2 that the mode of X is given by

m=ry+ et (6.16)
Furthermore, it can be shown that (see Prob. 6.28)
x, =7y + e (6.17)

where z, is the g-quantile of a N(0,1) random variable.
If we substitute ¢* from Eq. (6.16) into Eq. (6.17), then we get the following
quadratic equation in o
o + zo tc=0

where ¢ = In[(m — )/ (xq — v)] < 0. Solving this equation for o gives the follow-

ing expression for o
-z, =V zj —4c
2

o =

Since o must be positive, we take the “+” root and get the following estimate & for

the shape parameter o-:
—z,+ Vz, —4c
o= 5 (6.18)

Substituting & into (6.16), we get the following estimate i for u:
i =In(m —vy) + (6)° (6.19)

EXAMPLE 6.24. Suppose that we want a lognormal distribution with a location pa-
rameter of y = 1, a most-likely value of m = 4, and a 0.9-quantile (90th percentile) of
Xy9 = 10. From Eqgs. (6.18) and (6.19), we get & = 0.588 and i = 1.444, and the
resulting lognormal density function is shown in Fig. 6.56.

We now consider the Weibull distribution. Suppose that the random variable Y
has a (two-parameter) Weibull distribution with shape parameter o (@ > 0) and
scale parameter 8 (8 > 0). We will further assume that & > 1, so that the mode is
greater than zero. If X = Y + vy, then X has a three-parameter Weibull distribution
(see Sec. 6.8) with location parameter vy, shape parameter «, and scale parameter 3,
denoted by Weibull(y, a, 8). The mode of X is given by (see Sec. 6.2.2)

a—1 1/a
m=vy+p a
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FIGURE 6.56
Specified lognormal and Weibull distributions.

which can be rewritten as
m—y
[(@ = 1)/a]"™

Furthermore, the distribution function of X evaluated at x,, Fy(x,), is given by (see
Sec. 6.8)

B = (6.20)

Fy(x) =1- e lagn/e” =
which can be rewritten as
Xo =Y
TR
Equating Eqgs. (6.20) and (6.21) gives the following expression in a:
m — a—1 Ver
= {aln[l/u - q)]} (©22

This equation cannot be solved in closed form, but can be solved iteratively by using
Newton’s method [see, e.g., Press et al. (2007)] to obtain an estimate & of the shape
parameter « (see Prob. 6.29). Then & can be substituted into Eq. (6.20) to get an
estimate (3 of the scale parameter 3:

B (6.21)

m—v

T ia e 02
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EXAMPLE 6.25. Suppose that we want a Weibull distribution with a location param-
eter of y = 1, a most-likely value of m = 4, and a 0.9-quantile of x,, = 10. From
Egs. (6.22) and (6.23), we get & = 1.627 and 8 = 5.390, and the resulting Weibull
density function is also shown in Fig. 6.56. Note that the calculation of the estimates
& and f3 was done using ExpertFit (see Sec. 6.7).

The lognormal and Weibull distributions can take on arbitrary large values,
albeit with a very small probability. Thus, if it is known that the corresponding
random variable can never take on values larger than b(b > x,), then it might be
desirable to truncate the distribution at b (see Sec. 6.8).

Note that it is also possible to specify a triangular distribution based on subjec-
tive estimates of a (the minimum value), m, and x, (see Prob. 6.30).

6.12
MODELS OF ARRIVAL PROCESSES

In many simulations we need to generate a sequence of random points in time
0=1t,=t =1t,=-.--,such that the ith event of some kind occurs at time ¢
(i =1,2,...) and the distribution of the event times {#,} follows some specified
form. Let N(¢) = max{i: t, = t} be the number of events to occur at or before time ¢
for t = 0. We call the stochastic process {N(f), t = 0} an arrival process since, for
our purposes, the events of interest are usually arrivals of customers to a service
facility of some kind. In what follows, we call A, = ¢, — t,_, (where i = 1,2, ...)
the interarrival time between the (i — 1)st and ith customers.

In Sec. 6.12.1 we discuss the Poisson process, which is an arrival process for
which the A;’s are IID exponential random variables. The Poisson process is prob-
ably the most commonly used model for the arrival process of customers to a queue-
ing system. Section 6.12.2 discusses the nonstationary Poisson process, which is
often used as a model of the arrival process to a system when the arrival rate varies
with time. Finally, in Sec. 6.12.3 we describe an approach to modeling arrival pro-
cesses where each event is really the arrival of a “batch” of customers.

A general reference for this section is Cinlar (1975, Chap. 4).

6.12.1 Poisson Processes

In this section we define a Poisson process, state some of its important properties,
and in the course of doing so explain why the interarrival times for many real-world
systems closely resemble IID exponential random variables.

The stochastic process {N(¢), t = 0} is said to be a Poisson process if:

1. Customers arrive one at a time.

2. N(t + s) — N(t) (the number of arrivals in the time interval (¢, ¢ + s]) is inde-
pendent of {N(u), 0 = u = t}.

3. The distribution of N(t + s) — N(t) is independent of ¢ for all 7, s = 0.

Properties 1 and 2 are characteristic of many actual arrival processes. Property 1
would not hold if customers arrived in batches; see Sec. 6.12.3. Property 2 says that
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the number of arrivals in the interval (¢, ¢ + s] is independent of the number of arrivals
in the earlier time interval [0, ¢] and also of the times at which these arrivals occur. This
property could be violated if, for example, a large number of arrivals in [0, #] caused
some customers arriving in (¢,  + 5] to balk, i.e., to go away immediately without being
served, because they find the system highly congested. Property 3, on the other hand,
will be violated by many real-life arrival processes since it implies that the arrival rate
of customers does not depend on the time of day, etc. If, however, the time period of
interest for the system is relatively short, say, a 1- or 2-hour period of peak demand, we
have found that for many systems (but certainly not all) the arrival rate is reasonably
constant over this interval and the Poisson process is a good model for the process dur-
ing this interval. (See Theorem 6.2 below and then Example 6.4.)

The following theorem, proved in Cinlar (1975, pp. 74-76), explains where the
Poisson process gets its name.

THEOREM 6.1. If {N(?), t = 0} is a Poisson process, then the number of arrivals in
any time interval of length s is a Poisson random variable with parameter As (where A is
a positive real number). That is,

e—)\S(/\S)k
P[N(t +s) — N(t) = k] = T

fork=0,1,2,...andt,s =0
Therefore, E[N(s)] = As (see Sec. 6.2.3) and, in particular, E[N(1)] = A. Thus, A is
the expected number of arrivals in any interval of length 1. We call A the rate of the
process.

We now see that the interarrival times for a Poisson process are IID exponential
random variables; see Cinlar (1975, pp. 79-80).

THEOREM 6.2. If {N(¢), t = 0} is a Poisson process with rate A, then its correspond-
ing interarrival times A,, A,, . . . are IID exponential random variables with mean 1/A.

This result together with our above discussion explains why we have found that
interarrival times during a restricted time period are often approximately IID expo-
nential random variables. For example, recall that the interarrival times of cars for
the drive-up bank of Example 6.4 were found to be approximately exponential dur-
ing a 90-minute period.

The converse of Theorem 6.2 is also true. Namely, if the interarrival times
A, A,, ... foran arrival process {N(f), t = 0} are IID exponential random variables
with mean 1/, then {N(¢), t = 0} is a Poisson process with rate A [Cinlar (1975,
p- 80)].

6.12.2 Nonstationary Poisson Processes

Let A(?) be the arrival rate of customers to some system at time 7. [See below for
some insight into the meaning of A(7).] If customers arrive at the system in accor-
dance with a Poisson process with constant rate A, then A(f) = A for all + = 0.
However, for many real-world systems, A(f) is actually a function of ¢. For exam-
ple, the arrival rate of customers to a fast-food restaurant will be larger during the
noon rush hour than in the middle of the afternoon. Also, traffic on a freeway will
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be heavier during the morning and evening rush hours. If the arrival rate A(f) does
in fact change with time, then the interarrival times A, A,, . . . are not identically
distributed; thus, it is not appropriate to fit a single probability distribution to the
A/’s by using the techniques discussed in Secs. 6.4 through 6.6. In this section we
discuss a commonly used model for arrival processes with time-varying arrival
rates.

The stochastic process {N(f), t = 0} is said to be a nonstationary Poisson
process if:

1. Customers arrive one at a time.
2. N(t + s) — N(¢) is independent of {N(u), 0 = u = t}.

Thus, for a nonstationary Poisson process, customers must still arrive one at a time,
and the numbers of arrivals in disjoint intervals are independent, but now the arrival
rate A(7) is allowed to be a function of time.

Let A(r) = E[N(1)] for all t = 0. If A(¢) is differentiable for a particular value
of t, we formally define A(?) as

d
A = o A1)

Intuitively, A(¢) will be large in intervals for which the expected number of arrivals
is large. We call A(¢) and A(¢) the expectation function and the rate function, re-
spectively, for the nonstationary Poisson process.

The following theorem shows that the number of arrivals in the interval
(t, t + s] for a nonstationary Poisson process is a Poisson random variable whose
parameter depends on both t and s.

THEOREM 6.3. If {N(#), t = 0} is a nonstationary Poisson process with continuous
expectation function A(f), then
e " b(1, 5)]*
P[N(t+s)—N(t)=k]=T fork=0,1,2,...andt,5s =0
where b(t,s) = A(t + s) — A(t) = ft’“/\(y)dy, the last equality holding if dA(¢)/dt is
bounded on [z, t + s] and if dA(¢)/dr exists and is continuous for all but finitely many
points in [¢, ¢ + 5] (see Prob. 6.25).

We have not yet addressed the question of how to estimate A(f) [or A(¢)] from a
set of observations on an arrival process of interest. The following example gives a
heuristic but practical approach, and other approaches are briefly discussed after the
example.

EXAMPLE 6.26. A simulation model was developed for a xerographic copy shop, and
data were collected on the times of arrival of customers between 11 A.m. and 1 p.M. for
eight different days. From observing the characteristics of the arriving customers, it was
felt that properties 1 and 2 for the nonstationary Poisson process were applicable and, in
addition, that A(7) varied over the 2-hour interval. To obtain an estimate of A(z), the
2-hour interval was divided into the following 12 subintervals:

[11:00, 11:10), [11:10, 11:20), . . ., [12:40, 12:50), [12:50, 1:00)
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Plot of the estimated rate function X(t) in customers per minute for the
arrival process to a copy shop between 11 A.m. and 1 p.m.

For each day, the number of arrivals in each of these subintervals was determined. Then,
for each subinterval, the average number of arrivals in that subinterval over the 8 days
was computed. These 12 averages are estimates of the expected numbers of arrivals in
the corresponding subintervals. Finally, for each subinterval, the average number of
arrivals in that subinterval was divided by the subinterval length, 10 minutes, to obtain
an estimate of the arrival rate for that subinterval. The estimated arrival rate A(¢) (in
customers per minute) is plotted in Fig. 6.57. Note that the estimated arrival rate varies
substantially over the 2-hour period.

One might legitimately ask how we decided on these subintervals of length 10 min-
utes. Actually, we computed estimates of A(¢) in the above manner for subintervals of
length 5, 10, and 15 minutes. The estimate of A(f) based on subintervals of length 5 min-
utes was rejected because it was felt that the corresponding plot of A(#) was too ragged;
i.e., a subinterval length of 5 minutes was too small. On the other hand, the estimate of
A(t) based on subintervals of length 15 minutes was not chosen because the corre-
sponding plot of A(1) seemed too “smooth,” meaning that information on the true nature
of A(f) was being lost. In general, the problem of choosing a subinterval length here is
similar to that of choosing the interval width for a histogram (see Sec. 6.4.2).

While the piecewise-constant method of specifying A(¢) in Example 6.26 is cer-
tainly quite simple and fairly flexible, it does require somewhat arbitrary judgment
about the boundaries and widths of the constant-rate time intervals. Other methods
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for specifying and estimating A(f) [or, alternatively, A(f)] have been developed,
which we briefly mention here:

« Several authors have proposed procedures where the estimated rate function A(7)
is specified to be a generalization of what was done in Example 6.26, in terms of
allowing for piecewise-linear or piecewise-polynomial forms. These include Kao
and Chang (1988), Lewis and Shedler (1976), and Klein and Roberts (1984).

* Leemis (1991) developed an intuitive and simple nonparametric method to spec-
ify a piecewise-linear estimate of the expectation function A(f), where the break-
points are determined by the observed arrival times in a superposition of several
realizations of the process. He shows that the estimator converges, with probabil-
ity 1, to the true underlying expectation function as the number of observed real-
izations increases, and also derives a confidence band around the true A(r) that
could be useful in input-specification sensitivity analysis. Since the estimated
A(2) is piecewise linear, generating observations (see Sec. 8.6.2) is simple and
efficient. A generalization of this method is given in Arkin and Leemis (2000).

» A different approach to specifying and estimating the rate function A() is to as-
sume that it has some specific parametric (functional) form that is general enough
in structure and has a sufficient number of parameters to allow it to fit observed
data well. The parametric form should allow for trends and cycles, and should
admit rigorous statistical methods for parameter estimation, such as maximum-
likelihood or least-squares methods. Such functions, together with software for
estimation and generation, are developed in Lee et al. (1991), Johnson et al.
(1994a, 1994b), Kuhl, Damerji, and Wilson (1997), Kuhl, Wilson, and Johnson
(1997), and Kuhl and Wilson (2000).

» Kuhl and Wilson (2001) and Kuhl et al. (2006) give a combined nonparametric/
parametric approach and software for estimating an expectation function A(f) of
a nonstationary Poisson process with a long-run trend or cyclic effects that may
exhibit nontrigonometric characteristics.

* Gerhardt and Nelson (2009) provide methodologies for modeling nonstationary
arrival processes that are more or less variable than a nonstationary Poisson
process.

6.12.3 Batch Arrivals

For some real-world systems, customers arrive in batches, or groups, so that prop-
erty 1 of the Poisson process and of the nonstationary Poisson process is violated.
For example, people arriving at a sporting event or at a cafeteria often come in
batches. We now consider how one might model such an arrival process.

Let N(f) now be the number of batches of individual customers that have
arrived by time 7. By applying the techniques discussed previously in this chapter to
the times of arrivals of the successive batches, we can develop a model for the
process {N(t), t = 0}. For example, if the interarrival times of batches appear to be
approximately IID exponential random variables, {N(f), t = 0} can be modeled as a
Poisson process. Next, we fit a discrete distribution to the sizes of the successive
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batches; the batch sizes will be positive integers. Thus, for the original arrival pro-
cess, it 1s assumed that batches of customers arrive in accordance with the arrival
process {N(f), t = 0} and that the number of customers in each batch is a random
variable with the fitted discrete distribution.

The above informal discussion can be made more precise. If X(#) is the total
number of individual customers to arrive by time ¢, and if B, is the number of cus-
tomers in the ith batch, then X(¥) is given by

N(1t)
X(1) :ZBi fort =0

i=1

If the B,’s are assumed to be IID random variables that are also independent of
{N(t), t = 0}, and if {N(z), t = 0} is a Poisson process, then the stochastic process
{X(®), t = 0} is said to be a compound Poisson process.

6.13
ASSESSING THE HOMOGENEITY OF DIFFERENT
DATA SETS

Sometimes an analyst collects k sets of observations on a random phenomenon in-
dependently and would like to know whether these data sets are homogeneous and
thus can be merged. For example, it might be of interest to know whether service
times of customers in a bank collected on different days are homogeneous. If they
are, then the service times from the different days can be merged and the combined
sample used to find the service-time distribution. Otherwise, more than one service-
time distribution is needed. In this section, we discuss the Kruskal-Wallis hypothe-
sis test for homogeneity. It is a nonparametric test since no assumptions are made
about the distributions of the data.

Suppose that we have k independent samples of possibly different sizes, and
that the samples themselves are independent. Denote the ith sample of size n, by X,
D TN Xi"i fori =1,2,...,k;and let n denote the total number of observations

n=>n

i=1

Then we would like to test the null hypothesis
H,: All the population distribution functions are identical
against the alternative hypothesis

H,: At least one of the populations tends to yield larger observations than at
least one of the other populations

To construct the Kruskal-Wallis (K-W) statistic, assign rank 1 to the smallest
of the n observations, rank 2 to the second smallest, and so on to the largest of the
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n observations, which receives rank n. Let R(X;;) represent the rank assigned to X;;,
and let R, be the sum of the ranks assigned to the ith sample, that is,

Ri:ZR(Xij) fori=1,2,...,k
i=1

Then the K-W test statistic 7' is defined as

12 LR?
T=——>——-3n+1)
nn+1) o n
We reject the null hypothesis H at level a if T > x|, _,, where x;_,,_, is the
upper 1 — « critical value for a chi-square distribution with k — 1 degrees of free-
dom. The above expression for T assumes that no two observations are equal. If this
is not the case, then a different expression for 7 must be used [see Conover (1999,
pp. 288-290)].

EXAMPLE 6.27. A simulation model was developed for the hub operations of an
overnight air-delivery service for the purpose of determining the amount of unloading
equipment required. The model included provision for the fact that planes may arrive
before or after their scheduled arrival times. Data were available on the actual times of
arrival for two different incoming flight numbers (each corresponding to a different
origin city) for 57 different days. (Each flight number arrives once a day, 5 days a
week.) Let X;; be the scheduled time of arrival minus the actual time of arrival (in min-
utes) for day j and flight number i, forj = 1,2,...,57andi = 1, 2. If Xl.j < 0, then
flight number i was late on day j. We want to perform a K-W test to determine whether
the X;’s and X,’s are homogeneous, i.e., whether the arrival patterns for the two flight
numbers are similar. We computed the K-W statistic and obtained 7' = 4.317, which is
greater than the critical value 2.706 = 7o Therefore, we rejected the null hypothesis
at level @ = 0.10, and the arrival patterns for the two flight numbers had to be modeled
separately. The observed differences were to a large extent due to different weather con-
ditions in the two origin cities.

APPENDIX 6A
TABLES OF MLEs FOR
THE GAMMA AND BETA DISTRIBUTIONS

TABLE 6.21
a as a function of 7, gamma distribution

T a T a T @ T a
0.01 0.010 1.40 0.827 5.00 2.655 13.00 6.662
0.02 0.019 1.50 0.879 5.20 2.755 13.50 6.912
0.03 0.027 1.60 0.931 5.40 2.856 14.00 7.163
0.04 0.036 1.70 0.983 5.60 2.956 14.50 7.413
0.05 0.044 1.80 1.035 5.80 3.057 15.00 7.663
0.06 0.052 1.90 1.086 6.00 3.157 15.50 7913
0.07 0.060 2.00 1.138 6.20 3.257 16.00 8.163

(continued)
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T o T & T o T &
0.08 0.068 2.10 1.189 6.40 3.357 16.50 8.413
0.09 0.076 2.20 1.240 6.60 3.458 17.00 8.663
0.10 0.083 2.30 1.291 6.80 3.558 17.50 8.913
0.11 0.090 2.40 1.342 7.00 3.658 18.00 9.163
0.12 0.098 2.50 1.393 7.20 3.759 18.50 9414
0.13 0.105 2.60 1.444 7.40 3.859 19.00 9.664
0.14 0.112 2.70 1.495 7.60 3.959 19.50 9914
0.15 0.119 2.80 1.546 7.80 4.059 20.00 10.164
0.16 0.126 2.90 1.596 8.00 4.159 20.50 10.414
0.17 0.133 3.00 1.647 8.20 4.260 21.00 10.664
0.18 0.140 3.10 1.698 8.40 4.360 21.50 10.914
0.19 0.147 3.20 1.748 8.60 4.460 22.00 11.164
0.20 0.153 3.30 1.799 8.80 4.560 22.50 11.414
0.30 0.218 3.40 1.849 9.00 4.660 23.00 11.664
0.40 0.279 3.50 1.900 9.20 4.760 23.50 11.914
0.50 0.338 3.60 1.950 9.40 4.860 24.00 12.164
0.60 0.396 3.70 2.001 9.60 4.961 24.50 12414
0.70 0.452 3.80 2.051 9.80 5.061 25.00 12.664
0.80 0.507 3.90 2.101 10.00 5.161 30.00 15.165
0.90 0.562 4.00 2.152 10.50 5411 35.00 17.665
1.00 0.616 4.20 2.253 11.00 5.661 40.00 20.165
1.10 0.669 4.40 2.353 11.50 5912 45.00 22.665
1.20 0.722 4.60 2.454 12.00 6.162 50.00 25.166
1.30 0.775 4.80 2.554 12.50 6.412
TABLE 6.22
&, and &, as functions of G, and G,, beta distribution
If G, = G,, use the first line of labels; if G, = G|, use the second line of labels

Gl GZ &1 &2 Gl GZ &1 &2

G2 Gl &2 &1 G2 Gl &2 &l
0.01 0.01 0.112 0.112 0.15 0.35 0.405 0.563
0.01 0.05 0.126 0.157 0.15 0.40 0.432 0.653
0.01 0.10 0.135 0.192 0.15 0.45 0.464 0.762
0.01 0.15 0.141 0.223 0.15 0.50 0.502 0.903
0.01 0.20 0.147 0.254 0.15 0.55 0.550 1.090
0.01 0.25 0.152 0.285 0.15 0.60 0.612 1.353
0.01 0.30 0.157 0.318 0.15 0.65 0.701 1.752
0.01 0.35 0.163 0.354 0.15 0.70 0.842 2.429
0.01 0.40 0.168 0.395 0.15 0.75 1.111 3.810
0.01 0.45 0.173 0.441 0.15 0.80 1.884 8.026
0.01 0.50 0.179 0.495 0.15 0.84 7.908 42.014

(continued)
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TABLE 6.22 (continued)
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G, G, a, @, G, G, ay @,
G, G, a, a, G, G, a, a,
0.01 0.55 0.185 0.559 0.20 0.20 0.395 0.395
0.01 0.60 0.192 0.639 0.20 0.25 0.424 0.461
0.01 0.65 0.200 0.741 0.20 0.30 0.456 0.537
0.01 0.70 0.210 0.877 0.20 0.35 0.491 0.626
0.01 0.75 0.221 1.072 0.20 0.40 0.531 0.735
0.01 0.80 0.237 1.376 0.20 0.45 0.579 0.873
0.01 0.85 0.259 1.920 0.20 0.50 0.640 1.057
0.01 0.90 0.299 3.162 0.20 0.55 0.720 1.314
0.01 0.95 0.407 8.232 0.20 0.60 0.834 1.701
0.01 0.98 0.850 42.126 0.20 0.65 1.016 2.352
0.05 0.05 0.180 0.180 0.20 0.70 1.367 3.669
0.05 0.10 0.195 0.223 0.20 0.75 2.388 7.654
0.05 0.15 0.207 0.263 0.20 0.79 10.407 39.649
0.05 0.20 0.217 0.302 0.25 0.25 0.500 0.500
0.05 0.25 0.228 0.343 0.25 0.30 0.543 0.588
0.05 0.30 0.238 0.387 0.25 0.35 0.592 0.695
0.05 0.35 0.248 0.437 0.25 0.40 0.651 0.830
0.05 0.40 0.259 0.494 0.25 0.45 0.724 1.007
0.05 0.45 0.271 0.560 0.25 0.50 0.822 1.254
0.05 0.50 0.284 0.640 0.25 0.55 0.962 1.624
0.05 0.55 0.299 0.739 0.25 0.60 1.186 2.243
0.05 0.60 0.317 0.867 0.25 0.65 1.620 3.486
0.05 0.65 0.338 1.037 0.25 0.70 2.889 7.230
0.05 0.70 0.366 1.280 0.25 0.74 12.905 37.229
0.05 0.75 0.403 1.655 0.30 0.30 0.647 0.647
0.05 0.80 0.461 2.305 0.30 0.35 0.717 0.777
0.05 0.85 0.566 3.682 0.30 0.40 0.804 0.947
0.05 0.90 0.849 8.130 0.30 0.45 0.920 1.182
0.05 0.94 2.898 45.901 0.30 0.50 1.086 1.532
0.10 0.10 0.245 0.245 0.30 0.55 1.352 2.115
0.10 0.15 0.262 0.291 0.30 0.60 1.869 3.280
0.10 0.20 0.278 0.337 0.30 0.65 3.387 6.779
0.10 0.25 0.294 0.386 0.30 0.69 15.402 34.780
0.10 0.30 0.310 0.441 0.35 0.35 0.879 0.879
0.10 0.35 0.327 0.503 0.35 0.40 1.013 1.101
0.10 0.40 0.345 0.576 0.35 0.45 1.205 1.430
0.10 0.45 0.365 0.663 0.35 0.50 1.514 1.975
0.10 0.50 0.389 0.770 0.35 0.55 2.115 3.060
0.10 0.55 0.417 0.909 0.35 0.60 3.883 6.313
0.10 0.60 0.451 1.093 0.35 0.64 17.897 32.315
0.10 0.65 0.497 1.356 0.40 0.40 1.320 1.320
0.10 0.70 0.560 1.756 0.40 0.45 1.673 1.827
0.10 0.75 0.660 2.443 0.40 0.50 2.358 2.832
0.10 0.80 0.846 3.864 0.40 0.55 4.376 5.837
0.10 0.85 1.374 8.277 0.40 0.59 20.391 29.841
0.10 0.89 5.406 44.239 0.45 0.45 2.597 2.597
0.15 0.15 0.314 0.314 0.45 0.50 4.867 5.354
0.15 0.20 0.335 0.367 0.45 0.54 22.882 27.359
0.15 0.25 0.357 0.424 0.49 0.49 12.620 12.620
0.15 0.30 0.380 0.489 0.49 0.50 24.873 25.371
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PROBLEMS

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

6.9.

6.10.

Suppose that a man’s job is to install 98 rivets in the right wing of an airplane under
construction. If the random variable T is the total time required for one airplane, then
what is the approximate distribution of 7°?

Prove comment 2 for the Weibull distribution in Table 6.3.
Prove comment 2 for the Pearson type VI distribution in Table 6.3.

Consider a four-parameter Pearson type VI distribution with shape parameters «; and
a,, scale parameter B3, and location parameter y. If ¢, = 1,y = 8 = ¢ > 0, then the
resulting density is

flx) = azx_(“2+l)c“2 forx > ¢

which is the density function of a Pareto distribution with parameters ¢ and «,,
denoted Pareto(c, «,). Show that X ~ Pareto(c, a,) if and only if ¥ = In X ~
expo(ln ¢, 1/a,), an exponential distribution with location parameter In ¢ and scale
parameter 1/a,.

For the empirical distribution given by F(x) in Sec. 6.2.4, discuss the merit of defining
F(X(i)) =i/nfori=1,2,...,n, which seems like an intuitive definition. In this case,
how would you define F(x) for 0 = x < X;,?

Compute the expectation of the empirical distribution given by F(x) in Sec. 6.2.4.

For discrete distributions, prove that the histogram (Sec. 6.4.2) is an unbiased estima-
tor of the (unknown) mass function; i.e., show that E(h) = p(x;) for all j. Hint: For j
fixed, define

1 if X, = x; :
Y, = o fori=1,2,...,n
0 otherwise

Suppose that the histogram of your observed data has several local modes (see
Fig. 6.31), but that it is not possible to break the data into natural groups with a differ-
ent probability distribution fitting each group. Describe an alternative approach for
modeling your data.

For a geometric distribution with parameter p, explain why the MLE p=
1/[X(n) + 1] is intuitive.

For each of the following distributions, derive formulas for the MLEs of the indicated
parameters. Assume that we have IID data X,, X,, ..., X, from the distribution in
question.

(a) U(0, b), MLE for b

(b) U(a, 0), MLE for a

(¢) U(a, b), joint MLEs for a and b

(d) N(u, o), joint MLEs for u and o

(e) LN(u, ), joint MLEs for u and o

(f) Bernoulli(p), MLE for p

(g) DU, ), joint MLE:s for i and j
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6.11.

6.12.

6.13.

6.14.

6.15.

6.16.

6.17.

6.18.

6.19.

6.20.
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(h) bin(t, p), MLE for p assuming that 7 is known
(i) negbin(s, p), MLE for p assuming that s is known
() U® —0.5,6 + 0.5), MLE for 6

For a Poisson distribution with parameter A, derive an approximate 100(1 — «) percent
confidence interval for A given the data X, X,, . . ., X,. Use the asymptotic normality
of the MLE A.

Consider the shifted (two-parameter) exponential distribution, which has density
function

1
— o /B i
e ifx=vy
fx)y =48
0 otherwise
for 3 > 0 and any real number y. Given a sample X,, X,, . . ., X, of IID random val-

ues from this distribution, find formulas for the joint MLEs % and 3. Hint: Remember
that y cannot exceed any X.

For a frequency comparison, show that r; as given by Eq. (6.4) is actually the expected
proportion of the n observations that would fall in the jth interval if the fitted distribu-
tion were in fact the true one.

For 0-0Q plots, why it is inconvenient to have an empirical distribution function Fn(x)
such that F, (X)) = 1?

What difficulty arises when you try to define a O—Q plot for a discrete distribution?

Suppose that the true distribution function F(x) and the fitted distribution function
F(x) are the same. For what distribution F(x) will the O—Q and P-P plots be essen-
tially the same if the sample size n is large?

Suppose that the random variable M; is the number of the n X;’s that would fall in the
Jjthiinterval [a;_;, a;) for a chi-square test if the fitted distribution were in fact the true
one. What is the distribution of Mj, and what is its mean?

For the chi-square test, explain intuitively why Kallenberg, Oosterhoff, and Schriever
(1985) found in certain cases that power was greater when the np;’s were smaller in the
tails rather than all being equal.

Let F,(x) be the empirical distribution function used for the K-S test. Show that
F,(x) = F(x) as n — o (w.p. 1) for all x, where F(x) is the true underlying distribution
function.

Assume for the following analyses that each data set consists of IID observations from a
continuous distribution. Use the Student Version of ExpertFit (see www.mhhe.com/law)
to analyze these data (included in ExpertFit), following the steps in Sec. 6.7 (i.e.,
data summary, histogram, fitting and ranking distributions, density-histogram plot,
distribution-function-differences plot, P—P plot, chi-square test, K-S test, and A-D
test). Use a level of @ = 0.05 for the tests.

(a) 91 laboratory-processing times

(b) 1000 paper-roll yardages (use second-best model so tests are applicable)
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6.23.
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6.25.

6.26.
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(c) 218 post-office service times (use second-best model so tests are applicable)
(d) 1592 times at an automated-teller machine (ATM)

(e) 694 machine-repair times

(f) 3035 post-anesthesia recovery times

Assume for the following analyses that each data set consists of IID observations from
a discrete distribution. Use the Student Version of ExpertFit to analyze these data,
performing the following steps: data summary, histogram, fitting and ranking distribu-
tions, frequency-comparison plot, distribution-function-differences plot, P—P plot,
and chi-square test. (K-S and A-D tests are not applicable to discrete data.) Use a level
of a = 0.05 for the test.

(a) 369 university test scores

(b) 200 deaths per corps per year by horse kick in the Prussian army in the late 1800s

There are two sets of IID machine-repair times named PROB622a and PROB622b.
(The machines are from the same vendor.) Use the Student Version of ExpertFit (with
“Advanced Mode”) to perform the Kruskal-Wallis test (see Sec. 6.13) atlevel « = 0.05
to determine whether the data sets are homogeneous.

For the location parameter estimator ¥ in Sec. 6.8, show that ¥ < X,, if and only if
Xy < [Xy) + X01/2.

Let LN(y, u, %) denote the shifted (three-parameter) lognormal distribution, which
has density

1 exp —[In (x —y) — ]’
f&) =9 (x — y)V2mrae? 20°
0

ifx >y
otherwise

for 0 > 0 and any real numbers y and w. [Thus, LN(O, wu, o?) is the original

LN(u, o%) distribution.]

(a) Verify that X ~ LN(y, u, o) if and only if X — y ~ LN(u, o).

(b) Show that for a fixed, known value of vy, the MLEs of u and ¢ in the LN(y, w, o?)
distribution are

In(X. — “ R 1/2
X Zl &= X > [In(X; — y) — p]?
o= and o=\ i=1

n
n

i.e., we simply shift the data by an amount —v and then treat them as being (un-
shifted) lognormal data.

For Theorem 6.3 in Sec. 6.12.2, explain intuitively why the expected number of
arrivals in the interval (¢, t + 5], b(t, 5), should be equal to | t’“)\(y) dy.

Provide an intuitive motivation for the definition of MLEs in the continuous case (see

Sec. 6.5) by going through steps (a) through (c¢) below. As before, the observed data

are X,, X,, ..., X,, and are IID realizations of a random variable X with density f,.

Bear in mind that the X;’s have already been observed, so are to be regarded as fixed

numbers rather than variables.

(a) Let € be a small (but strictly positive) real number, and define the phrase “getting
a value of X near X;” to be the event {X, — & < X <X, + €}. Use the mean-value
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6.27.

6.28.

6.29.

6.30.

6.31.
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theorem from calculus to argue that P(getting a value of X near X;) = 2¢ f(X,), for
anyi=1,2,...,n.

(b) Define the phrase “getting a sample of n IID values of X near the observed data” to
be the event (getting a value of X near X, getting a value of X near X, . . ., getting
a value of X near X,). Show that P(getting a sample of n IID values of X near the
observed data) = (2&)"f,(X))f,(X,) - - - f(X,), and note that this is proportional to
the likelihood function L(0).

(¢) Argue that the MLE @ is the value of @ that maximizes the approximate probability
of getting a sample of n IID values of X near the observed data, and in this sense
“best explains” the data that were actually observed.

Why is the average delay in queue approximately equal to the corresponding average
number in queue in Table 6.2?

Show that Eq. (6.17) in Sec. 6.11 is correct.

Develop the general recursive formula for Newton’s method to estimate the shape
parameter « for the Weibull distribution in Sec. 6.11 [see Eq. (6.22)]. The formula
should be of the following form:

f(@y)

F(@y)

@y = @ —
where f’ denotes the derivative of f.

In the absence of data (Sec. 6.11), show how to specify a triangular distribution based
on subjective estimates of a, m, and X,

In the absence of data (Sec. 6.11), is it possible, in general, to specify a triangular
distribution using a, b, and u, rather than a, b, and m?



CHAPTER 7

Random-Number Generators

Recommended sections for a first reading: 7.1, 7.2, 7.3.1, 7.3.2,7.4.1,7.4.3

7.1
INTRODUCTION

A simulation of any system or process in which there are inherently random com-
ponents requires a method of generating or obtaining numbers that are random, in
some sense. For example, the queueing and inventory models of Chaps. 1 and 2
required interarrival times, service times, demand sizes, etc., that were “drawn”
from some specified distribution, such as exponential or Erlang. In this and the next
chapter, we discuss how random values can be conveniently and efficiently gener-
ated from a desired probability distribution for use in executing simulation models.
So as to avoid speaking of “generating random variables,” which would not be
strictly correct since a random variable is defined in mathematical probability the-
ory as a function satisfying certain conditions, we will adopt more precise termi-
nology and speak of “generating random variates.”

This entire chapter is devoted to methods of generating random variates from
the uniform distribution on the interval [0, 1]; this distribution was denoted by U(0, 1)
in Chap. 6. Random variates generated from the U(0, 1) distribution will be called
random numbers. Although this is the simplest continuous distribution of all, it is
extremely important that we be able to obtain such independent random numbers.
This prominent role of the U(0, 1) distribution stems from the fact that random vari-
ates from all other distributions (normal, gamma, binomial, etc.) and realizations of
various random processes (e.g., a nonstationary Poisson process) can be obtained by
transforming IID random numbers in a way determined by the desired distribution
or process. This chapter discusses ways to obtain independent random numbers, and
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the following chapter treats methods of transforming them to obtain variates from
other distributions, and realizations of various processes.

The methodology of generating random numbers has a long and interesting his-
tory; see Hull and Dobell (1962), Morgan (1984, pp. 51-56), and Dudewicz (1975)
for entertaining accounts. The earliest methods were essentially carried out by hand,
such as casting lots (Matthew 27 : 35), throwing dice, dealing out cards, or drawing
numbered balls from a “well-stirred urn.” Many lotteries are still operated in this
way, as is well known by American males who were of draft age in the late 1960s
and early 1970s. In the early twentieth century, statisticians joined gamblers in their
interest in random numbers, and mechanized devices were built to generate random
numbers more quickly; in the late 1930s, Kendall and Babington-Smith (1938) used
a rapidly spinning disk to prepare a table of 100,000 random digits. Some time later,
electric circuits based on randomly pulsating vacuum tubes were developed that
delivered random digits at rates of up to 50 per second. One such random-number
machine, the Electronic Random Number Indicator Equipment (ERNIE), was used
by the British General Post Office to pick the winners in the Premium Savings Bond
lottery [see Thomson (1959)]. Another electronic device was used by the Rand
Corporation (1955) to generate a table of a million random digits. Many other schemes
have been contrived, such as picking numbers “randomly” out of phone books or
census reports, or using digits in an expansion of 7 to 100,000 decimal places.
There has been more recent interest in building and testing physical random-
number “machines”; for example, Miyatake et al. (1983) describe a device based on
counting gamma rays.

As computers (and simulation) became more widely used, increasing attention
was paid to methods of random-number generation compatible with the way com-
puters work. One possibility would be to hook up an electronic random-number
machine, such as ERNIE, directly to the computer. This has several disadvantages,
chiefly that we could not reproduce a previously generated random-number stream
exactly. (The desirability of being able to do this is discussed later in this section.)
Another alternative would be to read in a table, such as the Rand Corporation table,
but this would entail either large memory requirements or a lot of time for relatively
slow input operations. (Also, it is not at all uncommon for a modern large-scale
simulation to use far more than a million random numbers, each of which would
require several individual random digits.) Therefore, research in the 1940s and
1950s turned to numerical or arithmetic ways to generate “random” numbers. These
methods are sequential, with each new number being determined by one or several
of its predecessors according to a fixed mathematical formula. The first such arith-
metic generator, proposed by von Neumann and Metropolis in the 1940s, is the
famous midsquare method, an example of which follows.

EXAMPLE 7.1. Start with a four-digit positive integer Z, and square it to obtain an
integer with up to eight digits; if necessary, append zeros to the left to make it exactly
eight digits. Take the middle four digits of this eight-digit number as the next four-digit
number, Z,. Place a decimal point at the left of Z; to obtain the first “U(0, 1) random
number,” U,. Then let Z, be the middle four digits of Z and let U, be Z, with a decimal
point at the left, and so on. Table 7.1 lists the first few Z’s and U,’s for Z, = 7182 (the
first four digits to the right of the decimal point in the number e).



CHAPTER SEVEN 395

TABLE 7.1
The midsquare method

i A U, 7

0 7182 — 51,581,124
1 5811 0.5811 33,767,721
2 7677 0.7677 58,936,329
3 9363 0.9363 87,665,769
4 6657 0.6657 44,315,649
5

3156 0.3156 09,960,336

Intuitively the midsquare method seems to provide a good scrambling of one
number to obtain the next, and so we might think that such a haphazard rule would
provide a fairly good way of generating random numbers. In fact, it does not work
very well at all. One serious problem (among others) is that it has a strong tendency
to degenerate fairly rapidly to zero, where it will stay forever. (Continue Table 7.1
for just a few more steps, or try Z, = 1009, the first four digits from the Rand
Corporation tables.) This illustrates the danger in assuming that a good random-
number generator will always be obtained by doing something strange and nefarious
to one number to obtain the next.

A more fundamental objection to the midsquare method is that it is not “random”
at all, in the sense of being unpredictable. Indeed, if we know one number, the next
is completely determined since the rule to obtain it is fixed; actually, when Z,, is
specified, the whole sequence of Z;’s and U,’s is determined. This objection applies
to all arithmetic generators (the only kind we consider in the rest of this chapter),
and arguing about it usually leads one quickly into mystical discussions about the
true nature of truly random numbers. (Sometimes arithmetic generators are called
pseudorandom, an awkward term that we avoid, even though it is probably more
accurate.) Indeed, in an oft-quoted quip, John von Neumann (1951) declared that:

Any one who considers arithmetical methods of producing random digits is, of course,
in a state of sin. For, as has been pointed out several times, there is no such thing as a
random number—there are only methods to produce random numbers, and a strict arith-
metic procedure of course is not such a method. . .. We are here dealing with mere
“cooking recipes” for making digits. . . .

It is seldom stated, however, that von Neumann goes on in the same paragraph to
say, less gloomily, that these “recipes”

... probably . .. can not be justified, but should merely be judged by their results. Some
statistical study of the digits generated by a given recipe should be made, but exhaustive
tests are impractical. If the digits work well on one problem, they seem usually to be
successful with others of the same type.

This more practical attitude was shared by Lehmer (1951), who developed
what is probably still the most widely used class of techniques for random-number
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generation (discussed in Sec. 7.2); he viewed the idea of an arithmetic random-
number generator as

... avague notion embodying the idea of a sequence in which each term is unpredictable
to the uninitiated and whose digits pass a certain number of tests traditional with statisti-
cians and depending somewhat on the use to which the sequence is to be put.

More formal definitions of “randomness” in an axiomatic sense are cited by
Ripley (1987, p. 19); Niederreiter (1978) argues that statistical randomness may not
even be desirable, and that other properties of the generated numbers, such as “even-
ness” of the distribution of points, are more important in some applications, such as
Monte Carlo integration. We agree with most writers that arithmetic generators, if
designed carefully, can produce numbers that appear to be independent draws from
the U(0, 1) distribution, in that they pass a series of statistical tests (see Sec. 7.4).
This is a useful definition of “random numbers,” to which we subscribe.

A “good” arithmetic random-number generator should possess several
properties:

1. Above all, the numbers produced should appear to be distributed uniformly on
[0, 1T and should not exhibit any correlation with each other; otherwise, the
simulation’s results may be completely invalid.

2. From a practical standpoint, we would naturally like the generator to be fast and
avoid the need for a lot of storage.

3. We would like to be able to reproduce a given stream of random numbers ex-
actly, for at least two reasons. First, this can sometimes make debugging or veri-
fication of the computer program easier. More important, we might want to use
identical random numbers in simulating different systems in order to obtain a
more precise comparison; Sec. 11.2 discusses this in detail.

4. There should be provision in the generator for easily producing separate
“streams” of random numbers. As we shall see, a stream is simply a subsegment
of the numbers produced by the generator, with one stream beginning where the
previous stream ends. We can think of the different streams as being separate and
independent generators (provided that we do not use up a whole stream, whose
length is typically chosen to be a very large number). Thus, the user can “dedicate”
a particular stream to a particular source of randomness in the simulation. We did
this, for example, in the single-server queueing model of Sec. 2.4, where stream 1
was used for generating interarrival times and stream 2 for generating service
times. Using separate streams for separate purposes facilitates reproducibility
and comparability of simulation results. While this idea has obvious intuitive
appeal, there is probabilistic foundation in support of it as well, as discussed in
Sec. 11.2. Further advantages of having streams available are discussed in other
parts of Chap. 11. The ability to create separate streams for a generator is facilitated
if there is an efficient way to jump from the ith random number to the (i + k)th
random number for large values of k.

5. We would like the generator to be portable, i.e., to produce the same sequence of
random numbers (at least up to machine accuracy) for all standard compilers and
computers (see Sec. 7.2.2).
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Most of the commonly used generators are quite fast, require very little storage,
and can easily reproduce a given sequence of random numbers, so that points 2 and
3 above are almost universally met. Furthermore, most generators now have the
facility for multiple streams in some way, especially those generators included in
modern simulation packages, satisfying point 4. Unfortunately, there are also some
generators that fail to satisfy the uniformity and independence criteria of point 1
above, which are absolutely necessary if one hopes to obtain correct simulation
results. For example, L’Ecuyer and Simard (2007) report several instances of pub-
lished generators’ displaying very poor performance.

In Sec. 7.2 we discuss the most common kind of generator, while Sec. 7.3 dis-
cusses some alternative methods. Section 7.4 discusses how one can test a given
random-number generator for the desired statistical properties. Finally, Apps. 7A and
7B contain portable computer code for two random-number generators in C. The first
generator was used for the examples in Chaps. 1 and 2. The second generator is known
to have better statistical properties and is recommended for real-world applications.

The subject of random-number generation is a complicated one, involving such
disparate disciplines as abstract algebra and number theory, on one hand, and
systems programming and computer hardware engineering, on the o